• Aucun résultat trouvé

Partial Differential Equations

N/A
N/A
Protected

Academic year: 2023

Partager "Partial Differential Equations"

Copied!
6
0
0

Texte intégral

(1)

http://france.elsevier.com/direct/CRASS1/

Partial Differential Equations

Correlation between two quasilinear elliptic problems with a source term involving the function or its gradient

Haydar Abdel Hamid, Marie Françoise Bidaut-Véron

Laboratoire de mathématiques et physique théorique, CNRS UMR 6083, faculté des sciences, 37200 Tours, France Received and accepted 5 October 2008

Available online 31 October 2008 Presented by Haïm Brezis

Abstract

Thanks to a change of unknown we compare two elliptic quasilinear problems with Dirichlet data in a bounded domain ofRN. The first one, of the form−pu=β(u)|∇u|p+λf (x), whereβis nonnegative, involves a gradient term with natural growth.

The second one, of the form−pv=λf (x)(1+g(v))p1wheregis nondecreasing, presents a source term of order 0. The correlation gives new results of existence, nonexistence and multiplicity for the two problems.To cite this article: H.A. Hamid, M.F. Bidaut-Véron, C. R. Acad. Sci. Paris, Ser. I 346 (2008).

©2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Résumé

Corrélation entre deux problèmes quasilinéaires elliptiques avec terme de source relatif à la fonction ou à son gradient.

A l’aide d’un changement d’inconnue nous comparons deux problèmes elliptiques quasilinéaires avec conditions de Dirichlet dans un domaine bornéΩ deRN. Le premier, de la forme−pu=β(u)|∇u|p+λf (x), oùβ est positif, comporte un terme de gradient à croissance critique. Le second, de la forme−pv=λf (x)(1+g(v))p1gest croissante, contient un terme de source d’ordre 0. La comparaison donne des résultats nouveaux d’existence, nonexistence et multiplicité pour les deux problèmes.

Pour citer cet article : H.A. Hamid, M.F. Bidaut-Véron, C. R. Acad. Sci. Paris, Ser. I 346 (2008).

©2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Version française abrégée

SoitΩun domaine borné régulier deRN(N2)et 1< p < N. Dans cette Note nous comparons deux problèmes quasilinéaires. Le premier comporte un terme de source d’ordre 1 :

pu=β(u)|∇u|p+λf (x) dansΩ, u=0 sur∂Ω, (1)

βC0([0, L)), L∞,à valeurs0, λ >0 etfL1(Ω), f 0 p.p. dansΩ.Le second problème comporte un terme de source d’ordre 0 :

pv=λf (x)

1+g(v)p1

dansΩ, v=0 sur∂Ω, (2)

E-mail addresses:abdelham@lmpt.univ-tours.fr (H.A. Hamid), veronmf@univ-tours.fr (M.F. Bidaut-Véron).

1631-073X/$ – see front matter ©2008 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

doi:10.1016/j.crma.2008.10.002

(2)

gC1([0, Λ)), Λ∞, g(0)=0 etgest croissante.

Le changement d’inconnue

v(x)=Ψ u(x)

= u(x)

0

eγ (θ )/(p1)dθ, oùγ (t )= t

0

β(θ )dθ,

conduit formellement du problème (1) au problème (2), etβ etgsont liés par la relationβ(u)=(p−1)g(v).En particulierβ est croissant si et seulement sigest convexe. Le changement d’inconnue inverse formel, apparemment moins utilisé, est donné explicitement par

u(x)=H v(x)

=

v(x)

0

ds 1+g(s).

Toutefois dans la transformation peuvent s’introduire des mesures. NotonsMb+(Ω)l’espace des mesures de Radon positives bornées surΩ, etMs+(Ω)le sous-ensemble des mesures concentrées sur un ensemble dep-capacité 0. Nous établissons une correspondance précise entre les deux problèmes :

Théorème 1.Soituune solution renormalisée du problème

pu=β(u)|∇u|p+λf (x)+αs dansΩ, u=0 sur∂Ω, (3) oùαsMs+(Ω),et0u(x) < Lp.p. dansΩ. Alors il existeμsMb+(Ω),telle quev=Ψ (u)est solution attei- gnable du problème

pv=λf (x)

1+g(v)p1

+μs dansΩ, v=0 sur∂Ω. (4) Réciproquement soitvune solution renormalisée de(4), telle0v(x) < Λp.p. dansΩ,oùμsMs+(Ω). Alors il existeαsMs+(Ω), telle queu=H (v)est solution renormalisée de(3). De plus, siμs=0,alorsαs=0.SiL= ∞ etβL1((0,)),alorsμs=eγ ()αs. SiL <,ouL= ∞etβ /L1((0,)),etαs =0 alors(3)n’a pas de solution. SiΛ <etμs=0,alors(4)n’a pas de solution.

