• Aucun résultat trouvé

LASER THERMAL LENS EFFECT AND ITS APPLICATION TO TRACE SOLUTES DETERMINATION

N/A
N/A
Protected

Academic year: 2021

Partager "LASER THERMAL LENS EFFECT AND ITS APPLICATION TO TRACE SOLUTES DETERMINATION"

Copied!
5
0
0

Texte intégral

(1)

HAL Id: jpa-00223252

https://hal.archives-ouvertes.fr/jpa-00223252

Submitted on 1 Jan 1983

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

LASER THERMAL LENS EFFECT AND ITS APPLICATION TO TRACE SOLUTES

DETERMINATION

Y. Deng, R. Sheng, M. Wang

To cite this version:

Y. Deng, R. Sheng, M. Wang. LASER THERMAL LENS EFFECT AND ITS APPLICATION TO

TRACE SOLUTES DETERMINATION. Journal de Physique Colloques, 1983, 44 (C6), pp.C6-565-

C6-568. �10.1051/jphyscol:1983693�. �jpa-00223252�

(2)

J O U R N A L DE PHYSIQUE

Colloque C6, suppl6rnent au nO1O, Tome 44, octobre 1983 page C6-565

LASER THERMAL LENS EFFECT AND I T S APPLICATION TO TRACE SOLUTES DETERMINATION

Y. Deng, R. Sheng and M. Wang

Department of Chemistry, University of Wuhan, Wuhan, China

Resume

-

L'effet de lentille thermique pour du CU(AA)~ dans plusieurs sol- --

vants organiques est observ6. La concentration minimale detectable est 12 ppb de Co, ce qui correspond 2 0,06 ng de Co dans le volume du faisceau, en utilisant un laser He-Ne de 1,2 mW et une cellule de 5 cm.

Abstract - The laser thermal lens effect of C U ( A A ) ~ in several organic sol- vents is observed. A minimal detectable concentration of 12 ppb Co corresponding to 0.06 ng Co in in-beam volume, is achieved using a 1.2 mW He-Ne laser and a 5 cm cell.

In 1965, GORDON et al.(l) first reported the laser thermal lens effect-Sin- ce then, a number of workers has studied and reviewed the physical properties of this effect and its application (2-10). More recently, thermal lens spectrophotometry has been used for cqlorimetric determination of inorganic ions.DOVICH1 and HARRIS(^^) have first used a 4 mW He-Ne laser for the determinat. ion of trace levels of Cu(I1) ion with EDTA. The determination of Fe(I1) ion has been reported with bathophenan- throlinic disulfonate using an ~ r + laser(12). The signal in the conventional spec- trophotometer is measured indirectly as the difference between the incident and transmitted radiation. It is therefore difficult to improve the detection sensitivi- ty of apparatus. Howere, thermal lens spectrophotometry could measure directly the absorbed radiation energy and thus achieve very high sensitivity. This is demonstra- ted in our study.

The laser thermal lens effect of CU(AA)~ in five organic solvents is ob- served using a He-Ne laser (X=632.8 nm). The time required by reaching steady state, the dependence of detection sensitivity on the position of sample in the light path and some factors influencing the effect are studied.

The experimental apparatus is shown in Fig.1. When the laser beam pass through the sample solution, a defocussing negative lens is formed and adispersed

T : 1.5 mW He-Ne laser with TEMm mode.

L : focussing double convex lens.

S : light barrier S1,S2 : pinhole C : light splitter.

SC : sample cell..

Dl, D2 : photosensitive triode detector.

SC-16 : UV record oscilloscope.

Fig.1

-

Schematic diagram of experimental apparatus.

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1983693

(3)

C6-566 JOURNAL DE PHYSIQUE

l i g h t s p o t can be observed a t t h e o p t i c a l d i s t a n c e of s e v e r a l meter from t h e sample c e l l . The l a s e r t h e r m a l ( 1 e n s ) e f f e c t can be d e t e c t e d by measuring t h e l i g h t

i n t e n s i t y ( i n t h e c e n t r e of t h e beam) a t Z > > z . I t can be expressed a s ( I -I,)/I, o r A I / I , , where 10 i s t h e p h o t o e l e c t r i c c u r r e n t a t t = O and I m 1s t h e p h s o - e l e c t r i c c u r r e n t a t t h e s t e a d y s t a t e of thermal l e n s .

