• Aucun résultat trouvé

Significance of microhardness of porous inorganic materials

N/A
N/A
Protected

Academic year: 2021

Partager "Significance of microhardness of porous inorganic materials"

Copied!
16
0
0

Texte intégral

(1)

Publisher’s version / Version de l'éditeur:

Cement and Concrete Research, 2, 6, pp. 717-729, 1972-11

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

NRC Publications Archive

Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. / La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version acceptée du manuscrit ou la version de l’éditeur.

For the publisher’s version, please access the DOI link below./ Pour consulter la version de l’éditeur, utilisez le lien DOI ci-dessous.

https://doi.org/10.1016/0008-8846(72)90007-5

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Significance of microhardness of porous inorganic materials

Sereda, P. J.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

NRC Publications Record / Notice d'Archives des publications de CNRC:

https://nrc-publications.canada.ca/eng/view/object/?id=430336c5-ebff-4596-95bd-c17000f3ca85 https://publications-cnrc.canada.ca/fra/voir/objet/?id=430336c5-ebff-4596-95bd-c17000f3ca85

(2)
(3)
(4)

CEMENT and CONCRETE RESEARCH. Vol , 2, pp. 71 7-729, 1972. Pergamon Press, I n c .

P r i n t e d i n t h e U n i t e d S t a t e s .

SIGNIFICANCE O F MICROHARDNESS O F POROUS INORGANIC MATERIALS

P. J. S e r e d a

Division of Building R e s e a r c h , National R e s e a r c h Council of Canada,

Ottawa, C a n a d a

(Communicated by

R.

E. P h i l l e o )

ABSTRACT

M i c r o h a r d n e s s w a s m e a s u r e d of p o r o u s and n o n p o r o u s s a m p l e s of h a l i t e and s e l e n i t e and i t h a s b e e n shown t h a t the r e l a t i o n s h i p b e - tween m i c r o h a r d n e s s and p o r o s i t y m a y b e e x p r e s s e d by the e m - p e r i c a l r e l a t i o n H = H e - b p . T h e s i g n i f i c a n c e of t h e m i c r o h a r d -

0

n e s s m e a s u r e m e n t s a s applied t o p o r o u s m a t e r i a l s i s d i s c u s s e d - -

f r o m the standpoint of t h e d i s t u r b e d zone of c r y s t a l s o r m i c r o - u n i t s , including t h e p r o b l e m of "work h a r d e n i n g " when p o w d e r e d s a m p l e s a r e c o m p a c t e d . T h e e f f e c t of m o r p h o l o g y on m i c r o h a r d n e s s i s a l s o d i s c u s s e d with r e g a r d t o a s e r i e s of g y p s u m s a m p l e s . R e f e r e n c e i s m a d e t o the effect of humidity on m i c r o h a r d n e s s of p o r o u s g l a s s and t h e conclusion d r a w n t h a t t h e m i c r o m e c h a n i c s of f a i l u r e i n m i c r o h a r d n e s s a r e s i m i l a r t o f l e x u r e s t r e n g t h . SOMMAIR E On a m e s u r B l a m i c r o d u r e t k d l e c h a n t i l l o n s p o r e u x e t non p o r e u x d ' h a l i t e e t d e s k l k n i t e e t on a o b s e r v 6 que l a r e l a t i o n e n t r e l a m i c r o d u r e t k e t l a p o r o s i t k p e u t e t r e r e p r k s e n t g e p a r l a r e l a t i o n e m p i r i q u e H = ~ ~ e - ~ p . L 1 a u t e u r Btudie l1 i m p o r t a n c e d e s m e s u r e s d e m i c r o d u r e t g appliqukes a u x m a t B r i a u x p o r e u x , d u point d e v u e d e l a zone t r o u b l k e d e c r i s t a u x e t d e m i c r o - G l e m e n t s , y c o m - p r i s l e p r o b l k m e d e ' ~ l l k c r o u i s s a g e ~ l o r s q u e l e s gchantillons pul- v b r i s e s s o n t c o m p a c t k s . L 1 a u t e u r Btudie Bgalement 1' effet d e l a m o r p h o l o g i e s u r l a m i c r o d u r e t e , p o u r c e q u i r e g a r d e une s e r i e d l e c h a n t i l l o n s d e g y p s e . 11 m e n t i o n n e l f e f f e t d e l l h u m i d i t k s u r l a m i c r o d u r e t k d u v e r r e p o r e u x e t c o n c l u t que l a m i c r o m 6 c a n i q u e d e r u i n e d a n s l a m i c r o d u r e t B e s t s e m b l a b l e

B

l a f o r c e d e flexion.