Dans le casβ constant, les résultats suivants généralisent ceux de [1] relatifs au casp=2 : Théorème 2.On suppose queβ(u)p−1,doncv=Ψ (u)=eu−1etg(v)=v,et que

λ1(f )=inf

Ω

|∇w|pdx

Ω

f|w|pdx

: wW01,p(Ω)\ {0} >0.

Siλ > λ1(f ),ouλ=λ1(f )etfLN/p(Ω),alors(1)et(2)n’ont pas de solution renormalisée.

Si 0< λ < λ1(f )alors(2) a une solution unique v0W01,p(Ω), et (1) a une solution unique u0W01,p(Ω) telle queeu0−1∈W01,p(Ω). Si de plusfLr(Ω)avecr > N/p,alorsu0etv0L(Ω);et pour toute mesure μsMs+(Ω),(4)a une solution renormaliséevs, et donc(1)a une infinité de solutionsus=H (vs)W01,p(Ω)moins régulières queu0.

Le Théorème 1 et l’utilisation du problème (1) nous permettent de déduire un résultat important pour le pro- blème (2), étendant un résultat classique de [2] dans le casp=2 :

Théorème 3.On suppose queΛ= ∞,lims→∞g(s)/s= ∞, g est convexe à l’infini, etfLr(Ω)avecr > N/p.

Alors il existe λ>0tel que pour toutλ(0, λ)le problème(2)a une solution minimale bornéevλ, et pour tout λ > λil n’a aucune solution renormalisée.

Nous étudions aussi les propriétés de la fonction extrémalev=supλλvλétendant certains résultats de [3,9,11].

Dans le cas où gest à croissance limitée par l’exposant de Sobolev, nous obtenons des résultats d’existence d’une seconde solution variationnelle, nouveaux même dans le casp=2,étendant ceux de [1] et de [5].

(3)

1. Introduction and main results

LetΩ be a smooth bounded domain inRN (N2)and 1< p < N. In this Note we compare two quasilinear problems. The first one presents a source gradient term with a natural growth:

pu=β(u)|∇u|p+λf (x) inΩ, u=0 on∂Ω, (1)

whereβC0([0, L)), L∞,andβ is nonnegative, andλ >0 is a given real, andfL1(Ω), f 0 a.e. in Ω.

Hereβcan have an asymptote at pointL,and is not supposed to be nondecreasing.

The second problem involves a source term of order 0,with the sameλandf:

pv=λf (x)

1+g(v)p1

inΩ, v=0 on∂Ω, (2)

wheregC1([0, Λ)), Λ∞, g(0)=0 andgis nondecreasing.

Problems of type (1) and (2) have been intensively studied the last twenty years. The main questions are existence, according to the regularity off and the value ofλ,regularity and multiplicity of the solutions, and the existence with possible measure data.

It is well known that the change of unknown in (1)

v(x)=Ψ u(x)

=

u(x)

0

eγ (θ )/(p1)dθ, whereγ (t )= t

0

β(θ )dθ,

leads formally to problem (2), whereΛ=Ψ (L)andgis given byg(v)=eγ (u)/(p1)−1.This is a way for studying problem (1) from the knowledge of problem (2). It is apparently less used the reverse correlation, even in casep=2:

foranyfunctiongnondecreasing on[0, Λ), the substitution in (2)

u(x)=H v(x)

= v(x)

0

ds 1+g(s)

leads formally to problem (1), whereβis defined on[0, L)withL=H (Λ); indeedH=Ψ1.Andβ is linked tog by relationβ(u)=(p−1)g(v).In particularβis nondecreasing if and only ifgis convex; andLis finite if and only if 1/(1+g) /L1(0, Λ).

Some examples withp=2.

1. β(u)=1 and 1+g(v)=1+v.

2. β(u)=q/(1+(1q)u), q(0,1),and 1+g(v)=(1+v)q. 3. β(u)=1+euand 1+g(v)=(1+v)(1+ln(1+v)).

4. β(u)=q/(1(q−1)u), q >1 and 1+g(v)=(1+v)q. 5. β(u)=1/(1−u)and 1+g(v)=ev.