Cu(AA)2 i s p r e p a r a t e d and p u r i e d by t h e method of r e f e r e n c e (13).PAN-Co(ll1) -CHC13,solut~on i s p r e p a r a t e d by t h e method of r e f e r e n c e ( 1 4 ) . A l l o t h e r s o l v e n t s a r e a n a l y t r c a l l y pure.

The f o l l o w i n g r e s u l t s a r e o b t a i n e d .

1 . The time r e q u i r e d by reaching s t e a d y s t a t e i s determinated by t h e photo- thermal p r o p e r i t y of s o l v e n t and d i s t a n c e of sample from beam w a i s t . The c a l c u l a t e d and observed thermal l e n s formation c u r v e s a r e shown i n Fig.2. Steady s t a t e i s main- t a i n e d a t t > 5 tc.

Fig.2 - Thermal l e n s formation curve.

a ) c a l c u l a t e d , tc = 100 m s

,

O = -1.00 b) observed, Cu(AA) -CHC1 s o l u t i o n O=-1.06

2 3

tc : c h a r a c t e r i s t i c time of s o l v e n t f o r h e a t d i f f u s i o n

O : d e f l e c t i o n a n g l e of thermal l e n s .

0

-

COO 400 t ( n 5 ~

2 . The dependence of thermal l e n s e f f e c t of C U ( A A ) ~ - C H C ~ ~ on t h e p o s i t i o n of sample c e l l i n t h e l i g h t p a t h i s shown i n Fig.3. It can be seen t h a t AI/I, i s maximum a t Z=8 cm. T h i s r e s u l t i s c o n s i s t e n t w i t h t h e c a l c u l a t e d v a l u e 8.2 cm.

F i g . 3

-

A 1 / I m % z r e l a t i o n s h i p .

3. The a b s o r p t i o n enhancement (E) i s s t r o n g l y af-fectea by che s o l v e n t used, l a s e r power and wave l e n g t h . T h e i r e f f e c t s a r e shown i n Table I , Fig. 4 and 5 , r e s - p e c t i v e l y .

I t can be seen from Table I and F i g . 4 t h a t t h e r e i s a . l i n e a r . r e l a t i o n s h i p between AI/I,(PA)-I and dn/dT The E i s g r e a t e r t h e more l a r g e p r o d u c t of d n / d t . k-I. The E / P of water i s o n l y 0.21 and i t s use i s l i m i t e d .

F i g . 5 shows t h a t f o r a g i v e n s o l v e n t , The E depends l i n e a r l y on l a s e r po- wer i n t h e range of lower power.

(4)

The relationship between AI/I, and sample absorbance (A) is approximately linear in certain ranges of AI/I,

.

A approximately linear relationship is found for Cu(AA) -CHC13 when AI/I, is 0.4 - 2.0

2

Table I

-

Effect of some solvents on absorption enhacement.

Fig. 6 - A I / I , % A relationship Solvent

CC14 C H C ~ ~ Benzene Methylbenzene Methanol

IS

10 5 .

0

Cu(AA)

-

CHCl solution 3

(1) Data taken from reference (5) ; (2) calculated by dn/dT

.

(hk)-l ;

(3) measured exprerimentally, p= 1.25 mW, [ Cu(AA) 2] = 1.48 x 10-3~.

dn/d~. k-1 ( X 10-~crn/rn~)

5.66 5.06 4.44 4.21 1.95

.

I- t p - '

.

(rnw4!

. // 2

0-4

dn/dT (1) (X I O - ~ / O C )

5.8 5.8 6.4 5.6 3.9

z 4 6 a8 I. 0 1.2

P

tmw)

-$ C.'