(5)

MICROHARDNESS, P O R O S I T Y , M A T E R I A L S

V o l . 2, No. 6

Introduction

Indentation h a r d n e s s h a s b e e n u s e d a s a m e a s u r e of s t r e n g t h of

m e t a l s ( l ) , and a s a m e a s u r e of the s t r e n g t h of nonporous, c r y s t a l l i n e r o c k s ( 2 , 3 ) . I t h a s b e e n shown t h a t m i c r o h a r d n e s s of m e t a l s and r o c k s e x p r e s s e d

a s load p e r unit a r e a i s equal t o t h r e e t i m e s the yield s t r e n g t h . This, i n p a r t , h a s s a t i s f i e d t h e need f o r a n o n - d e s t r u c t i v e t e s t of a n i m p o r t a n t m e c h a n i c a l p r o p e r t y and one t h a t c a n b e applied t o s u r f a c e l a y e r s o r m i c r o - a r e a s .

The application of m i c r o h a r d n e s s m e a s u r e m e n t s t o i n o r g a n i c p o r o u s m a t e r i a l s was b e g u n i n 1966 a t t h e Division of Building R e s e a r c h , National R e s e a r c h Council of Canada, and a n u m b e r of p a p e r s (4, 5, 6) r e p o r t r e s u l t s of s u c h m e a s u r e m e n t s involving g y p s u m p l a s t e r and h y d r a t e d p o r t l a n d c e m e n t .

T h e p r e s e n t p a p e r p r e s e n t s a s u m m a r y of t h e d e v e l o p m e n t w o r k r e - l a t i n g t o t h e application oSi t h i s technique t o i n o r g a n i c p o r o u s m a t e r i a l s and a d i s c u s s i o n of i t s m e r i t s and i t s l i m i t a t i o n s . I t will not d e a l with t h e cone p e n e t r a t i o n technique developed by R e h b i n d e r and h i s c o - w o r k e r s in USSR, although i t i s s i m i l a r t o t h e m i c r o h a r d n e s s technique i n s o m e r e s p e c t s . T h i s s u b j e c t will b e d e a l t with i n a s e p a r a t e publication.

M a t e r i a l s

N a t u r a l s e l e n i t e s i n g l e c r y s t a l s w e r e obtained f r o m Kingdon Mine, F i t z r o y H a r b o u r , O n t a r i o ( c o u r t e s y H. M. Woodrooff e ) ; n a t u r a l h a l i t e w a s ob- tained a s a c o r e f r o m a S a s k a t c h e w a n s a l t d e p o s i t ( c o u r t e s y R. Hanson,

S a s k a t c h e w a n P o w e r C o m m i s s i o n ) ; p o t t e r y p l a s t e r and

a

h e m i h y d r a t e s w e r e obtained a s c o m m e r c i a l p r o d u c t s ( c o u r t e s y U.S. Gypsum). A n a l y s e s of s a m p l e s showed i m p u r i t i e s below 0. 01%.

E q u i p m e n t

Both Tukon and L e i t z m i c r o h a r d n e s s t e s t i n g m a c h i n e s w e r e used, and both Knoop and V i c k e r s i n d e n t e r s . F o r t h e s a m p l e s under s t u d y both i n d e n t e r s g a v e s i m i l a r v a l u e s of m i c r o h a r d n e s s .

T o m e a s u r e t h e diagonal of t h e indentation of a s a m p l e of a p o r o u s m a t e r i a l i t w a s n e c e s s a r y t o modify t h e lighting s o t h a t a b e a m of l i g h t p a s s e d a l m o s t p a r a l l e l t o t h e indented s u r f a c e and highlighted t h e b o u n d a r y of t h e i n -

(6)

Vol.

2 ,

No.

