• Aucun résultat trouvé

ifi TECHNICAL

N/A
N/A
Protected

Academic year: 2022

Partager "ifi TECHNICAL"

Copied!
23
0
0

Texte intégral

(1)

BP 13255

MEMORY CONTROLLER MODULE Manual Part 10. 13255-912q9

1/.2S.;l PRINTED

JUN-23-81

DATA TERMINAL

TECHNICAL INFORMATION

HEWLETT ifi PACKARD

Printed in U.S.A.

(2)

13255

Processor (8085A-2) Module

13255-91249/02 REV FEB-14-82

1.0 INTRODUCTION.

The processor (8085A-2) module functions as the . . in controlling unit for the 2747F terminal. It also contains the hardware to intertace the processor to the external keyboard. The processor retches instructions trom memory and pertorms I/O operations on other .adul.s attached to the terminal data bus (backplane ass.bly). !be 8085A-2 lIOdule has the capability ot down loading code in a RAM based 2647F.

2.0 OPERATING PARAMETERS.

A summary of operating parameters tor the Processor (8085A-2) Module is contained in tables 1.0 through 6.7

Table 1.0 Physical Parameter.

================================================================================

1 PART 1 Size (L x W x D) Weight 1

I

NUMBER

1

NOMENCLATURE

1

+/-0.100 Inche.

1

(Pounds)

1 /==============1==============================1======================1=========1

1 I 1 1 1

I 02640-60249 I PROCESSOR (8085A-2) I 12.5 x 4.0 x 0.5 1 0·5 1

1 I I 1 1

1 I I 1 1

1 I 1 1 1

1==============================================================================1

I 1

1 NUMBER OF BACKPLANE SLOTS REQUIRED: 1 I

1 I

================================================================================

(3)

HP 13255

MEMORY CONTROLLER MODULE Manual Part 10. 13255-912q9

PRIM'l'ED 1/:IS-.;2 JUH-23-81

IOTlCE

The information contained in this document is subject to change without notice.

HEWLETl'-PACKARD MAKES 10 WARRANTY OF AMY KIND WITH REGARD TO THIS MATERIAL, INCLUDING, BUT lOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not be liable for errors contained herein or tor incidental or consequential damages in connection with the furnishing, performance, or use of this material.

This document contains proprietary information which is protected by

copyright. All rights are reserved. No part of this document may be photocopied or reproduced without the prior written consent of Hewlett- Packard Company.

Copyright c 1982 by HEWLETT-PACKARD COMPANY

NOTE: This document is part of the 2647F DATA TERMINAL product series Technical Information Package (HP 13255).

(4)

13255

Processor (8085A-2) Module

1.0 INTRODUCTION.

REV FEB-14-82

The processor (8085A-2) aodule functions as the . . in controllin, unit for the 2747F terminal. It also contains the hardware to interface the processor to the external keyboard. The processor f.tch •• in.truction.

trom memory and performs I/O operation. on other .odul.. attached to the terllinal data bus (backplane ass.bly). 'l'b. 8085A-2 lIOdule has the capability ot down loading code in a RAM based 2647F.

2.0 OPERATING PARAMETERS.

A summary of operating parameters tor the Proces.or (8085A-2) Modul. i.

contained in tables 1.0 through 6.7

Table 1.0 Physical Parameters

-===============================================================================

PART 1 I Size (L x W x D) I Weisht

NUMBER 1 NOMENCLATURE 1 +/-0.100 Inches I (Pounds)

==============1==============================1======================1=========

1 1 I

02640-60249

I

PROCESSOR (8085A-2)

I

12.5 x 4.0 x 0.5

I

0.5

I I I

I I I

I 1 1

==============================================================================

NUMBER OF BACKPLANE SLOTS REQUIRED: 1

================================================================================

(5)

Rev JUN-23-81 Memory Controller

Table 2.0 Reliability and Environmental Information

===============================================================================-

1

1 Environmental: ( X ) HP Class B ( ) Other:

1

1

I

Restrictions: Type tested at product level

,

1

1==============================================================================

1

1 Failure Rate:

4.774

(percent per 1000 hours)

--- ,

---

Table 3.0 Power Supply and Clock Requirements - Measured (+/-

5%

Unless Otherwise Specified)