(

x

10 - 4 ~ / ~ w l )

Fig. 4 - Effect of solvent on E Fig. 5

-

AI/Ia% P relationship.

k (1) (m~/cm O C )

1.025 1.146 1.440 1.330 2.010

E/P (2) I(AI/Iw) .I/PA(~) (rnw-l)

8.94 8.00 7.02 6.65 3.08

(mw-l) 15.82

13.09 11.49 10.25 3.71

(5)

JOURNAL DE PHYSIQUE

Fig. 6 indicates that laser thermal effect can be used to detect trace solu- tes. The experimental determination of trace PAN-Co(II1) is made using a 1.2 mW He- Ne laser and a 5 cm cell. The working curve is shown in Fia.7. It shows that in the range of 12-50 ppb,the curve has a good 1inearity.A minimum detectable concentration of 12 ppb Co is achieved, corresponding to 0.06 ng in in-beam volume. Later, the above apparatus is improved by using a lock-in amplifier and a 4 mW He-Ne laser. In this case a minimum detectable concentration of 1.8 ppb Co is achieved. The sensiti- vity is about 6 times higher than the earlier..Compared with the conventional spectro- photometric analysis of Co(II1) with PAN, the sensitivity is considerably more high.

-

Fig. 7 -

Co (111) -PAN working curve P = 1.2 mW

,

1 = 5 cm

Our calculations have indicate that if the detection sensitivity of AI/I, is 0.005, it is possible to measure the absorbance as low as 3 x cm-l, using a 20 mW He-Ne laser and a 10 cm cell. If the absorbance (A) of substance to be deter- minated in CHC13 is 2 - 5 x I O ' ~ the minimum detectable concentration would be 10-I0M.

The study shows that laser thermal lens spectrophotometry is a new useful technique for ultratrace analysis.

REFERENCE

1. J.P. GORDON et al.,J. Appl. Phys.

36,

(1965)' 3.

2. S.A. AKHMANOV et al. , IEEE, J. Quantum ~lectronics

9e-4

(19681, 568.

3. C. HU et al.

,

Appl. Opt.

12,

(19731, 72.

4. J.R. WHINNERY, Acc. Chem. Res.

1,

(1973), 225.

5. D. SOLIMINI, J. Appl. PhyS. 37, (1966), 3314.

6. M.E. LONG et al.

,

Science

191,

(1976), 183.

7. J.H. BRANNON et al. , J. Phys. Chem.

82,

(1978), 705.

8. A.J. TWA OWSKI et al., Chem. Phys.

3,

(1977), 259.

9. K. DATEE, Opt. Commun

4,

(1971), 238.

10. K.T. BAILY et al.

,

"Laser in Chemistry" Ed. by I.A. WEST, pp.257-264.

11. N.J. DOVICHI et al.

,

Anal. Chem. 51, (1979), 728. - 12. IMASAKA et al.

,

Anal. chim. Acta, 115, (19801, 407. - 13. K.G. CHARLES et al.

,

J. Phys. Chem.

62,

(1958), 440.

14. G. GOLDSTEIN et al. , Anal. Chem. 31, (1959), - 192.

Références

Documents relatifs

Compared to conventional codesign methodologies, the use of UML/MDA for SoC/SoPC development enables to take advantage of the standards and the tooling developed by the

l’effet laser pour suivre avec beaucoup de sensibilité les effets d’une perturbation des populations d’un.. niveau de vibration-rotation sur les populations

nique. 2014 The hyperfine structures of three absorption lines of neon have been investigated using a single mode tunable dye laser illuminating an atomic beam

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

(c) Typical angularly resolved spectrum without laser-plasma lens. The divergence was measured for an electron energy of 270 MeV. The distance between the two stages is L ¼ 2.3 mm.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

Fig.5: Schematic diagram of a one- Fig.6: Scheme of a three- dimensional optical trap of cold dimensional trap (a) and atoms (a) and the light pressure the distribution of

- The optically pumped cesium beam frequency standard has attrac- tive potentialities as a high accuracy primary standard because of its simplified construction, a more