• Aucun résultat trouvé

Population balance approach for predicting polymer particles morphology

N/A
N/A
Protected

Academic year: 2021

Partager "Population balance approach for predicting polymer particles morphology"

Copied!
3
0
0

Texte intégral

(1)

HAL Id: hal-02518323

https://hal.archives-ouvertes.fr/hal-02518323

Submitted on 25 Mar 2020

HAL

is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire

HAL, est

destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - ShareAlike| 4.0 International License

Population balance approach for predicting polymer particles morphology

Simone Rusconi, Denys Dutykh, Arghir Zarnescu, Dmitri Sokolovski, Elena Akhmatskaya

To cite this version:

Simone Rusconi, Denys Dutykh, Arghir Zarnescu, Dmitri Sokolovski, Elena Akhmatskaya. Population

balance approach for predicting polymer particles morphology. The 11th Conference on Dynamical

Systems Applied to Biology and Natural Sciences (DSABNS), Feb 2020, Trento, Italy. �hal-02518323�

(2)

11th Conference on Dynamical Systems Applied to Biology and Natural Sciences DSABNS 2020 Trento, Italy, February 4-7, 2020

POPULATION BALANCE APPROACH FOR PREDICTING POLYMER PARTICLES MORPHOLOGY

S. Rusconi

1

,

D. Dutykh

2

, A. Zarnescu

1,3,4

, D. Sokolovski

3,5

and E. Akhmatskaya

1,3

1

BCAM - Basque Center for Applied Mathematics, 48009 Bilbao, Spain

2

Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LAMA, 73000 Chamb´ery, France

3

IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain

4

“Simion Stoilow” Institute of the Romanian Academy, 010702 Bucharest, Romania

5

Departamento de Qu´ımica-F´ısica, Universidad del Pa´ıs Vasco,

UPV/EHU, Leioa, Spain

srusconi@bcamath.org (*corresponding author), denys.dutykh@gmail.com, azarnescu@bcamath.org dgsokol15@gmail.com, eakhmatskaya@bcamath.org

Polymer particles morphology can be defined as a pattern of phase-separated domains comprising a multi-phase polymer particle [1]. Properties of a polymer particle strongly depend on its morphology, and thus the control of particle morphology is a key factor for success in producing high-quality polymers materials, such as coatings, adhesives and additives [2].

Currently, an accurate prediction of particles morphology is still a challenge due to its complexity.

Several modelling approaches, describing the dynamics of the morphology of a single particle, have been suggested in the last few years [3, 4, 5]. However, the single-particle approaches only provide a partial view of realistic systems, containing millions of particles. Furthermore, such models are computationally demanding even with the use of High Performance Computers.

In contrast to currently available computationally expensive and restricted single-particle approaches, we recently proposed [6] a Population Balance Equations (PBE)-based model to predict the size distribution of polymer agglomerates, composing the morphology of interest. The PBE model provides a view of the whole population of polymers particles, taking into account the relevant kinetic and thermodynamic effects behind the morphology formation [7].

The numerical treatment of such a model is not trivial due to the following difficulties. First, reactants

c

DSABNS ISBN: 978-989-98750-7-4

(3)

11th Conference on Dynamical Systems Applied to Biology and Natural Sciences DSABNS 2020 Trento, Italy, February 4-7, 2020

and particles concentrations may be coupled, leading to a challenging integration of the resulting system of equations. Then, numerical solutions require substantial computational resources since, in practical engi- neering processes, the computed solution may extend over several orders of magnitude and can exhibit very sharp moving fronts.

We propose three novel numerical approaches which help to obtain accurate and efficient numerical solutions of the introduced model. While the Optimal Scaling (OS) [8] procedure, designed for the dimen- sionless reformulation of equations expressed in physical units, assures computationally tractable orders of magnitude for the PBE terms, the novel Generalised Method of Characteristics (GMOC) allows for the integration of PBE models with coupled dynamics. Finally, the Laplace Induced Splitting Method (LISM) combines a splitting integration scheme with Laplace induced analytical solutions to enhance accuracy and speed of the numerical treatment.

We discuss the main features of OS, GMOC and LISM methodologies and present numerical results demonstrating the potential of the proposed techniques.

References

[1] Sawye L.C., Grubb D.T. (1987).Introduction to polymer morphology. Dordrecht, Netherlands: Springer.

[2] Schuler B., Baumstark R., Kirsch S., Pfau A., Sandor M., Zosel A. (2000).Structure and properties of multiphase particles and their impact on the performance of architectural coatings. Progress in Organic Coatings, 40(1-4), 139-150. https://doi.org/10.1016/S0300-9440(00)00136-3

[3] Asua J.M., Akhmatskaya E. (2011).Dynamical modelling of morphology development in multiphase latex par- ticles. Springer Berlin Heidelberg.

[4] Akhmatskaya E., Asua J.M. (2012). Dynamic modeling of the morphology of latex particles with in situ formation of graft copolymer. Journal of Polymer Science Part A: Polymer Chemistry, 50(7), 1383-1393.

https://doi.org/10.1002/pola.25904

[5] Akhmatskaya E., Asua J.M. (2013).Dynamic modeling of the morphology of multiphase waterborne polymer particles. Colloid and Polymer Science, 291, 87-98. https://doi.org/10.1007/s00396-012-2740-9.

[6] Rusconi, S. (2018).Probabilistic Modelling of Classical and Quantum Systems. PhD thesis, UPV/EHU - Uni- versity of the Basque Country. http://hdl.handle.net/20.500.11824/812

[7] Hamzehlou S., Leiza J.R., Asua J.M. (2016). A new approach for mathematical modeling of the dynamic development of particle morphology. Chemical Engineering Journal, 304(15), 655-666.

https://doi.org/10.1016/j.cej.2016.06.127

[8] Rusconi S., Dutykh D., Zarnescu A., Sokolovski D., Akhmatskaya E. (2019).An optimal scaling to compu- tationally tractable dimensionless models: Study of latex particles morphology formation. Computer Physics Communications, 106944. https://doi.org/10.1016/j.cpc.2019.106944

c

DSABNS ISBN: 978-989-98750-7-4

Références

Documents relatifs

Blockade (Figure 5F) of either PD-L1 or PD-1 was observed to restore the killing capabilities of Tdx Ts (presenting a dead target volume of 46.8  ± 11% and

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE

In this work, we studied in detail the formation and phase separation in the membranes of both Giant Unilamellar Hybrid Vesicles (GHUVs) and Large Unilamellar Hybrid

Le but de cette thèse est d’étendre cette théorie pour étudier des équations ne provenant pas de flots gradient dans l’espace de Wasserstein, par exemple, les systèmes

When a new failure scenario develops, its evolution pattern is compared by fuzzy similarity analysis to a library of reference multidimensional trajectory patterns

« l’énergie d’adhésion» par monomère excède un certain seuil. Pour une particule colloidale ce seuil s’accroît d’un montant inversement proportionnel à son

Then, they enter a recurrent long short-term memory neural layer (LSTM) composed of 100 neurones, to which a 60-neurones layer is connected.. This ANN features feedback

Here, we evaluated the interactions between host cellular factors, which control HIV-1 infection and target the capsid, and HIV-2 capsids obtained from primary isolates from patients