--- --- ---

+5 Volt Supply +12 Volt Supply -12 Volt Supply

-42

Volt Supply

@ 0.5 A mA

NOT APPLICABLE NOT APPLICABLE NOT APPLICABLE

--- --- --- ---

115 volts AC 220 volts AC

A A

NOT APPLICABLE NOT APPLICABLE

--- ---

Clock Frequency: 4.915 MHz

================================================================================

Table 4.0 Jumper Definition

================================================================================

PCA Function

I

I

Designation

I I

1=============1================================================================1

1 I I

I 1 I

1 Wl 1 RAM/ROM Based Terminal (see section 3.8) I

I I ,

I I I

================================================================================

(6)

Memory Controller

Table 5.0 Connector Information

Rev JUN-23-81

--- ---

Connector

I

Signal Signal

and Pin No.

I

Name Description

--- --- --- --- --- ---

P1, Pin 1 +5V +5 Volt Power Supply

-2 GND Ground Common Return (Power and Signal) -3 SYSCLK 4.915 MHz System Clock

-4 Not Used

-5 ADDRO Negative True, Address Bit 0 -6 ADDR1 Negative True, Address Bit 1 -1 ADDR2 Negative True, Address Bit 2 -8 ADDR3 Negative True, Address Bit 3 -9 ADDR4 Negative True, Address Bit 4 -10 ADDR5 Negative True, Address Bit 5 -11 ADDR6 Negative True, Address Bit 6 -12 ADDR1 Negative True, Address Bit 1 -13 ADDRa Negative True, Address Bit 8 -14 ADDR9 Negative True, Address Bit 9 -15 ADDR10 Negative True, Address Bit 10 -16 ADDR11 Negative True, Address Bit 11 -11 ADDR12 Negative True, Address Bit 12 -18 ADDR13 Negative True, Address Bit 13 -19 ADDR14 Negative True, Address Bit 14 -20 ADDR15 Negative True, Address Bit 15 -21 10 Negative True, Input Output/Memory -22 GND Ground Common Return (Power and Signal)

==============-=================================================================

(7)

Memory Controller

Table 5.0 Connector Information (cont)

Rev JUN-23-81

---.--- ---

---

Connector

I

and Pin No.1

--- ---

P1, Pin A -B -C -D -E -F -H

-J

-K -L -M -N

-p

-R

-S

-T

-u -v

-W -x

-y

-z

Signal Name

--- ---

GND

PON BUS 0 BUS 1 BUS 2 BUS 3 BUS

4

BUS 5 BUS

6

BUS 7 WRITE

WAIT

ADDR16 ADDR17 ADDR18 REQ

Signal Description

---

--- Ground Common Return (Power and Signal)

Not Used Not Used

Positive True, System Power On Negative True, Data Bus Bit 0 Negative True, Data Bus Bit 1 Negative True, Data Bus Bit 2 Negative True, Data Bus Bit 3 Negative True, Data Bus Bit 4 Negative True, Data Bus Bit 5 Negative True, Data Bus Bit 6 Negative True, Data Bus Bit 7

Negative True, Write/Read Type Cycle Not Used

Negative True, Assert Wait State Not Used

Not Used

Positive True, Address Bit 16 Positive True, Address Bit 17 Positive True, Address Bit 18

Negative True, Request (Bus Data Valid) Not Used

--- ---

(8)

Memory Controller Rev JUN-23-81

3.0 FUNCTIONAL DESCRIPTION. Refer to the block diagram (figure 1), schematic diagram (figure 2 and 3), the timing diagram (figure 4), and the parts list (02640-60252).

The Memory Controller Module provides program and variable space for the terminal. It consists of memory drivers and series termination resistors, data port, memory array, address multiplexer, refresh address generator, refresh timer, refresh cycle generator, bus interface and board select circuitry, and a memory cycle generator.

3.1 SERIES TERMINATION RESISTORS

The series termination resistors m1n1m1ze undershoot by terminating the bus lines with the line impedance. This approximates to 20 ohms since it consists of an 80 ohm line with distributed, lumped, and capacitive

lo~ds. Current limit protection is provided free which limits the driver output to 75 mA if two or more array inputs are shorted together.

3.2 DATA PORT 3.2.1

3.2.2

The data port consists of a 74LS244 data in driver (U46) and a 74LS373 data out transparent latch. This port is enabled whenever BOARD SELECT (U53-6) and REQ (P1-Y) are both low, causing U56-3 to go low. The direction of data flow is arbitrated by WRITE (P1-P) in the following manner: if WRITE is high, then U56-8 will be active, resulting in data transmission from the Memory Controller to the data bus. If WRITE is low, then U56-6 will be active, and the data flow will be from the bus to the memory array. Data is latched in the output latch by the trail- ing edge of CAS, the COllunn address strobe.

