• Aucun résultat trouvé

MEASUREMENT AND COMPUTATION OF FLAME STRUCTURE

N/A
N/A
Protected

Academic year: 2021

Partager "MEASUREMENT AND COMPUTATION OF FLAME STRUCTURE"

Copied!
4
0
0

Texte intégral

(1)

HAL Id: jpa-00214776

https://hal.archives-ouvertes.fr/jpa-00214776

Submitted on 1 Jan 1971

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

MEASUREMENT AND COMPUTATION OF FLAME STRUCTURE

G. Dixon-Lewis

To cite this version:

G. Dixon-Lewis. MEASUREMENT AND COMPUTATION OF FLAME STRUCTURE. Journal de

Physique Colloques, 1971, 32 (C5), pp.C5b-9-C5b-11. �10.1051/jphyscol:1971557�. �jpa-00214776�

(2)

MEASUREMENT AND COMPUTATION OF FLAME STRUCTURE.

6 . Dixon-Lewis,

Houldsworth School of A p p l i e d S c i e n c e , U n i v e r s i t y of L e e d s , A n g l e t e r r e .

Rbsum6.

-

On d i s c u t e l e s m6thodes p e r m e t t a n t une Btude d 6 t a i l l d e d e l a s t r u c t u r e , d e s p r o p r i d t 6 s e t du m6canisme d e q u e l q u e s t y p e s d e flanrme. T o u t e s l e s f l a m e s i m p l i q u e n t une i n t e r a c t i o n e n t r e 11a6rodynamique e t l a c h i m i e ; pour l e s f l a m e s l a m i n a i r e s c e s o n t n o s c o n n a i s s a n c e s chimiques q u i s o n t l e s moins s a t i s f a i s a n t e s . Avant d ' a b o r d e r c e domaine, il f a u t t o u t e f o i s r e p r 6 s e n t e r d e f a c o n s a t i s f a i s a n t e l e s ph6nomSnes p h y s i q u e s .

A b s t r a c t .

-

Methods f o r d e t a i l e d i n v e s t i g a t i o n of t h e s t r u c t u r e , p r o p e r t i e s and mecha- nism o f some s i m p l e f l a m e s y s t e m s a r e d i s c u s s e d . A l l f l a m e system. i n v o l v e i n t e r a c t i o n between aerodynamics on t h e one hand and c h e m i s t r y on t h e o t h e r , and i n t h e c a s e o f lamin'ar f l a m e s i t i s i n t h e chemical f i e l d t h a t o u r knowledge i s l e a s t s a t i s f a c t o r y . However, b e f o r e one can i n v e s t i g a t e t h e c h e m i s t r y , i t i s n e c e s s a r y t o r e p r e s e n t t h e p h y s i c s o f t h e s i t u a t i o n r e a l i s t i c a l l y .

With t h e p r o v i s o t h a t o n e ' s chemical r e a c t i o n t r a t i o n [ 3 ]

.

Because of d i f f i c u l t i e s o f measure- mechanism i s a b l e t o c o v e r t h e whole c o m p o s i t i o n ment caused b y t h e v e r y low c o n c e n t r a t i o n s o f t h e r a n g e e n c o u n t e r e d , t h e b a s t i c c h e m i c a l r e a c t i o n s i n o t h e r i n t e r m e d i a t e s (OH, 0 , and HO 2 ) i n t h e p a r t i - a f l a m e a r e q u i t e i n d e p e n d e n t o f t h e c o m p l e x i t y o f c u l a r flame s t u d i e d e x p e r i m e n t a l l y , t h i s was t h e t h e aerodynamics. F o r s t u d y i n g t h e c h e m i s t r y t h e r e - o n l y r a d i c a l d e t e r m i n a t i o n which c o u l d b e made.

f o r e , t h e s i m p l e s t p o s s i b l e aerodynamic s y s t e m , t h e Using t h e c o n t i n u i t y e q u a t i o n s f o r t h e s t e a d y one-dimensional premixed f l a m e i s u s e d i n t h i s s t a t e f l a m e , i t i s p o s s i b l e t o deduce r e a c t i o n work, which r e l a t e s s p e c i f i c a l l y t o f u e l

-

r i c h r a t e s from t h e measured p r o f i l e s e . 8 . r 4 ]

,

b u t i t f l a m e s s u p p o r t e d by t h e hydrogen

-

oxygen r e a c t i o n . i s d i f f i c u l t by t h i s approach t o deduce r e a c t i o n E x p e r i m e n t a l l y , s l o w b u r n i n g f l a m e s i n r i c h hydro- mechanism. To do t h i s , i t i s much more s a t i s f a c t o r y gen

-

oxygen

-

n i t r o g e n m i x t u r e s a r e b u r n t on an t o compute t h e flame p r o p e r t i e s e x p e c t e d f r o m pos- E g e r t o n

-

Powling t y p e o f f l a t f l a m e b u r n e r [ I ]

