• Aucun résultat trouvé

LASER DOPPLER SPECTROSCOPY METHOD IN RESEARCHES OF BLOOD HYDRODYNAMICS

N/A
N/A
Protected

Academic year: 2021

Partager "LASER DOPPLER SPECTROSCOPY METHOD IN RESEARCHES OF BLOOD HYDRODYNAMICS"

Copied!
8
0
0

Texte intégral

(1)

HAL Id: jpa-00227067

https://hal.archives-ouvertes.fr/jpa-00227067

Submitted on 1 Jan 1987

HAL

is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire

HAL, est

destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

LASER DOPPLER SPECTROSCOPY METHOD IN RESEARCHES OF BLOOD HYDRODYNAMICS

N. Tankovich, A. Stepanyan, U. Denisov

To cite this version:

N. Tankovich, A. Stepanyan, U. Denisov. LASER DOPPLER SPECTROSCOPY METHOD IN

RESEARCHES OF BLOOD HYDRODYNAMICS. Journal de Physique Colloques, 1987, 48 (C7),

pp.C7-287-C7-293. �10.1051/jphyscol:1987764�. �jpa-00227067�

(2)

JOURNAL DE PHYSIQUE

Colloque C7, supplement au n012, Tome 48, dbcembre 1987

LASER DOPPLER SPECTROSCOPY METHOD IN RESEARCHES OF BLOOD HYDRODYNAMICS

N.I. TANKOVICH, A.S. STEPANYAN and U.A. DENISOV

I.V. Kurchatov Institute of Atomic Energy. Moscow, USSR

Tne studying of rheologic properties of blood is notvadays an actual task from medical point of view. It is known that most diseases,like,for example,coronary ischaemia,myocardial infarc- tion,renal insufficiency,diabetes and others,as well as employ- ment of artificial blood substitutors are followed by the chan- ges of these properties(1). We have found a relation between pathology of blood vessel walls and hydrodynamic flow conditions (293).

The purpose of this work was to analyse possibilities of re- searches of blood rheology with laser Dop~ler spectrometer(L~~).

This method is based on measurement of magnitude of I)op?ler shkft of frequency of laser irradiation dispersed by particles that are moving along with the liauid(in this case

-

by erythro- cytes). The experiimectal diagram is shown on fig.I(4).

Xe-Me laser irradiation(I),reflected by the 1ilirr-(2) falled on semitransparent mirroz(3). On this mirrot laser beam was di- vided into two beams of equal intensity. Both beams,

be in^

re- flected from 10%-mirrots(4), passed through telescopes( 51, that magnified the diameter of pencil of beams and lens(6),focusing these beams into one point inside of the capillary tube(7).

The characteristic size of measuring volume created due to laser beams intersection behind lenses(6), was about

30

mkm.

The irradiation dispersed from the measuring volume was fo- cused on photoelectronic multiplier pris~(FiiP) ( 9 ) with employ- ment of objective lens-receiver(8). The signal from ELP came to spectrum analyser(IO),from which information about the mag- nitude of Dopaler shift was received.

The measurement accuracy vias determined by finite diriiensions of the measuring volume,which led to the broaderiing of Doppler spectrum. In our case we could ignore the flight-tine broaden- ing compared crith that of the gradient in heparinized capillary tubes with the inr.er diameter lessthan 500 mkm.

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1987764

(3)

C7-288 JOURNAL DE PHYSIQUE

The s c a n ~ i n g w i t h n e a s u r i n g volv-r!.~ alori, ti;e c a ? i l l a r y t u b e d i a n e t e r was a t e c h n i q u e u s e d t o n e a s G r e t h e blood v e l o c i t y Fro- f i l e V ( r ) i r t h e narrow g l a s s c a 2 i l l a r y tube.

The f olloigiirL,.; f ora.v.1~ was u s e d f o r t h e e p p r o x i l r a t i o r , O? e;.- p e r i m e n t a l p o i n t s :

where

7Jb -

na:rimurn l i q u i S : f l o w v e l o c i t y i n c a 3 i l l a r y t u b e s ,

R -

c a p i l l a r y t u b e r a d i u s .

The f o r m u l a comes from t h e a n a l y s i s of N a v i e r - S t o k e s ' equa- t i o n and Shvedov-Bengame's model f o r ?he a x i a l - s i n m e t r i c f l o w . F o r Newton's l i q u i d s t h e exponent "xn i s 2.

The v e l o c i t y p r o f i l e s of w a t e r f l o w w i t h p o l y s t i r o l e l a t e x , r h e o , ~ o l y g l u c i n m - w i t h p o l y s t i r o l e l a t e x and d o d a r ' s b l o o d d i - l u t e d w i t h p h y s i o l o g i c a l s o l u t i o n were measured i n t k e c a 2 i l l a r y t u b e s of 400 t o 700 mla~ d i a r i e t e r . The ? o l y s t i r o l e l a t e x was

always added t o c r e a t e d i s p e r s i o n w i t h i t s p a r t i c l e s and i t d i d ~ ' 2 c a u s e any i n f l u e n c e u?on t n e r h e o l o g y of l i q u i d .

The r e s u l t s o f e x p e r i z e n t s a r e shown on t h e diagrams,where t i e a b s c i s s i s r - c o o r d i n a t e ( i n r e l . u n . ) and t h e o r d i n a t e i s a measured v e l o c i t y v a l u e .

During t h e f i r s t experiment w a t e r ? c p o l y s t i r o l e l a t e x f l o w p r o f i l e was measured i n t h e c a p i l l a r y t u b e o f = 660 mlaq.