The transparent data latch (U27) allows data to propagate through the latch prior to being latched. This means the RAM access time is optimized and if a higher speed RAM is used, the memory will appear to be correspondingly higher in speed. The data is latched so that completion of the memory cycle does not depend on the completion of the processor memory handshake.

(9)

Memory Controller REV JUN-23-81

3.3 MEMORY ARRAY 3.3.1

3.3.2

3.3.3

3.4 3.4.1

3.4.2

3.4.3

The memory array consists of up to thirty-two 64K RAMS.

socketed to allow field upgrade and repair.

The RAMs are

The power distribution is via a low impedance 4-layer PC board struc- ture. The ceramic capacitors which supply the transient current are organized such that some redundancy exists. This allows reliable oper- ation with one open circuit component.

The memory array is organized as four modules of equal size (if all are loaded). The entire array is activated by the start of a memory cycle, which is when U71-9 goes low. At that time, a row address strobe is sent to all four banks. The column address s"i;robe passes through a four to one decoder which determines which module is selected for read or write.

ADDRESS MULTIPLEXER

The address multiplexer consists of two 74LS258 quad inverting 2 to 1 line tri-state multiplexers (U75,76) and a 74LS244 octal tri-state buf- fer (U55).

The 74LS258 multiplexers select the row or column address from the ter- minal bus address lines for memory cycles. Which address is selected is determined by R/C (delay line R12-2). These multiplexers are put in the hi-Z state during refresh cycles and during power on (when refresh is occuring continuously).

The function of the 74LS244 buffer is to either transfer or block the re.fresh address counter outputs from the internal address bus. This buffer is enabled whenever refresh cycles are occuring (i.e. refresh cycle or power on).

(10)

13255

Memory Controller REV JUN-23-81

3.4.4 Whether the multiplexer is in the refresh or memory state is controlled by a 74LS74 D-flip flop (U24). This flip flop can be set to the re- fresh state in one of two ways: the power on signal is fed to the pre- set input to initialize the system and to allow for continuous refresh during power on. The flip flop can also be clocked to the refresh state by the signal RFSH (U14-8) which indicates the start of a refresh cycle. The multiplexor is reset to the memory state by the signal RFSH STALL (U13-5) at the clear input. This occurs halfway through the RAS

pre charge time of the previous refresh cycle to allow the memory ad- dresses sufficient setup time before the next memory cycle.

3.5 REFRESH ADDRESS GENERATOR

3.6 3.6.1

The refresh address generator consists of a 74LS393 dual four bit counter (U45). This counter is allowed to come up in an indeterminant state and is then continuously clocked through the 128 possible refresh addresses. The eigth bit also counts although it is not necessary as a

refresh address line. The counter is clocked by the signal COUNT (U26- 6). COUNT is the inverted refresh row address strobe, and therefore the refresh address generator is clocked each refresh cycle by the trailing edge of the row address strobe.

REFRESH TIMER

Each row of the dynamic memories must be completely refreshed every 2 msec. Since each memory is organized into 128 rows, there must be 128 refresh cycles every 2 msec to avoid loss of information. This means that a refresh cycle must occur every 15.63 usec. The system clock is 4.915 MHz. If this clock is divided by 64 and the resulting edge used to trigger a refresh cycle, a refresh will occur every 13.02 usec.

(11)

Memory Controller REV JUN-23-81

3.6.2 The refresh timer consists of a 74LS393 dual four bit counter (U22) set up as a divide by 64. The output of this counter is synchronized with the falling edge of the system clock to avoid collisions between memory and refresh cycles (the memory cycle is synchronized to the rising edge of the system clock by the processor board). This synchronization is accomplished by use of a 74s74 flip flop (U71). The synchronized out- put (U71-6) feeds the preset input of another 74s74 flip flop (052) which acts as a refresh pending latch. The output of this flip flop (U52-5) is ANDed with the signal HEM BUSY (U52-8) which indicates if a memory cycle is previously in progress. The positive true output of this gate (014-8) is the signal RFSH, which indicates an active refresh cycle in progress.