6

MICROHARDNESS, POROSITY, MATERIALS

d e n t a t i o n . T h e d i a g o n a l w a s m e a s u r e d b y m e a n s of t h e o p t i c a l s y s t e m p r o - v i d e d with t h e m i c r o h a r d n e s s i n s t r u m e n t s . M i c r o h a r d n e s s m e a s u r e m e n t s w e r e m a d e in e i t h e r a r o o m c o n d i t i o n e d t o 50% RH o r a gloved b o x w h e r e r e l a t i v e h u m i d i t y w a s m a i n t a i n e d a t d i f - f e r e n t l e v e l s . C o m p a c t s of p o w d e r e d s a m p l e s w e r e p r e p a r e d b y t h e t e c h n i q u e of d r y c o m p a c t i o n i n a s t e e l m o l d ( 4 ) . E x a m i n a t i o n of m i c r o s t r u c t u r e u n d e r t h e a p e x of a n i n d e n t a t i o n w a s m a d e with SEM ( C a m b r i d g e S t e r e o s c a n ) on a f r a c t u r e d s u r f a c e . What D o e s M i c r o h a r d n e s s M e a s u r e ? T h e q u e s t i o n of what m i c r o h a r d n e s s m e a s u r e s h a s b e e n d i s c u s s e d f u l l y with r e g a r d t o n o n p o r o u s m a t e r i a l s (1, 7, 8). A r e v i e w i n 1966 of t h i s t e c h n i q u e of t e s t i n g by ASTM C o m m i t t e e E - 4 , S u b s e c t i o n V, l e d t o t h e c o n - c l u s i o n t h a t h a r d n e s s i s s t i l l r e l a t i v e l y undefined a n d l i t t l e u n d e r stood. It is v a l i d t o a s k t h e b a s i c q u e s t i o n with r e g a r d t o t h e a p p l i c a t i ~ n of t h e t e c h n i q u e t o p o r o u s m a t e r i a l s s u c h a s h y d r a t e d c e m e n t and g y p s u m p l a s t e r . F o r n o n p o r o u s m a t e r i a l s it h a s b e e n shown t h a t m i c r o h a r d n e s s is i n - d e p e n d e n t of l o a d ( 7 , 9 ) . A s i m i l a r c o n c l u s i o n w a s r e a c h e d f o r p o r o u s m a - t e r i a l s b a s e d on m e a s u r e m e n t s of c o m p a c t e d s a l t . A twenty -f old v a r i a t i o n i n l o a d d i d n o t p r o d u c e a v a r i a t i o n i n t h e v a l u e s of m i c r o h a r d n e s s beyond t h e n o r m a l s c a t t e r within t h e a c c u r a c y l i m i t s of t h e m e a s u r e m e n t . P o r o u s m a t e r i a l s t e n d t o h a v e a h e t e r o g e n e o u s m i c r o s t r u c t u r e i n - volving a wide r a n g e of p a r t i c l e s i z e s and p o r e s i z e s . If m i c r o h a r d n e s s m e a s u r e m e n t i s t o b e r e p r e s e n t a t i v e of t h e bulk m a t e r i a l i t m u s t , f o r t h i s r e a s o n , i n c l u d e a s t a t i s t i c a l l y s i g n i f i c a n t n u m b e r of p a r t i c l e s and p o r e s . F o r n o n p o r o u s m a t e r i a l s A t k i n s e t a1 (8) c o n c l u d e d t h a t t h e d e f o r m e d zone r e s e m b l e s r a d i a l c o m p r e s s i o n and t h a t t h e e l a s t i c / p l a s t i c b o u n d a r y i s a p p r o x i m a t e l y a h e m i s p h e r e a n d p r a c t i c a l l y unaffected b y t h e d e t a i l e d s h a p e of t h e i n d e n t a t i o n i t s e l f . A s s u m i n g t h a t t h i s c o n c l u s i o n i s a p p l i c a b l e t o t h e p o r o u s s y s t e m s , t h e d e p t h t o which t h e m i c r o s t r u c t u r e i s d i s t u r b e d a t t h e a p e x of t h e i n d e n t a t i o n should b e t h e r a d i u s of t h e h e m i s p h e r e of t h e d e f o r m - ed zone ( F i g . l a ) .

(7)

MICROHARDNESS, POROSITY, MATERIALS

V o l . 2, No.

6

FIG. l a

M i c r o h a r d n e s s indentation and d e f o r m e d zone

( 1 ) M i c r o g r a p h of- undisturbed m i c r o s t r u c t u r e outside deformed zone. ( 2 ) M i c r o g r a p h of d i s t u r b e d m i c r o s t r u c t u r e i n d e f o r m e d zone. FIG. l b

SEM m i c r o g r a p h s of gypsum p l a s t e r below the a p e x of V i c k e r t s m i c r o h a r d n e s s indent

A c a s t gypsum s a m p l e of 52% p o r o s i t y examined by SEM h a s r e - vealed t h a t this depth of d i s t o r t i o n and f r a c t u r e of t h e c r y s t a l s under the a p e x of an indentation i s roughly equivalent t o the length of the diagonal of t h e indentation using the V i c k e r s i n d e n t e r . F i g u r e 1 b shows the m i c r o s t r u c - t u r e of the deformed and undeformed zones.