6. β(u)=q/(1(q+1)u), q >0 and 1+g(v)=1/(1−v)q.

It had been observed in [6] that the correspondence betweenuandvis more complex, because some measures can appear, in particular in the equation inv. Our first main result is to make precise the link between the two problems.

We denote byMb(Ω)the set of bounded Radon measures, and byMs(Ω)the subset of measures concentrated on a set ofp-capacity 0. AndMb+(Ω)andMs+(Ω)are the positive cones ofMb(Ω), Ms(Ω), andM0(Ω)is the subset of measures absolutely continuous with respect to thep-capacity. Recall thatMb(Ω)=M0(Ω)+Ms(Ω).

We recall one definition of renormalized solutions among four of them given in [4]. LetU be measurable and finite a.e. inΩ, such thatTk(U )belongs toW01,p(Ω)for anyk >0.One still denotes byuthe capp-quasi-continuous representative. Letμ=μ0+μ+sμsMb(Ω). ThenUis a renormalized solution of problem

pU=μ inΩ, U=0 on∂Ω, (3)

(4)

if|∇U|p1Lτ(Ω),for anyτ ∈ [1, N/(N−1)),and for anyk >0,there existαk, βkM0(Ω)Mb+(Ω),concen- trated on the sets{U=k}and{U= −k}respectively, converging in the narrow topology toμ+s , μs such that for any ψW01,p(Ω)L(Ω),

Ω

Tk(U )p2Tk(U )· ∇ψdx=

{|U|<k}

ψ0+

Ω

ψk

Ω

ψk.

Theorem 1.1.Letube any renormalized solution of problem

pu=β(u)|∇u|p+λf (x)+αs inΩ, u=0 on∂Ω, (4)

whereαsMs+(Ω)and such that0u(x) < La.e. inΩ. Then there existsμsMb+(Ω),such thatv=Ψ (u)is a reachable solution of problem

pv=λf (x)

1+g(v)p1

+μs inΩ, v=0 on∂Ω. (5)

Conversely letvbe any renormalized solution of (5), whereμsMs+(Ω)and such that0v(x) < Λa.e. inΩ. Then there existsαsMs+(Ω)such thatu=H (v)is a renormalized solution of (4).

Moreover ifμs=0,thenαs=0.IfL= ∞andβL1((0,)),thenμs=eγ ()αs.IfL <or ifL= ∞and β /L1((0,)),andαs=0,then(4)has no solution. IfΛ <∞, andμs=0,then(5)has no solution.

This theorem extends in particular the results of [1] where p=2 and L= ∞. The nonexistence result when β /L1((0,)),andαs=0,answers to an open question of [10].

First we apply to the caseβconstant, which meansglinear.

Theorem 1.2.Assume thatβ(u)p−1,thusv=Ψ (u)=eu−1andg(v)=v.Suppose that λ1(f )=inf

Ω

|∇w|pdx

Ω

f|w|pdx

: wW01,p(Ω)\ {0} >0. (6)

Ifλ > λ1(f ),orλ=λ1(f )andfLN/p(Ω),then(1)and(2)admit no renormalized solution.

If0< λ < λ1(f )there exists a unique solutionv0W01,p(Ω)to(2), thus auniquesolutionu0W01,p(Ω)to(1) such thateu0−1∈W01,p(Ω). IffLr(Ω)withr > N/p,thenu0andv0L(Ω),and moreover for any measure μsMs+(Ω), there exists a renormalized solution vs of (5);then there exists aninfinity of less regular solutions us=H (vs)W01,p(Ω)of(1).

Remark 1.3.Under the assumption (6), most of these existence results extend to general gsuch that Λ= ∞and lim supτ−→∞g(τ )/τ <∞. They extend to the case

lim sup

τ→∞g(τ )/τq<∞ for someq

1, N/(N−p)

(7) if moreoverfLr(Ω)withqr< N/(Np).

Next consider problem (2) with generalg,andfLr(Ω)withr > N/p.It is easy to prove that for smallλ >0 there exists a minimal solutionvλW01,p(Ω)such thatvλL(Ω)< Λ. Our main result is an extension of a well known result of [2] forp=2,and [3] forp >1. It is noteworthy thatthe proof uses problem(1):

Theorem 1.4. Assume thatΛ= ∞,and lims→∞g(s)/s= ∞, andgis convex near infinity, andfLr(Ω)with r > N/p. There exists a realλ>0such that:

(i) forλ(0, λ)problem(2)has a minimalboundedsolutionvλ, (ii) forλ > λthere exists norenormalizedsolution.