3.7 REFRESH CYCLE GENERATOR

3.7.1

3.7.2

The :refresh cycle generator generates a row address strobe which is fed to the memory chips along with the refresh address; the combination of these signals performs a RAS only refresh cycle for the memory array.

The cycle is triggered by the signal RFSH, inverted and presented to the clock input of a 74LS112 J-K flip flop (U26). This flip flop is tied to a permanent set state. Setting this flip flop causes the K input of the other half of u26 to go high resulting in the toggle state at the inputs of this flip flop (U26-2,3). The next rising edge of the clock causes signal RFSH RAS to go low; it will remain so for one en- tire clock cycle (204 nsec). Two 74LS74 D flip flops (013,23) extend the refresh cycle by one more complete clock cycle to allow sufficient RAS pre charge and address setup time as discussed above. U23-5 feeds bac:k to the refresh timer to end the cycle and allow a new timing cycle to begin.

During power on, the signal RESET forces u26 to the toggle state perma- nently, resulting in continuous refreshing until RESET returns to the high state.

(12)

Memory Controller REV JUN-23-B1

3.B 3.B.1

3.B.2

3.B.3

BUS INTERFACE AND BOARD SELECT CIRCUITRY

The bus interface circuitry consists of several buffer drivers, a wait state generator and an 10 port designed to be used by OEM's for soft- ware protection. The bus signals SYSCLK, REQ, and PON are buffered by 74LS244 drivers to reduce loading. In addition, SYSCLK and REQ are also inverted to be used in that state by the timing circuitry.

The Memory Controller Module requires one additional wait state be add- ed to the normal bus cycle in order to provide sufficient time to ac- complish memory reads and writes. To add this extra state, a wait state latch is used. This latch is a 74LSl12 J-K flip flop (U44).

This flip flop is set by (071-9), which signals the start of a memory cycle and is cleared by CAS, the column address strobe. This timing results in the addition of one extra wait state. WAIT is driven on to the bus by a 74s03 open collector NAND gate (U42-3).

The Memory Controller Module incorporates a feature which will allow any interested party to protect his applications software on the 2647F by providing space for a four byte code which can be burned into a 32xB PROM by the user; this code can be used to encrypt the applications software by any number of algorithms. U41 is a socket for a 32xB field programmable PROM (Harris 7603 or equivalent). The four byte code can be accessed by reading 10 ports BAOO, BA02, BA04, and BA06 (hex). The codes will appear to the processor to be the inverted state of what is encoded in the PROM.

(13)

Memory Controller REV JUN-23-81

3.8.4 The board select circuitry combines the state of two of the three most significant bus address lines, ADDR16 and ADDR18, as follows:

Table 6.0

--- ---

ADDR18 ADDR17 ADDR16 FUNCTION

0 0 0 Code Page 0

0 0 1 Unused

0 1 0 Code Page 1

0 1 1 Unused

1 0 0 RAM Space for Variables

1 0 1 Unused

1 1 0 RAM for BASIC Workspace

1 1 1 Display/IO Space

--- ---

3.8.5

As can be seen from the above table, a RAM-based terminal would have to respond to all four cases where ADDR16=0; a ROM-based terminal needs to respond to the two cases where ADDR18 and ADDR16 =10 . When jumper W1 is absent, the output of the AND gate (U14-6) passes the inverted value of ADDR18. This gets combined with the value of ADDR16 to generate MEMGO

(U42-6). It is also combined with 10 to generate BOARD SELECT (053-6) which is used to enable the data port and to enable the row and column address strobes to the memory array.

When W1 is present, u14-5 is tied to ground, therefore the output of the AND gate (U14-6) is permanently low. In this case, MEMGO and BOARD SELECT depend only on the value of ADDR16.

(14)

13255

Memory Controller REV JUN-23-81

3.9 3.9.1

3·9·3

MEMORY CYCLE GENERATOR

The memory cycle generator is a synchronous sequntial state machine composed of several flip flops and gates. The purpose of this state machine is to generate the row and column address strobes for memory cycle operations with the appropriate timing.

A memory cycle begins when HEMGO goes low. This is synchronized with the leading edge of REQ by a 74s74 flip flop (071). This also accom- plishes the rising edge clock synchronization mentioned above in sec- tion 3.6.2, as REQ is synchronized with the clock by the processor.

The output of this flip flop (071-9) represents a memory cycle pending.