F r o m t h e s e o b s e r v a t i o n s it m a y b e concluded that a n indentation of 400 y m (diagonal of V i c k e r s indentation), t h e volume of the d e f o r m e d zone,

6 3

i s contained by a h e m i s p h e r e of r a d i u s 400 y m o r 134 x 10 y m

.

F o r t h i s 3

s a m p l e i t w a s e s t i m a t e d that t h e r e i s about 0. 018 c r y s t a l / y m

,

s o t h a t t h e total n u m b e r of c r y s t a l s affected i s about 2 . 4 million f o r the one t e s t .

(8)

Vol.

2,

No.

6

MICROHARDNESS, POROSITY, MATERIALS

than those in the gypsum sampl'e analysed above. If these observations a r e applicable to the hydrated cement system, then an indentation produced by microhardness measurement would, f o r the s a m e porosity, involve a l a r g e r number of micro-units and should be valid a s representing a statistically significant sample. This cannot be easily verified by any d i r e c t observations in the cement system.

According to King and Tabor (9) microhardness indentation on a non- porous m a t e r i a l produces a plastic deformation that can be observed a s a barrel-shaped indentation resulting f r o m a piling -up a t the c e n t r e of the pyramidal faces. This piling-up i s not observed with a porous m a t e r i a l be- cause the displaced m a t e r i a l can be accommodated in the p o r e s . Thus the indentation of a porous m a t e r i a l m u s t involve, wholly or in part, the p r o c e s s of breaking of bonds between particles a s well a s fracturing of particles a c - companied by densification, a s occurs in compaction of powders. As porosity d e c r e a s e s this p r o c e s s m u s t be proportionately replaced by one of plastic deformation.

Indirect evidence f r o m changes in microhardness with changes in relative humidity (to b e discussed in a l a t e r section) indicates that m i c r o - hardness of a porous m a t e r i a l i s representative of i t s flexure strength. Data on Young's modulus and hardness of hydrated cement, Soroka and Sereda

( 6 ) ,

have been combined and replotted in Fig. 2 to show the relation between these m e a s u r e m e n t s . The r e s u l t s suggest that these properties a r e r e - lated f o r s i m i l a r samples but their significance i s not apparent a t present.

FIG. 2

Relation between hardness and Young' s modulus for hydrated

cement paste and compacts.

80 60 - D A T A - o C O M P A C T S I

,

30 - Ln = ;;1 20 - Y" 15 - Ln S 10 - I 4 8 6 -4 - 4 6 8 10 15 20 30 E X 10-4. K C P E R S Q C M

(9)

722

M I C R O H A R D N E S S , P O R O S I T Y , M A T E R I A L S

V o l . 2,

No.

6

Effect of P o r o s i t y

Strength and Young's modulus of v a r i o u s m a t e r i a l s have been r e l a t e d t o their porosity by a n e m p i r i c a l relation (10-14). A s i m i l a r e m p i r i c a l r e - lation has been found f o r m i c r o h a r d n e s s and porosity of compacts of a num- b e r of c r y s t a l l i n e powdered m a t e r i a l s a s well a s hydrated gypsum and hy- d r a t e d cement (4,

6).

w h e r e

H and Ho a r e the m i c r o h a r d n e s s of the porous and nonporous s a m - p l e s of a given m a t e r i a l , respectively,

b = a n e m p i r i c a l constant, and p = s a m p l e porosity.

The basic c o r r e l a t i o n was c a r r i e d out using l a r g e single c r y s t a l s of halite and selenite. M i c r o h a r d n e s s of the single c r y s t a l s of halite was m e a s u r e d by m e a n s of the Knoop indenter. A value f o r Knoop Hardness

2

Number (KKN) of 19.5 k g / m m was obtained that a g r e e s reasonably well with values of 20.4 to 22.8, published by Kurichina (15), and a value of 17 to 18, r e p o r t e d by King and Tabor

(9).

The m i c r o h a r d n e s s of the selenite single c r y s t a l v a r i e d g r e a t l y on different f a c e s and depended on the orientation of the Knoop indenter. At a p a r t i c u l a r orientation of the indenter on c e r t a i n f a c e s i t was not possible to m e a s u r e m i c r o h a r d n e s s because of the tendency of the c r y s t a l t o cleave.

The m i c r o h a r d n e s s of s e l e n i t e single c r y s t a l s was a l s o v e r y sensitive t o r e l a t i v e humidity. The values i n c r e a s e d considerably when the r e l a t i v e hu- midity condition was changed f r o m 5 0 to 0%.

