• Aucun résultat trouvé

Parameterization of the emissivity of forests at L-band (L-MEB in the Level-2 SMOS algorithm)

N/A
N/A
Protected

Academic year: 2021

Partager "Parameterization of the emissivity of forests at L-band (L-MEB in the Level-2 SMOS algorithm)"

Copied!
15
0
0

Texte intégral

(1)

HAL Id: hal-02822553

https://hal.inrae.fr/hal-02822553

Submitted on 6 Jun 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Parameterization of the emissivity of forests at L-band (L-MEB in the Level-2 SMOS algorithm)

Jean-Pierre Wigneron, Arnaud Mialon, Jennifer Grant, Yann H. Kerr, Jean-Christophe Calvet, Marc Crapeau, François Demontoux, Maria-José

Escorihuela, Silvia Enache Juglea, Heather Lawrence, et al.

To cite this version:

Jean-Pierre Wigneron, Arnaud Mialon, Jennifer Grant, Yann H. Kerr, Jean-Christophe Calvet, et al.. Parameterization of the emissivity of forests at L-band (L-MEB in the Level-2 SMOS algorithm).

Journée thématique OASU ”La Télédétection dans les domaines de l’Environnement et de la Plané- tologie”, Oct 2009, Talence, France. 14 pl. �hal-02822553�

(2)

Parameterization of the emissivity of forests at L-band (L-MEB in the Level-2 SMOS algorithm)

J-P Wigneron, A. Mialon, J. Grant, Y. Kerr, J-C Calvet, M. Crapeau, F.

Demontoux, M-J Escorihuela, S. Juglea, H. Lawrence, V. Mironov, N. Novello, K. Saleh, M. Schwank et al.

Bordeaux, 21 Oct., 2009

(3)

Outlines:

• L-MEB used in the Level-2 SMOS algorithm

• Improving L-MEB: key questions?

• recent results over forests

(4)

2. SMOS (Soil Moisture and Ocean Salinity)

Low spatial resolution: ~ 35-50km Revisit time: Max. 3 days

Sensitivity ~ 2K over land

Goal of accuracy in SM: ~ 0.04 m3/m3

Retrieval algorithm: using multiangular and dual polarization TB Soil moisture & vegetation opacity (τ), …

-Level-2 algorithm completed, now validation activities

the Expert Support Laboratory (ESL) includes CESBIO, IPSL, TOV-Roma

-based on a forward model L-MEB (L-band Microwave Emission of the Biosphere)

Launch : Nov 2, 2009

(5)

L-MEB (L-band Microwave Emission of the Biosphere model)

[Wigneron et al., in book 06, RSE 07]

• L-MEB = result of an extensive review of the current knowledge of the microwave emission from vegetation

• Based on based on R.T. modeling (τ−ω model for vegetation)

& specific parametrisations for roughness, T_effective, angular effects, etc.

• Parameter calibration for a variety of soil/vegetation types

(crops, prairies, shrubs, coniferous, deciduous forests, etc.)

• Valid ~ in the 1- 10 GHz Range (L-, C-, X-MEB)

(6)

Vegetation Emission

TB = TB* + TB* Γs γ + (1-Γs) Ts γ

TB* = émission directe de la végétation

TB* Γs γ = émission de la végétation, réfléchie et atténuée

Γs =

réflectivité du sol

γ =

facteur atténuation de la végétation es Ts γ = (1-Γs) Ts γ = émission du sol atténuée

Extinction γ Extinction γ

ATMOSPHERE

SOIL VEGETATION

TB

e

S

T

S

γ TB* Γ

S

γ

TB*

Tb*(z=H)

Vegetation emission

Tb*(z=0)

Soil reflectivityΓS Soil

emission

(7)

TB est fonction de:

(1) SM (m3/m3), (2) la biomasse (τ )

(3) Température de surface (Tv ≈ Ts)

autres: type de végétation (b, ω) et de sol (texture, rugosité…)

Extinction VEGETATION

Vegetation emission

Soil emission

TB = TB* (1 + ΓS.γ) + (1-ΓS).Ts.γ

avec, TB*

(1 -

γ). (1-ω) Tv

(émission directe vég)

γ

= exp(-

τ

/ cosθ) (facteur d’atténuation)

Variables principales de surface:

(i) Γs = réflectivité du sol = f ( SM (m3/m3), texture, rugosité)

(ii) τ = épaisseur optique ≈ b. VWC

VWC

= contenu en eau de la végétation (kg/m2) (≈ Biomasse en eau) b = f( type de végétation )

(iii) Tv= Température du couvert (Tv ≈ Ts)

(iv)

ω

=albedo f( type de végétation )

(8)

L-MEB (L-band Microwave Emission of the Biosphere model)

SOIL

Γ

soil =

Γ

soil_smooth

e

-HR cosNp(θ) with

HR (SM) T

G=

T

depth +

C (T

surf –

T

depth

), C= (SM/W0)

wb

VEG

ATM

τ(nadir) = b VWC = b’LAI+b’’

τ

p=

τ

0

(nadir) . (cos

2

(θ)+tt

p

sin

2

(θ)) SKY

Zero order solution of

radiative transfer equations:

Roughness, effective temperature:

Accounting for angular effects on τ:

TB

veg

=(1-e

-τ/cos(θ)

)(1-ω)T

veg

(1+Γ

soil

e

-τ/cos(θ)

)

param.: τ_nadir, ω, ttv, tth, b’, b’’

param: HR(SM), NRv, NRh,

w0, wb

(9)

Key questions still pending:

• soil emission: (JC Shi, M. Schwank, A. Mialon, H Lawrence, MJ Escorihuela, …)

-surface roughness: link between model / geophysical (STD, Lc, …) param.?

-effective roughness = f(SM)?,

-model accuracy at rather large angles (θ ≥ 40°)?