,

g i v i n g an e s s e n t i a l l y one d i m e n s i o n a l flow. Slow f l a w s a r e n e c e s s a r y f o r e x p e r i m e n t a l s t r u c t u r e s t u d i e s a t a t m o s p h e r i c p r e s s u r e i n o r d e r t o o b t a i n a d e q u a t e s p a t i a l r e s o l u t i o n . The measurements t o be made a r e : (a) f l o w v e l o c i t y ( 2 1

,

(b) t e m p e r a t u r e p r o f i l e [ 2 , 3 3

,

( c ) c o m p o s i t i o n p r o f i l e s f o r s t a b l e s p e c i e s [ 3

1

and (d) such c o m p o s i t i o n p r o f i l e s f o r u n s t a b l e f r e e r a d i c a l i n t e r m e d i a t e s e . g . H atoms, OH, a s can b e measured. I n t h e low t e m p e r a t u r e f l a m e s s t u d i e d , t h e decay of i n t e n s i t y of sodium D

-

l i n e chemiluminescence w h e n t r a c e s of sodium s a l t s were added t o t h e g a s e s e n t e r i n g t h e flame was u s e d a s a measure of r e l a t i v e H atom concen-

t u l a t e d r e a c t i o n mechanisms, and t o compare t h e s e w i t h e x p e r i m e n t . Such c a l c u l a t i o n s s t a r t f r o m t h e

c o n t i n u i t y e q u a t i o n s . C o n t i n u i t y E q u a t i o n s .

F o r a non-stationary,one-dimensional f l a m e f r o n t p a r a l l e l w i t h t h e x , z

-

p l a n e , t h e g e n e r a l i - zed c o n t i n u i t y e q u a t i o n may be w r i t t e n a s :-

where W i s t h e c o n c e n t r a t i o n of any q u a n t i t y

i

-

3

-

3

( g . cm f o r s p e c i e s o r J. cm f o r e n e r g y ) a t d i s t a n c e y and time t , F . i s t h e f l u x of t h e quan- t i t y p e r u n i t time and a r e a normal t o t h e d i r e c t i o n

2 1 2 1

of f l o w (g. cm- s- o r J . cm- s-

7,

and q i i s i t s

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1971557

(3)

G . DMON-LEWIS

3 7 3 1

rate of formation (g. cm- s- or 3 . cm- s- ) . An equation of type ( 1 ) exists for each species present in the gas, and for the energy. Mathematically, the flame is a system of differential equations.

The concentrations Wi may be expressed in terms of the overall density and the weight frac- tions wi of each species :

while the fluxes Fi consist of two parts

-

first, a convective term Mwi, where M is the overall mass burning velocity, and second, a transport flux ji due to diffusion (or thermal conduction). Thus:.

Fi =

mi

+ ji (3)

Depending on the assumptions made in calcula- ting the ji, the system of simultaneous differen- tial equations can be solved at various levels of sophistication. Two approaches to the solution have been used:

(a) The diffusional fluxes in the multicomponent system are expressed in the approximate form:

and other slight assumptions are made for the tem- perature dependence of the transport properties

[

5 , 6 1

.

The unsteady state, time

-

dependent

equations are solved by a finite difference proce- dure which integrates forward in time from arbitra- rily assumed initial flame profiles into the steady state. The method gives a general indication of the flame properties comparatively rapidly, and allows a preliminary selection of reaction and rate cons- tants by fitting the measured burning velocity and then comparing profiles. Because of the approxi- mations, however, it does not allow a detailed comparison of the latter.

(b) Detailed profiles are calculated 1 6 1 by a Runge

-

Kutta procedure which integrates through

the steady state flame (time derivative vanishes in equation (I

) ,

corresponding with a flame sta- bilized in the co-ordinate system). Detailed multi- component transport properties are calculated L 7 j using the extension of the Chapman

-

Enskog theory to polyatomic gases by Wang Chang, Uhlenbeck and de Boer

[

8

] ,

and its subsequent development by

Monchick, Mason and coworkers [ 9 ]

.

By this means it is possible to calculate also the thermal fluxes, and to include thermal diffusion effects in the overall computation of the composition profiles.

Effects of thermal diffusion on the composition profiles may be important, particularly in the case of light reactive species like H atoms, since the reaction rate depends strongly on the atom concentration. The approximate magnitude of the effect of thermal diffusion on the composition profiles of the stable species in the H2

-

O2

-

N 2

flame is shown in reference [7

1 .

Mechanism of Reaction.

Application of the methods described to a flame A at atmospheric pressure having the initial mole fractions = 0.1883. Xo = 0.0460

2'u

and

S2'U

= 0.7657, with TU = 336K, and detailed comparison of the results with structure measure- ments [6

] ,

strongly supports a chemical mechanism consisting of reactions (i) to

(iv),

(vii), (xii) and (xv), with possibly some contributions from reactions (viia)

,

(xiii)

,

(xiv)

,

(mi) and (xvii)

.