A number of t h e s e single c r y s t a l s w e r e c r u s h e d in a m o r t a r and p e s t l e to p a s s the 200-mesh sieve; the powder was then compacted a t differ- ent p r e s s u r e s i n a mold to f o r m compacts of varying porosity 3.17 c m i n d i a m e t e r and about 1.3 rnm thick. M i c r o h a r d n e s s of e a c h compact was d e - t e r m i n e d using the Knoop indenter. All m e a s u r e m e n t s w e r e m a d e i n a i r a t 50% r e l a t i v e humidity. Ten v a l u e s along the d i a m e t e r w e r e taken and a v e r - age values used t o plot the l o g a r i t h m of m i c r o h a r d n e s s v s porosity. F i g u r e

(10)

V o l . 2 , No. 6 7 2 3 MICROHARDNESS, POROSITY, IIATERIALS

P O R O S I T Y . P E R C E N T

1 0 0 I I

3 shows the s t r a i g h t - l i n e relation confirming the validity of equation (1). The

8 0

value f o r the constant, b, was found t o b e 6.3 f o r halite and 9.3 f o r selenite.

I I I I

-

0 S E L E N I T E

E f f e c t of Compaction

Nonporous compacted halite is m o r e than twice a s h a r d a s the single

6 0 H A L I T E 0 H A L I T E I A N N E A L E D I H A L I T E I S I N G L E C R Y S T A L 1 0 Y Ln Ln 1 0 - FIG. 3 n 2 M i c r o h a r d n e s s v s porosity O

c r y s t a l . This can b e attributed to I1work hardening1' and reduction of g r a i n

6

of compacts. - I

4

2

1

size, both effects produced by compaction a t n o r m a l t e m p e r a t u r e . B r a c e (3)

-

I I I I I I

observed work hardening brought about by s u r f a c e rubbing of a single c r y s t a l ,

1 0 20 3 0

with the resulting doubling of m i c r o h a r d n e s s . He a l s o produced compacts having porosity of 0. 50/0, and by annealing obtained n o r m a l values of h a r d n e s s . S i m i l a r r e s u l t s w e r e obtained a t DBR/NRC when the s e r i e s of halite c o m - pacts of various porosities w e r e annealed by heating t o 600" C and cooling a t a r a t e of 0. 6 " c / m i n . The r e s u l t s a r e shown on Fig. 3. King and Tabor

(9)

demonstrated the effect of s t r a i n upon m i c r o h a r d n e s s of a nonporous rock L

s a l t when they obtained a value of 27 k g / m m f o r a highly s t r a i n e d specimen f o r which the n o r m a l value was found to b e 17.2. This i s confirmed in the p r e s e n t work where a single c r y s t a l was s t r e s s e d i n a compaction mold to

100, 000 p s i and the m i c r o h a r d n e s s doubled.

F o r a nonporous compact of s e l e n i t e the extrapolated (H ) m i c r o h a r d -

(11)

MICROHARDNESS, P O R O S I T Y , M A T E R I A L S

V o l . 2 , N o . 6

n e s s has a single value that cannot be compared to the r a n g e of values ob- tained f o r a single c r y s t a l . The hardening effect i s even m o r e d r a m a t i c in t h i s c a s e than i n halite b e c a u s e the h a r d n e s s of the single c r y s t a l a t a par -

ticular orientation of the diamond point i s s o low that i t cannot be m e a s u r e d . In the compact, the direction of e a s y f r a c t u r e d i s a p p e a r s b e c a u s e of the

s m a l l s i z e of g r a i n s and their random orientation; i t i s not possible to anneal the compacts by heating. I t was thought the exposure to high humidity would r e l i e v e s t r e s s , but this did not happen. In fact, exposure to humidities of 5070 for a period of 10 days caused a considerable i n c r e a s e in m i c r o h a r d n e s s , due possibly to aging ( r ecrystallization), and resulted in strengthening a t points of contact between c r y s t a l s .

P r e v i o u s work by Soroka and S e r e d a

( 6 )

h a s shown that in hydrated cement the relation of h a r d n e s s to porosity i s the s a m e for cement p a s t e a s for compacts of bottle hydrated cement. It i s apparent that "work hardening" does not occur i n this system, possibly owing to the f a c t that the m a t e r i a l i s poorly c r y s t a l l i z e d and in p a r t amorphous.