• soil permittivity: (F. Demontoux, V. Mironov)

-model accuracy over a large range of soil types (use of Mironov routine for high sand fraction?)

• low vegetation (E. Lopez, B. Hornbuckle, C. Matzler, P. de Rosnay, JP Walker, …)

-dependence of model parameters on the vegetation structure?

-relating optical depth TAU with Veg. Water content, or LAI?

-effect of interception (flagged currently using PR)?

• natural environment (forests, prairies, etc.): (K. Saleh, M. Schwank…)

-modeling litter and interception effects (dry vegetation)

-optical depth of forest (large variability boreal -> tropical forets?)

-effect of structure, understory?

(10)

• SMOSREX (CESBIO, CNRM, INRA, ONERA),

soil-fallow, Toulouse site, 2003-2009

• BRAY-04-08 (INRA), coniferous forest, Bordeaux

EMIRAD (TUD), 2004-2008

• ELBARA (ETH, U. of Bern), grass, deciduous forest 2004-2006

• …

Studies: based on experimental activities for a large range of soil and vegetation conditions:

LEWIS

MELBEX- EMIRAD ELBARA

BRAY - EMIRAD

INRA’01 - EMIRAD

(11)

BRAY’2004 experiment: first long term TB exp. over a pine forest (Les Landes, INRA FLUXNET site) [Grant et al., 2007, 2008, 2009]

FOSMEX: same over a deciduous forest (JULICH site, ETH Zürich studies) [Guglielmetti et al., 2007]

Forest emissivity:

SMOSREX-0304 Δ TB ~ 12-15 K between dry / wet conditions

(Δe ~ 0.04)

0 10 20 30 40

0.88 0.9 0.92 0.94 0.96

E−GC

SOIL MOISTURE (VOL%)

10 20 30 40 50 60 70 80 90 0.88

0.9 0.92 0.94 0.96

E−GC

LITTER MOISTURE (GRAV%)

Emissivity = f(SM, LM)

Emirad (TUD, Copenhagen)

(12)

Litter & understory effects

[Grant et al., RSE, 2007]

Bray coniferous forests

0 5 10 15 20 25 30 35 40 45 50

0 10 20 30 40 50 60 70 80 90 100

GRAVIMETRIC LITTER MOISTURE (%)

VOLUMETRIC SOIL MOISTURE (%)

Soil

Moisture Litter

Moisture

-strong relation between Soil &

Litter moisture

-Question pending: Are limited

emissivity variations due to soil,

litter, understory, trees..; ?

(13)

SMOSREX-0304

Combined analysis of Bray (coniferous,

INRA site), FOSMEX (deciduous, Julich site), NAFE’06 (Eucalytus, Australia)

Accuracy of L-MEB: ~ 3K,

-surface roughness: HR ~ 1 - 1.2 (both sites) -ω = 0.07

-low angular effects: ttP ~ 0.7 - 1

-tau_

NAD

~ 0.4-0.6 (sparse coniferous –eucalyptus forests)

-tau_

NAD

~ 1 (dense deciduous forest)

240250240 250 260 270 280 290 300

260 270 280 290 300

TB,obs(H) [K]

TB,sim(H) [K]

Bray Experiment (coniferous)

240 250 260 270 280 290 300

240 250 260 270 280 290 300

TB,obs(H) [K]

TB,sim(H) [K]

Julich Experiment (deciduous)

0 2 4 6 8 10

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

Tau NAD [−]

LAI [−]

Hpol Vpol

LAI -Transmissivity Γ ~ 0.35 -0.65 at nadir (~50%) TAU

→ surface effects are strong -low effects of leaves: Δ Γ ~ 0.03

-low sensitivity to SM is not explained by trees

[Grant et al., 2007, 2008, 2009]

(14)

Soil Moisture soil

Over the Bray coniferous site:

-Litter: → increase in emissivity, but low effects on sensitivity

-Combined effects of understory and trees → sensitivity

Soil+litter +understor

[Grant et al., 2009]

y Soil+litter

Modelling soil –litter based on a coherent approach (Wilheit model) and

dielectric transition model

Measurements

above canopy

(15)

Forests signatures - Conclusions

-L-meb: ~3K accuracy for long term experiments over 3 forest sites (coniferous, deciduous, eucalytus)

-low sensitivity to soil moisture (~10-15K change in TB, Δe ~ 0.04) could be related to:

-litter (effects depend a lot on moisture and thickness)

-understory (+ strong interception effects by dead vegetation material) -trees (transmissivity ~ 50% over temperate forests)

-generalisation to other forest types…

Références

Documents relatifs

This result shows that the SCA-H algorithm, based on observations for one angle and one polarization and additional information from MODIS, can provide results very

Parameterisation and calibration of L-MEB in the Level-2 SMOS algorithm.. Jean-Pierre Wigneron,

The campaign gathered data to further investigate/validate the L-band emission model over prairies and crops which will be used by the SMOS Level 2 processor, to assess

Arnaud Mialon, Al Bitar Ahmad, Lucie Berthon, Simone Bircher, François Cabot, Maria-José Escorihuela, Delphine Leroux, Olivier Merlin, Nathalie. Novello, Thierry Pellarin,

Surface emissivity can then be related to the moisture content in the first few centimeters of soil, and, after some surface roughness and temperature corrections, to the sea

 Surface roughness can be calibrated without any soil moisture measurements by using theorical estimations for period of extremal of soil moisture.  Results are almost as good

This study aims at the validation of both brightness temperatures and soil moisture (SM) obtained by SMOS during the year 2012, using the data acquired by the ELBARA-II

The availability of a two year long data set of these surface variables from SMOSREX (Surface Monitoring Of the Soil Reservoir EXperiment) makes it possible to study the