This signal is ANDed with RFSH to prevent a memory cycle from starting while a refresh cycle is in progress. The output of this gate(Ul5-6) indicates an active memory cycle. The leading (negative) edge of this cycle active signal sets HEM BUSY to the true state, thus

the start of any refresh cycle; it also clocks a 74LSl12

preventing flip flop which starts MEMRAS, the row address strobe (Ul2-12). Two flip flops

(U13 and U25) then maintain HEMRAS in the low state for 2 clock cycles (408 nsec). The output of the second flip flop (U25-9) is the column address strobe, CAS. It lasts for one clock cycle (204 nsec) and fol- lows the leading edge of HEMRAS by 204 nsec subject to logic delays.

As with the refresh cycle generator, two 74LS74 D flip flops (U21) are used to extend the memory cycle to allow for RAS pre charge time. The output of the second of these (U21-5) resets HEM BUSY to the false state, thus ending the memory cycle.

MEMRAS is ted to a delay line (HP part I 1810-0384, 50 nsec delay, taps at 10 nsec intervals) where it is delayed 40 nsec to become R/C, the signal which determines which halt of the address is fed through the address multiplexers (see section 3.4.2).

(15)

Memory Controller REV JUN-23-81

3.9.5 MEMRAS is ANDed with BOARD SELECT the ORed with RFSH RAS to torm the row address strobe signal to the memory array (Ul4-11). CAS is used to latch data out; in addition, CAS is used to determine which module ot memory is being addressed. This is accomplished with a 74LS138, 3 to 8 line decoder. This decoder uses ADDR18 and ADDR17 at the address pins (Ul7-2,1) to determine which ot the tour memory modules is being ac- cessed. When the decoder is enabled by BOARD SELECT, a CAS at the other enable input (U17-5) produces a similar pulse at one ot four out- puts; this pulse is used as the column address strobe for the accessed module.

(16)

<

I

I

c..L.K

5 V"-,t... I.. ;:.

"

"" CoL K'

DON ... 6vt 'S

/ '

I

WKII~

~

IkJiERFAC.E

8QDRl'O

I

Arvo

i I

HOD KI7 '" i \ 'fLEe1

I

UlJ I"· v

I

I (i i((lJ. (\{('Y I

I I

\

I I

V BvA R .)

V

(J

SEU=:CT

wr

... 1

I /1

v IV

!

I

I

I

BLtS Df\1 A I I

k

/

6/ I

I

B/ "-

/ ~

/

/

dl

.::

7

/

ktS AOORESS

Li:xE..K

8/

REFRE'S1-1

I / AOD RESS

'\ I

G£l-E~p..(o«.

I .

'----.

1

l,.- I- i.-

-

/ iVI £ 11'\ oR Y ( '(CLE

I

I I

I

GEfJf

RI\10R. ,

I I

I

~

'"

I

RilS c..AS

- - - - ,I,-

'(

1~

j , tOu

tv"

J" I

[l{1 Em BUS\(

-

/

I

i

i

I

I

I i

I I

I i I

I

I

ili R E r= F< ES +i

, /

II~,E~ I

RtFRES~

CYCLE

GENe

RATO£.

FIGURE 1

02640-60252 BLOCK DIAGRAM JUN-23-81 13255-91252

(17)

I 5/1

, - - - -_ _ _ _ _ _ _ _ ~~;-q Ull p'-12~~/'1.~'£=I'1~R~A~5 _ _ ____j

~-o~~P~aN~--~~~--~~~---'---,,~~~--T----+---~--~----__ ~ __ ~~

U72 /..j2'1Lf_

PI-rt;>~R~£~G~---~~8~£Q

+SV I U71( ~R2

7'fALS~'I '(.71f

PI-X....-~~ v- ~

o

I I

I WI o

PI-V )~-=AD=DR=''''-b _ _ _ _ 'V _ _ _ ...LOO..Q

W I /1 RI

n/c Z A2.

2 ,413

PI-5

"511

RFSH

2 Al.

N ~~ I' fir

PI-21 I>.=--=O=---4.>---;-=c..---~

L '

'"'M=EM'-'=OR'"'"Y-:.C=rc=~£=__=(;=~=N=CIf=A""'TO=1I _ _ _ _ I

~ ~~'3 LSI~

L532

1~~~~=rD-~~=l- ____ ~---·s-v---~---_t---r_---

___________________

r_---J--_t---~BO~A~R~D~S~C,~L~CC~T~~~~~)

PI_I'f~ADD,.C; -'-"-~ , 2, USJ

'2- ~~ b - 2 A1

~Ab;;hR;/~o~---. ~--- ~ y~ ~ .. .---_+---+_---~_+---+_---+_---_+ _ _ _ ~ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ~

PHS I L532 ...- ~

P"/i,t;> AlJDRII ~ 8

PI-tt I> ADlJR'f ~ '---_ _ _ _ _ -L~ AD DR!