Effect of Morphology

Ridge and Surkevicius (16) have shown that different c r y s t a l habits of gypsum can be obtained by the use of c e r t a i n a d m i x t u r e s that r e t a r d or a c - c e l e r a t e s e t of the hemihydrate. I t was of i n t e r e s t to t e s t whether t h e s e changes in habit would be detected a s changes i n m i c r o h a r d n e s s .

T h r e e modifications of the gypsum c r y s t a l s w e r e obtained by h y d r a - ting pottery p l a s t e r in a rotating polyethylene bottle a t a g / w r a t i o of 1: 10, with admixtures of calcium a c e t a t e 0. 7q0, gelatin 0.570 and without admixture.

The t e m p e r a t u r e was controlled a t 77 OF. The c r y s t a l s w e r e d r i e d a t 3070 RH and compacted a t different p r e s s u r e s to provide a r a n g e of porosity.

These compacts w e r e m e a s u r e d f o r m i c r o h a r d n e s s and the r e s u l t s a r e plotted on Fig. 4 with r e s u l t s f o r compacts of selenite. The r e s u l t s show c l e a r l y that m i c r o h a r d n e s s v s p o r o s i t y c u r v e s a r e d i s t i n c t f o r each preparation, but the significance of this finding i s not yet evident. I t i s antici- pated that the c r y s t a l habit giving the highest m i c r o h a r d n e s s c u r v e r e p r e -

(12)

V o l . 2 , No. 6 7 2 5 MICROHARDNESS, POROSITY, M A T E R I A L S P O R O S I T Y . P E U C E N l FIG. 4 P O R O S I T Y . P E R C E N l FIG. 5 M i c r o h a r d n e s s v s porosity f o r c o m p a c t s of different s a m p l e s of gypsum. M i c r o h a r d n e s s v s porosity of compacts of hemihydrates.

Again, this i s not c e r t a i n , in view of the possibility of work hardening due to c ompac tion.

As a n example of a v e r y g r e a t change in m i c r o h a r d n e s s r e s u l t i n g f r o m changes in morphology, Fig. 5 shows the r e s u l t s of m i c r o h a r d n e s s of two s a m p l e s of hemihydrate compacts. The two s a m p l e s have been identified a s p o t t e r y p l a s t e r and B - B a s e . According t o DTA a n a l y s e s , using the method

shown by Holdridge (17), the p o t t e r y p l a s t e r i s m o s t l y

B

modification and B - B a s e i s a modification. I t should be noted that the B - B a s e m a t e r i a l c o n s t i - t u t e s the only exception t o d a t e w h e r e data do not yield a s e m i - l o g a r i t h m i c r e l a t i o n with porosity.

Effect of humiditv

Evidence h a s been p r e s e n t e d (18, 19) t h a t a d s o r b e d water and other p o l a r s p e c i e s c a n have a c o n s i d e r a b l e effect upon m i c r o h a r d n e s s , p a r t i c u - l a r l y on indentation c r e e p . In the work now presented, involving inorganic

(13)

726

MICROHARDNESS, POROSITY, MATERIALS

Vol.

2,

No.

6

non-metallic m a t e r i a l s , it i s a significant f a c t o r with r e s p e c t to the value of h a r d n e s s and a s a n aging f a c t o r i n c e r t a i n porous m a t e r i a l s . Because of the l a t t e r i t i s often difficult to s e p a r a t e the effect of humidity on m i c r o h a r d n e s s because, i n conditioning, the sample undergoes aging. Comparison of m i c r o - h a r d n e s s values a t different humidities i s t h e r e f o r e not valid for c e r t a i n m a - t e r i a l s .

Feldman and S e r e d a (20) have r e p o r t e d the effect of different humid- i t i e s on m i c r o h a r d n e s s of porous g l a s s ( s e e Fig.

6).

The effects of humidity on m i c r o h a r d n e s s of porous g l a s s and on f l e x u r e strength of portland cement p a s t e show the s a m e c h a r a c t e r i s t i c s , suggesting that m i c r o h a r d n e s s i s r e p - r e s e n t a t i v e of the f l e x u r e strength of a porous m a t e r i a l . Additional data a r e r e q u i r e d t o confirm or r e j e c t this apparent relation.