(5)

Whengis subcritical with respect to the Sobolev exponentp=Np/(Np), we obtainnew multiplicity results for problem (2), even in the casep=2,extending [1] and [5]:

Theorem 1.5.Under the assumptions of Theorem1.4, assume that lim sup

τ→∞gp1(τ )/τQ<for someQ(1, p−1), (8)

and fLr(Ω)with(Q+1)r< p.Then there existsλ0>0such that for any λ < λ0,there exists at leasttwo solutionsvW01,p(Ω)L(Ω)of (2). Moreover ifp=2, g is convex, org satisfies the Ambrosetti–Rabinowitz growth condition andfL(Ω), the same result holds withλ0=λ.

Concerning the extremal solution, we get the following, extending some results of [3,11]:

Theorem 1.6.Under the assumptions of Theorem1.4, the extremal functionv=supλλvλ is a renormalized so- lution of (2) withλ=λ. IfN < p(1+p)/(1+p/r) thenvW01,p(Ω).MoreovervL(Ω)in any of the following conditions:

(i) N is arbitrary and(8)holds and(Q+1)r< p, (ii) N is arbitrary and(7)holds andqr< N/(Np), (iii) N < pp/(1+1/(p−1)r).

Remark 1.7.Using Theorems 1.1, 1.4 and 1.5, we deduce existence and nonexistence results for problem (1). In Theorem 1.1, function f can depend on u or v, which strongly extends the range of applications. For example, takingg(v)=v,andf =ub, b >0,problem−pu=(p−1)|∇u|p+λubrelative touleads to−pv=λ(1+ v)p1lnb(1+v)relative tov.Then for smallλthe problem inuhas an infinity of solutionsuW01,p(Ω),two of them being bounded.

Remark 1.8. A part of our results is based on a growth assumption on g. Returning to problem (1), this condi- tion is not always easy to verify. When L= ∞, all the “usual” functions β, even with a strong growth, satisfy lim supτ→∞g(τ )/τq<∞for anyq >0,see [1]. However using the converse correlation betweengandβ,we prove that the conjecture that this condition always holds iswrong: letFC0([0,∞))be any strictly convex function, with lims→∞F (s)= ∞.Then there exists an increasing functionβ such that limt→∞β(t )= ∞and the correspondingg satisfies lim supτ→∞g(τ )/F (τ )= ∞.

2. Sketch of the main proofs

In some proofs we use a regularity lemma:

Lemma 2.1. Let 1< p < N, and FLm(Ω), and m=Np/(NpN +p) (thus 1< m < N/p). Let U be a renormalized solution of problem

pU=F inΩ, U=0 on∂Ω.

If1< m < N/p,thenU(p1)Lk(Ω),withk=N m/(Npm).Ifm=N/p,thenU(p1)Lk(Ω)for anyk1.

Ifm > N/p,thenUL(Ω).If1< m < m,then|∇U|(p1)Lτ(Ω),withτ =N m/(Nm). Ifmm,then UW01,p(Ω).

Proof of Theorem 1.1. Forp=2,we cannot use approximations of the equations because of the nonuniqueness of the solutions of −pU=μ withμMb+(Ω). The main idea is to use the equations satisfied in the sense of distributions by the truncated functionsTK(u)=min(K, u)andTk(v)=min(k, v)withk=Ψ (K), using definition (ii) of renormalized solution given above:

(6)

pTK(u)=β

TK(u)TK(u)p+λf χ{uK}+αK, inD(Ω),

pTk(v)=λf

1+g(v)p1

χ{vk}+μk, inD(Ω),

where μk and αK are two measures concentrated on the same set: {u=K} = {v=k}, and explicitly related by μk=(1+g(k))p1αK,and respectively converging weaklytoμsandαs.The nonexistence results are consequences of some properties of renormalized solutions, also called Inverse Maximum Principle. 2

Proof of Theorem 1.2. The nonexistence is first proved for (1), and then for (2) by Theorem 1.1. The existence is ob- tained by iteration and approximation, using [4]. Uniqueness follows from Picone’s identity, adapted to renormalized solutions. 2