PI-6 PI-7t;>~A~DD~R~Z~ ~ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ .--'U·~7~4~---~---~---~---~---~r_---~---~~~~~~ ADDR2 t-'---::==;----i~ PI-N PI-n '(Ag~8Lfc-L~r---,

PI_] c:>-"'-S.:..:YS".,L.,..,L:..cK'--_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ r-t1 '

II,

cal

-Hr>=--~'-;---·--·---+----+---

I

I

I I

I

I

I I

If( R~

L I __ __

UlbI-9.<..-_ _ _ _ _ _ _ _ _ _ _ _ --+---f

ReFReSH CYCLe {.CNI!/MrOI!

2 1 U71f 7'fALSfI'I

PI-L P/-K I-:'---'!:~~--!:> "'-J

r---===='O----i·~P/-H F---""""====;;---!:>PI-F a,JI-"---==='---t:::> PI-€;

32-8 ROM

L -_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ ~R~r~~~s~M~LL~

________________________________________________________________________________________ ~tr~~~R~AS~

L-________________________________________________________________________________________ _ ________________________________ ~CO~U~N~T __ ~

NOTES:

I, ALL RUI.! TDRS ARC IN OHMS_

Z. VR3 INDICArES IVODE PI)LL£D TO 'SV THROV£.H VR1, A It RUISTOR • .3. "?jR£F£RS TO A IVODE OIV THE: TIMING DIAGRAM_

FIGURE 2

MEMORY CONTROLLER SCHEMATIC (PAGE 1)

JUN-23-81 13255-91252

(18)

~R£SH AL>DR~ MtlLM£m-1

I

GCNERATOR

I I

~B 2 - 1 8 RAM 7

( I / D~ (OUNT 'I t 104 ZQ£ 9 I I 'f 16 IIAI16 2GB 10 I 115 ClSS l5 RAMS lOA /I I ' " f'.>... 3 RAM'!

I

(J'fS IG (, I 16 V i l l i 1tAM3 ,~(. 5 I 1/1 , RAMi!