In s o m e nonporous m a t e r i a l s i t a p p e a r s that humidity can have a l a r g e effect on m i c r o h a r d n e s s . A l a r g e single c r y s t a l of selenite was tested f o r m i c r o h a r d n e s s a t 0 and 50% RH conditions. T h e Knoop m i c r o h a r d n e s s v a l u e s obtained on the 010 cleaved f a c e ranged f r o m 13.5 t o 31.5 kg/rnmL f o r 0% RH (depending on t h e orientation of the indenter) and f r o m 8. 1 t o 9.5 k g / m m 2 f o r 50% condition. FIG. 6 1 . o I I I I I I I I . o -0-+-POROUS S I L I C A G L A S S ( P = 2 4 % r = 3 0 A ) 0 . 9 - 0 . 9 \ \

T

P O R T L A N D C E M E N T PASTE ( P = 3 2 % r Z 2 0 A ) ( r e f . 21) \ \ 0

- -

- F U S E D Q U A R T Z ( r e f . 2 2 )

-

0 . 8 r 0 . 7

-

\ I

Effect of humidity on m i c r o h a r d n e s s and s t r e n g t h

0 . 6 0 . 5 0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0 R E L A T I V E H U M I D I T Y , PER C E N T

-

-

-

L? T- I I I I I I I I I 0 . 6 - 0 . 5

(14)

Vol.

2,

No.

6

MICROHARDNESS, POROSITY, M A T E R I A L S

S u m m a r y and Conclusions

1. I t a p p e a r s t h a t sufficient work h a s b e e n c a r r i e d out t o s u p p o r t t h e conclusion t h a t m i c r o h a r d n e s s m e a s u r e m e n t s of p o r o u s m a t e r i a l s p r o v i d e meaningful i n f o r m a t i o n about m e c h a n i c a l behaviour and t h a t t h e s e m e a s u r e - m e n t s a r e a s significant f o r p o r o u s m a t e r i a l s a s they a r e f o r nonporous m a t e r i a l s . I t i s c l e a r t h a t d i f f e r e n c e s i n p o r o s i t y and morphology of t h e s a m p l e c a n b e r e a d i l y o b s e r v e d .

2 . M i c r o h a r d n e s s m e a s u r e m e n t s of p o r o u s m a t e r i a l s a p p e a r to yield the

s a m e c h a r a c t e r i s t i c c u r v e a s f l e x u r e s t r e n g t h when i t i s r e l a t e d t o humidity, indicating t h a t the m i c r o - m e c h a n i c s of f a i l u r e a r e s i m i l a r i n both c a s e s .

3 . A r e l a t i o n e x i s t s between m i c r o h a r d n e s s and m o d u l u s of e l a s t i c i t y f o r c e m e n t p a s t e . S i m i l a r l y , t h e r e i s a r e l a t i o n between compacting p r e s s u r e and m i c r o h a r d n e s s when dealing with c o m p a c t s of powdered m a t e r i a l s . Work should b e done to d e t e r m i n e whether a r e l a t i o n e x i s t s between c o m - p r e s s i v e s t r e n g t h and m i c r o h a r d n e s s .

4. M i c r o h a r d n e s s m e a s u r e m e n t i s a n o n d e s t r u c t i v e t e s t of m e c h a n i c a l behaviour and a s s u c h o f f e r s a useful tool f o r studying t h e effect of v a r i o u s m i c r o s t r u c t u r a l c h a n g e s i n a m a t e r i a l with c h a n g e s i n conditions of e x p o s u r e . I t i s believed t h a t indentation c r e e p m e a s u r e m e n t c a n p r o v i d e i n f o r m a t i o n on c r e e p behaviour of m a t e r i a l s .

Acknowledgements

The c r y s t a l s of s e l e n i t e w e r e f r o m the Kingdon Mine, F i t z r oy H a r b o u r , Ontario, and w e r e obtained by M r . H. M . Woodrooffe, Chief, M i n e r a l P r o c e s s i n g Division, D e p a r t m e n t of Mines, E n e r g y and R e s o u r c e s ; the h a l i t e s a m p l e w a s obtained f r o m a c o r e taken f r o m a Saskatchewan s a l t deposit, obtained through t h e c o u r t e s y of M r . R. Hanson, S a s k a t c h e w a n P o w e r Corp. The a u t h o r i s g r a t e f u l f o r t h e s e s a m p l e s without which the w o r k could not h a v e b e e n done.

T h e a u t h o r a l s o w i s h e s to acknowledge the c o n t r i b u t i o n of M e s s r s . D. E . Kennedy, E. G. Quinn and N. D a r b y f o r a s s i s t i n g with the e x p e r i - m e n t a l work.

(15)

Vol. 2 , No.