Pig.2 shows t h e V ( r ) dependence. T h e a p p r o x i m a t i n g c u r v e expo- n e n t x d . 8 due t o t h e a s i m n e t r i c g r a d i e n t b r o a d e n i n g o f D o ~ ? l e r s p e c t r u r . The diagram shows a good c o i n c i d e n c e o f e x p e r i m e n t a l p o i n t s w i t h t h e a p n - o x i m a t i n g curve.

Durin, t h e second experiment t n e v e l o c i t y p r o f i l e o f non- -Newton l i q u i d

-

r h e o ~ o l y g l u c i n u n

-

vias measured. The diagram w i t h V ( r ) dependence i s shown on f i g . 3 . I t ' s e v i d e n t t h a t rheo-

p o l y g l u c i n u n f l o w v e l o c i t y p r o f i l e i s c o n s i d e r a b l y d i f E e r e n t t o t h a t o f t a e w a t e r f l o w v e l o c i t y . The a p p r o x i m a t i n e c u r v e exgonent x = I . 4.

During f u r t h e r e x p e r i m e c t we measured t l i e v e l o c i t y p r o f i l e of d o n o r ' s blood f l o w d i l u t e d w i t h g h y s i o l o ~ i c a l s o l u t i o n u p t o Ht=5$. Pig.4 shows t h a t blood d i f f e r s c o n s i d e r a b l y from t i l e Newton l i q u i d . Be rfiey a l s o n o t i c e a good c o i n c i d e n c e of e x p e r i - m e n t a l p o i n t s w i t h t h e aparo::imatinc c u r v e , which exoonent ~ ~ 2 . 0 ,

(4)

Tiie a l s o c a r r i e d o u t measurements o f b l o o d v e l o c i t y p r o f i l e s u p t o Ht=I5%, and i t shovted t h a t t h e a p p r o x i m a t i n g c u r v e exponent

"xu i n c r e a s e d w i t h t h e i n c r e a s i n g of h a e m a t o c r y t i s . The f u r t h e r i n c r e a s i n g l e d t o some s e r i o u s d i f f i c u l t i e s provoked by m u l t i p l e d i s p e r s i o n .

A s a whole t h e work h a s shown t h a t t h e LDS-method i s a per- s p e c t i v e one for t h e r e s e a r c h e s o f r h e o l o g i c p r o p e r t i e s o f b l o o d b o t h b e i n g norinal and p a t h o l o g i c .

R e f e r e n c e s

I. V.A.Levtov,S.A.Regirer,IL.H.Shadrina. Fneolo?;y of blood,K, t t e d i t s i n a , 1982.

2. T. Pedly. ITydrodynArnics of l a r g e blood v e s s e l s , B , 1983.

3. U.l!.Romanovsky, M.V.Stepanova,D.S.Chernavsky. t i a t h e m a t i c a l b i o p h y s i c s , E . , 1984, p.304 4, V.N.Glonthy,U,A.Denisov,A.V.Priyezhev.

L a s e r methods of measurement o f b i o l o g i c a l l i q u i d s f l o w v e l o c i - t i e s i n narrow c a p i l l a r i e s . I n book: E a t e r - i a l s of c o n f e r e n c e

" L a s e r s i n n a t i o n a l econoi;ly~.I~l. 1986, p. 59-53.

(5)

JOURNAL DE PHYSIQUE

[I'

I

Laser Doppler spectrometer of differential type.

(6)

0 (u '5 P I-' 'i' (u

4

-

cf

- gg$ 3 geqs *

*s.,

5gzs

(Pas

L~*j9 1 I =gg*

I a*

TQ

3-bm'a

x+ s.

-A -0 K J

a+

(7)

JOURNAL DE PHYSIQUE

I

3KCllEPMHEHTRhbHtdE TGqKM RnIlPOKCMflflUHR

no

MHK

nPO#MAh

R n e o p o l y g l u c i n m f l o w v e l o c i t y p r o f i l e , c a p i l l a r y t u b e d i a n e t e r

b

= 440 nkn, a p p r o x i m a t i n g c u r v e exponent x=I.4.

(8)

X

- 3KCllEPMMEtfTRhbHUE

T O W 4 RNlPOKCMPfiUMR

no

MHK

n G M A ~

D i l u t e d b l o o d f l o w v e l o c i t y p r o f i l e , c a 3 i l l a r y t u b e d i a 2 e t e r

= 660 n1~1, ao:2roximating c u r r e e q o a e n t x=2. C , h e e n a t o c r y ytis exponent ?It 95%.

Références

Documents relatifs

By sweeping the optical frequency of heterodyne detection local oscillator (reference arm), we record the spatial distribution of tun- able frequency components of the object field

Les pharmaciens de ce groupe ont également reçu une formation sur les soins pharmaceutiques, mais plus générale que celle du groupe « soins pharmaceutiques », et ils n’avaient

We evaluated the effects of the two main kiwifruit cultivars (gold kiwifruit (GOK) and green kiwifruit (GRK)) and their active phenolic compound, quercetin, on H 2 O 2

Many, if not most, of these adverse changes during human tumorigenesis are conferred by altered gene expression profiles that are mediated through the oxygen sensing response pathway

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

The unitary maps ϕ 12 will be very useful in the study of the diagonal action of U(2) on triples of Lagrangian subspaces of C 2 (see section 3).. 2.4

Very dense agenda (in the past, we used to have 7 weeks) Lots of exercices in class, homework, and one final project Schedule. Wednesday morning:

Introduction (Sebastien) – Class 1 Critical reading (Sébastien) – Class 2 Writing (Marcelo) – Classes 3 and 7 Internships (Sébastien) – Class 4. Experimental