Subsequent work, as yet unpublished, has confirmed the participation of the additional reactions.

It is possible to establish rate constants for these by comparison of computed and measured bur- ning velocities over a limited range of composition (figure 1

-

measurements by Mr. K. Thompson), and following this we have been able to compute the burning velocities of the whole range of rich

(4)

MEASUREMENT AND COMPUTATION OF FLAME STRUCTURE

F i g . 1 Computed l i n e s and e x p e r i m e n t a l p o i n t s .

hydrogen

-

a i r m i x t u r e s , o b t a i n i n g good agreement w i t h r e c e n t measurements

[

10,11]

.

OH

+

H2

=

H20

+ H

(i

H + 0 2 = O H + 0 ( i i )

OH

H02 'OH

0 H2 H2°

OH 2 H2°

OH

(iii) ( i v ) ( v i i ) ( v i i a ) ( x i i ) ( x i i i ) ( x i v ) ( x v ) ( x v i ) ( x v i i )

F i n a l l y , s i n c e t h e emphasis a t t h i s meeting i s on t h e p h y s i c a l p r o c e s s e s i n v o l v e d , I s h o u l d l i k e t o draw a t t e n t i o n t o t h e magnitudes of t h e v a r i o u s f l u x e s i n t h e r i c h f l a m e s . For t h e flame A t h e computed f l u x e s a r e shown i n r e f e r e n c e

[

6

] .

For

hydrogen, t h e maximum t h e r m a l d i f f u s i o n a l f l u x i s

o f t h e same magnitude a s t h e maximum d i f f u s i o n a l f l u x due t o t h e c o n c e n t r a Q o n g r a d i e n t s ; b u t f o r t h e o t h e r s p e c i e s t h e r m a l d i f f u s i o n i s r e l a t i v e l y much l e s s i m p o r t a n t . T h i s r e l a t i v e l a c k of impor- t a n c e i n t h e c a s e of hydrogen atoms i s due t o t h e s m a l l c o n c e n t r a t i o n of H atoms i n t h e r e g i o n of s t e e p e s t t e m p e r a t u r e g r a d i e n t . I t i s p a r t i c u l a r l y f o r t u n a t e from t h e p o i n t of view of t h e v a l i d i t y of t h e more approximate c a l c u l a t i o n s which n e g l e c t thermal d i f f u s i o n e f f e c t s . The H atom f l u x e s i n t h e 50

X

hydrogen

-

a i r flame f o l l o w a s i m i l a r g e n e r a l p a t t e r n t o t h o s e i n flame A.

BTBLIOGRAPHIE

[ l ] DIXON-LEWIS, G . e t a l . T r a n s . Faraday Soc.

1957,

2,

193.

[ 2 DIXON-LEWIS, G . e t a l . P r o c . ROY. SOC. A , 1969, 308, 517.

-

13 DIXON-LEWIS, G . e t a l . i b i d . 1970.

317,

227.

[4 DIXON-LEWIS, G. e t a l . Tenth Symp. ( I n t ) on Combustion p. 495. P i t t s b u r g h : Comb. I n s t . 1965.

[5] DIXON-LEWIS, G , Proc. Roy. SOC. A, 1967,

298,

495.

[6] DIXON-LEWIS, G. i b i d . 1970,

317,

235.

[ 7 ] DIXON-LEWIS, G. i b i d . 1969,

307,

1 1 1 .

18) WANG CHANG, C.S. e t a l . Univ. of Michigan Eng.

Research Rept. No. CM-681, 1951.

[9] MONCHICK, L . , MASON, E.A. e t a l . J. Chem. Phys.

1961 onwards.

[lo] EDMONDSON, H. e t a l . C o d . Flame 1971,

16,

161.

[I

I )

GUNTHER, R. and JANISCH. P r i v a t e c o m u n i c a t i o n

Références

Documents relatifs

Percentage and number of events that make the flux increase or decrease as a function of L ∗ (X- axis), the intensity of the related magnetic storm (color code), for the

The results have shown that the proposed measurement technique enables not only to reconstruct the phase velocity dispersion curve of the Lamb wave A 0 mode, but also to choose in

Measurement of the rigidity coefficient of a surfactant layer and structure of the oil or water microemulsion

Indeed, the location of many stores of the same retail brand may have a positive influence on the consumers’ perception of services and on their retail patronage behavior.. On

Here we estimate the shallow-convective mass flux at the top of the subcloud layer, because this level is critical for understanding low-cloud feedbacks and for testing

In this event, aside from the four tracks forming the B S , the most energetic particle in the hemisphere containing the B S is a K S 0 with measured mass of 0:486 0:008 GeV,

Consistent mass and momentum transport for simulating incompressible interfacial flows with large density ratios using the level set method. Contribution à l’étude des

Keywords Diffusion Velocity Method · Particle method · Fourier Analysis · Transport-dispersion equations · Navier-Stokes equations.. Paul Mycek