6

MICROHARDNESS, POROSITY, M A T E R I A L S

T h i s p a p e r i s a contribution f r o m the Division of Building R e s e a r c h , National R e s e a r c h Council of Canada, and i s published with the a p p r o v a l of the D i r e c t o r of the Division.

R e f e r e n c e s

1. D. T a b o r , T h e h a r d n e s s of m e t a l s . Oxford, C l a r e n d o n P r e s s (1951). 2. H. Winchell, A m e r . M i n e r a l .

30,

583-595 (1945).

3. W. F. B r a c e , J. Geophys. R e s .

65,

( 6 ) 1773-1788 (1960).

4. I. S o r o k a a n d P. J. S e r e d a , J. h e r . C e r a m . Soc.

51

( 6 ) 337-340 (1968). 5. D. Chandra, P. J. S e r e d a , and E. G. Swenson, Mag. Concr. R e s . 2 0

(64) 131-136 (1968).

6. I. S o r o k a and P. J. S e r e d a , P r o c . F i f t h Int. Symp. Chem. Cem. Tokyo, P a r t 111, Vol III, 67-73 (1968).

7. B. W. Mott, M i c r o - i n d e n t a t i o n h a r d n e s s , B u t t e r w o r t h Scientific Publications, London (1 9 5 6).

8. A. G. Atkins, A. S i l v e r i o and D. T a b o r , J. Inst. M e t a l s

-

94, 369-378 (1966).

9. R . F . King, a n d D . Tabor, P r o c . Roy. Soc. London, Sec. A223,

-

225-238 (1954).

10. W. Duckworth, J. h e r . C e r a m . Soc. 36, (2) 6 8 ( 1 9 5 3 ) .

-

11. F. P. Knudsen, J. A m e r . C e r a m . Soc. 42 (8) 376-387 (1959).

-

12. R.M. S p r i g g s , J. h e r . C e r a m . Soc. && (12) 628-629 (1961). 13. F.P. Knudsen, J. h e r . C e r a m . Soc. 45 ( 2 ) 94-95 (1962).

-

14. R.B. M a r t i n and R.R. Haynes, J. h e r . C e r a m . Soc. 54 ( 8 ) 410

-

(1971).

15. A.D. Kurichina, Z a v o d s k a i a L a b o r a t o r i a , Moscow

-

16 ( 4 ) 5 0 4 - 5 0 6 (1950) 16. M. J. Ridge and H. S u r k e v i c i u s , Aust. J. Appl. Sci. 11, (3) 385-39 8

-

(1960).

17. D.A. Holdridge, T r a n s . B r i t . C e r a m . Soc.

-

64 ( 4 ) 211-231 (1965). 18. J. H. Westbrook, and P. J. J o r g e n s e n , Arner. M i n e r a l . 53, 1899-1909

(16)

Vol.

2,

No.

6

729

MICROHARDNESS, POROSITY, MATERIALS

19. R.E. Hanneman, and J.H. Westbrook, Phil. Mag.

18

( 1 5 1 ) 89-99 (1968). 20. R . F . F e l d m a n and P. J. S e r e d a , Engrg. J.

3,

5 3 - 5 9 (1970).

21. P. J. S e r e d a , R. F. F e l d m a n and E. G. Swenson, High. R e s . Bd. Special R e p o r t 90, 5 8 - 7 3 ( 1 9 6 6 ) .

Références

Documents relatifs

(2013) Length-weight relationship and seasonal effects of the Summer Monsoon on condition factor of Terapon jarbua (Forsskål, 1775) from the wider Gulf of Aden including

Identification and detection of a novel point mutation in the Chitin Synthase gene of Culex pipiens associated with diflubenzuron resistance...

These depend on which actor controls the trait (the vector or the parasite) and, when there is manipulation, whether it is realised via infected hosts (to attract vectors) or

Brennan TP, Woods JO, Sedaghat AR, Siliciano JD, Siliciano RF, Wilke CO: Analysis of human immunodeficiency virus type 1 viremia and provirus in resting CD4+ T cells reveals a

The newly employed reactive magnetron co-sputtering technique has allowed us to enhance the absorption coefficient from the MLs owing to the high density of Si-ncs achieved and/or the

Market and communication schemes have taken a noticeable place in temples and some of them can be regarded as types of “mega-temples.” 2 This article describes the

Altogether, these results indicate that expression of the endogenous DRP1 protein is important for maintaining normal mitochondrial morphology in NHEK and that loss of this

sour rot symptoms in the field and in the laboratory (n = 5 bunches), ‘Post-harvest mild rot’ indicates fruit that were collected without rot symptoms but showed mild rot in