Proof of Theorem 1.4. Formally, ifv is a solution of (2) for someλ,andu=H (v),thenu¯=(1ε)uis a super- solution of (1) relative toλ¯=(1ε)p1λ,andv¯=Ψ (u)¯ is a supersolution of (2) relative toλ¯;then there exists a solutionv1v.¯ Using Theorem 1.1 we show that it is not formal, since actuallyno measure appears. In the (best) case H () <, v¯ is bounded, then alsov1 is bounded. Otherwise a bootstrapp using Lemma 2.1 is needed for constructing a bounded solution. 2

Proof of Theorem 1.5. The Euler functionJλ is well defined, and for smallλit has the geometry of Mountain Path near 0, but the Palais–Smale sequences may be unbounded. From [8], (2) has a second solution for almost any smallλ, and then for a sequenceλnλ,and we are lead to prove that the solutionsvλnrelative toλnconverge to a solution to (2) relative toλ. The usual estimates for the casep=2,using an eigenfunction as test function, cannot be extended.

We get an estimate of−pvλninL1(Ω)in another way, using the convexity ofg. The estimate ofvλninW01,p(Ω)is obtained by contradiction. For largerλ,ifp=2,Jλhas still the geometry of mountain path nearvλ; the question is open whenp=2. Under Ambrosetti–Rabinowitz condition we apply some results of [7]. 2

Proof of Theorem 1.6. The estimates come from Lemma 2.1 and well known regularity results for quasilinear equa- tions, and from an extension of techniques of [9]. 2

References

[1] B. Abdellaoui, A. Dall’Aglio, I. Peral, Some remarks on elliptic problems with critical growth in the gradient, J. Differential Equations 222 (2006) 21–62.

[2] H. Brezis, T. Cazenave, Y. Martel, A. Ramiandrisoa, Blow-up forutu=g(u)revisited, Adv. Differential Equations 1 (1996) 73–90.

[3] X. Cabre, M. Sanchon, Semi-stable and extremal solutions of reaction equations involving thep-Laplacian, Comm. Pure Appl. Anal. 6 (2007) 43–67.

[4] G. Dal Maso, F. Murat, L. Orsina, A. Prignet, Renormalized solutions of elliptic equations with general measure data, Ann. Scuola Norm.

Sup. Pisa 28 (1999) 741–808.

[5] A. Ferrero, On the solutions of quasilinear elliptic equations with a polynomial-type reaction term, Adv. Differential Equations 9 (2004) 1201–1234.

[6] V. Ferone, F. Murat, Nonlinear problems having natural growth in the gradient: an existence result when the source terms are small, Nonlinear Anal. 42 (2000) 1309–1326.

[7] N. Ghoussoub, D. Preiss, A general mountain path principle for locating and classifying critical points, Ann. Inst. H. Poincaré Anal. Non Linéaire 6 (5) (1989) 321–330.

[8] L. Jeanjean, On the existence of bounded Palais–Smale sequences and application to a Landesman–Lazer type problem, Proc. Roy. Soc.

Edinburgh Sect. A 129 (1999) 787–809.

[9] G. Nedev, Regularity of the extremal solution of semilinear elliptic equations, C. R. Acad. Sci. Paris Sér. I Math. 330 (2000) 997–2002.

[10] A. Porretta, Nonlinear equations with natural growth terms and measure data, Electron. J. Differential Equations Conf. 9 (2002) 183–202.

[11] M. Sanchon, Boundedness of the extremal solutions of somep-Laplacian problems, Nonlinear Anal. 67 (2007) 281–294.

Références

Documents relatifs

—On Some Nonlinear Partial Differential Equations Involving The 1-Laplacian and Critical Sobolev exponent, ESAIM: Control, Optimisation and Calculus of Variations, 4, p.

Persson, Singular holomorphic solutions of linear partial differential equations with holomorphic coef- ficients and nonanalytic solutions of equations with analytic

Murat, Nonlinear problems having natural growth in the gradient: an existence result when the source terms are small, Nonlinear Anal.. Grenon, Existence and comparison results

On a non linear partial differential equation having natural growth terms and unbounded solution.. Annales

PALMIERI, Multiplicity results for nonlinear elliptic equations involving critical Sobolev exponent, preprint. [4]

The latter theory car- ries over to the theory of the quasilinear and fully nonlinear operators considered here, and hence from the bounds for the fundamental solution we deduce

Let us recall that this kind of compactness results on the truncations of solutions of approximating problems, like (1.2), plays a crucial role in the existence

Keywords: probabilistic learning, PLoM,, partial differential equations, small dataset, non-Gaussian, statistical constraints, stochastic computational models, Navier-Stokes