I

P<>2A /Q81'f I 18 IZ RAMI

¢

/QA [3 I 1/3 7 RltM~

I

Z 12 L5J93

I

I/WTr U . ~4

I ~1I6 II

i

i~70

II

L __

--.J

I

RESET

r

(1/ D3 T-

~~~u-______ ~I~L~~~~"~~R~A~M~'f~

I~

I

l 2S8 U7S

I

13 IS ~

D----'=~~---____;I:_'I..!...'fIDll15 RAN]

I 10 £1

=>---=:::=:==:::---7-' -"'-IS BffB 7 RAMI / I ~AI

RAM7

D--"""""!Z!!.---I;-.IO..jA2 d A 'I R",MtJ

L:::::. _____

...J

''fk~/BJT DYNAMIC RAM

RFSH

'016

GND

biN 2 IS CAS

W 3 1'1 DI

m If 13146

140 ~ 12 A3

A2 b /I A'f AI 7 10 AS' Vc< II ., A7

BUS 7

~

8llS6 BUSS i""::::oc::::"

BUS'1 i::>c:::::"

B()S3 i"::><::"

BU~2 r--

--

Bu.s! ;:::- :::

BUj~ ~

- -

~U'fJr ~_8

LS~

NOTE5:

t. ALL CAPRClTOR5 AftE IN f'r1C.ROFARADS, ALL RESISTOR5 ARE' IN OHMS_

2_ VR3 INDICATCS NOM PULLE:1J r(J ti"V TIII1OU611 ,(R3, A It RESISTOR.

3. V18-111 28-211 38-311 'f8-'0/ SS-Sll 68-'" 7tJ-711 , , - ' " ARC IDENTICAL .sOCkETS FOR '"K"" DYNAMIC RAM.

1(. All UNBL.J)'kED "ReUITRY 15 fI/fII!f.T OF THe I'1EMORT C.YCLE' 6CNCRATOR.

FIGURE 3

PI-N

Pf-,.,

PI-L PI-K PI-') PI-/-I PI-r PI-e

MEMORY CONTROLLER SCHEMATIC (PAGE 2)

JUN-23-81 13255-91252

(19)

ME.M RA~

~"'s TO MHI\O~Y O~ CONTIl.OL.L!~

C.A~

TO MeMO':'!' ON CONT~OL.Lcll.

RI=~

(ME.M &U~"I'''l)

IZF~i-I ?TALL

ll±!... __ _

I---~---~---,~ LI r--~~-~4rr_---_1»

..,:4.;..'.=-.JIc..lI.;..A.:::!..5::..:' __ 4 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ -'1 _ _ 1.02~ __ __ il

---I+---r-I+-+-S-74-.L~:~'-Iv.v=~~+-L-S-~-B-~-~-74---~1 J

I

1L-_7_0 __ -__ '~!\V~I~._?_~Z __ ._~_'1_2 ____ ~1!4~~~_'J~CA;~Ar-.7L7~7~S~+~S~II~2---i ~~==~-P-~-E-C-H-A-IZ-~-~---1~

... 204

"'I

---l-"1e - - -: h 511 r,7S-.JTI-;;;rn=--.. - = S = - = 7 : - : 4 - - - t - - - j J /

I I

\ I 1 I

~---~---~i __ ~--~--,

\ ~40!2~ ~40 ~ W

---~---

ll~l AL~'4-'" S: 12 , r " ' r - - - + - - - i , 1

l~'~~ _ _ _ _ _ _ _ _ ~~

\

I 4~-'ALS,.4 ... Lo;74 Ir_7~71_"Tj----t---iJ

\

.... 1 _S_s-_--'1_L_?_24_4_+ _L_~7_4 _ _ _ ~I,_4 _,,_ ~ Jl

rl~~z~J---~~

1 - - - + - - - .L-4.'5 -, CAS + l?I't. 1'2~9~Jr---~1

~ 112

---i

DIZ.lVE.12.

~"~:'OOM ,.. ' I ,,1:.0,";;: <£,j

DATA IN

~e7

-I

Acc.e",~ TIME. 1=12.0M I2.A':>

1~2.:::e'u...:A=L.:::~P~4~+.:::2_X.:...57_4_ ... _5~¢_e _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ -JI __ ~ __ j~tS74+5~8

IL2::.:"=-...,~A_L._S_'_¢_4_._L._5_'I_e _________ II_Z~ J AL. '" ~4 .. L5112

1L-~_-_-~i_A_L_':>_~_4_+_L._S_7_4 _ _ _ ~lr,_~~_~I'J-A~L~~~_~4~+~L~S-74~----~~

L'--...:;-5...:8'----.... '_l5_2_4_4_+_L.~_74 _ _ _ _ ,I_ ~"_ -' LS244 + LS74

NOTE,,):

I, ALL TIME'; IN ~ANO'>ECON~,

2. ... INDICAT!05 PIZOCE:~~O~ DELAY. ALL OTH~~ DE.L.A.Y~

ARE: DUe. TO ON~BOAIl.O LO~IC..

3. OuTPuT DATA LATCHE.D OI=F &OAR-D.

ll,. 'iZ./~ i~ IIIIEMI4A~ T"I<Ooo .. A DE.L.,l.Y LINE.:

IF IIIIEM12.A5 I':> ':>LOW, ';<./C WILL f'>E. 5LOW AND V15E.. VEl2.o::.A,

';. COLUMt-J ADDRE55 AVAILA~L!.:

24-,,~ AnE.R ,;u.s EARL.IE.';T,

4Zn~ AFTc~ I2.A5 LATE~T 0"-1 CONTROLLER f>OARD.

76n~ AHE.12. ';<.AS LATE5T 0'-1 ARRA"l' E>OAIl.O,

FIGURE 4

MEMORY CONTROLLER TIMING JUN-23-81 13255-91252

(20)

o

o

02640-60252-1

R£~EREtYCE OW65 ;

SCHEMATIC: D-02G4{)-/h02S2 - 5/ (52

BETWEEN T~RGETS IS 342. 90MM +.08MM (13.500 +.003IN)

ASSEMBLY DRAIJING

I.

2-08-82

NOTES;

UNLE 35 OTHERWI5E SF'ECIFIED:

ALL RESIST.4#CE IN fJHM5

ALL CAPAOTAlrCE IN MICROFARAf)S MARA DATE ('!JDE (OPER 33)

(AIIASK /1.:; iiV[)ICA,Ei.J PI?t{)R TO WAvE SDLDE:R.

ITEMS U41( U5/, /.J18, LJ/9, LJ28, U29, U38, U39, U48, U49, U58, U59, UIbB, Ll69, U7B, U79, UBB,A.ND U89 ARE NOT TO BE 1#5 TALL ED OR MASKED,

FIGURE 5

~-=======----=::---.. - -

(--- \ I '"

• C)

\ . .-7 ;1

II Ii

i! Ii Ii

o

o

MEMORY CONTROLLER COMPONENT LOCATION DIAGRAM

JUN-23-81 13255-91252

(21)

Replaceable Parts

Reference HP Part c Qty Description Mfr Mfr Part Number

Designation Number 0 Code

02640-602~:;2 4 RAM CONTROU._FR, PCA 28480 02640-602S?

Cl 0180·-2879 7 3 CAPACITOR-FXD 2?UF+50 ··10X <·:~W1)C AI.. 2134130 0100·_·2879 C~>' o 160-4~j57 0 3B CAPACITOI~"'FXD .1UF +-,20% SOVDC CER 16299 CAC04X7RI04M050A

C3 0160-4557 0 CAPAr:ITOR-FXD .1UF t··20" 50'J'OC CE.R 16~>'99 CAC04X7RI04H050A

C4 0160-4:':;57 0 CAPACITor~-FXD .1UF +"'20% SOVDC Cr.R 16299 CAC04X7RI04M050A

C5 0160-4~,57 0 CAPACITOR-·FXI> .1UF -to .. ·<!O" 50V'OC CE'R 16:'.99 CAC04X7RI04H050A C6 o 160-4~j57 CAPACITOR-FXD .1UF +·_·20::1. 50VDC CER 16299 CAC04X7RI04M050A

C7 11160-4557 CAPACITOR·_·FXD .1UF t···20" 50VDC CER 16;''.99 CAC04X7RI04H050A

Cf.J o 160-4~j57 CAPACITOR-FXD .1UF + .... 20" 50VDC CER 16;?99 CAC04X7RI04MD50A

C9 0160--4557 r:APACITOR-TXD .1UF t···20:1: 50VDC CER 16299 CAC04X7RI04H050A

C10 o 160-4~:;57 CAP AC ITOR -F XD .1UF +·-·20" SOVDC CER 16?99 CAC04X7R104M050A Cll 0160-4557 CAPACITOR .. FXD • 'IUF + .... ;:!II" SOV'OC CER 16299 CAC04X7R104H050A

C12 0160-4:':;57 CAPACITOI~ -FXD .1UF +-·20" 50VDC CER 16299 CAC04X7RI04M050A

C13 0160-4557 CAPACITOR-·FXD .1UF +,,20" 50'JDC CE.R 16299 CAC04X7RI04H050A

C14 0160-4557 CAPACITOR -FXD .1UF +-,20" SIlVDC CER 16299 CAC04X7RI04M050A

C15 0160--4~;57 CAPACITOR-FXD .1UF t·_·<.!O'X 50'JllC CER 16;:.~99 CAC04X7RI04H050A C16 o 160-4~j57 0 CAPACITOR-FXD .1UF + .... 20::1. SIlVDC CER 16299 CACIl4X7R104M050A C17 11160-4557 0 CAPACITOR-FXI> .1UF -t .... 20" 50'JI>C CER 16::!99 CAC04X7R104H050A

C18 0160-4:7;57 0 CAPACITOR-FXD .1UF + .... 2 or. SOVDC CER 16299 CAC04X7RI04M050A

C19 0160-4557 0 CAP j!.C I TOR -.. FXI> .1UF t .... ::!O" 50V'OC CER 16<.'99 CAC04X7Rl04H050A

C;?O 0160-4S57 0 CAPAC ITOR -F XD .1U. +-20" SOl-'DC CER 16299 CAC04X7RI04M050A

C21 0160-4557 CAPAr:ITOR --FX'O .1UF ~""20'X 50'.'ilC CE.R 16299 CAC04X7RI04H050A C;:~2 0160-4S57 CAPACITOR-FXD .1UF + .... 20" 50VDC CER 16299 CAC04X7Rl04MOSOA

C23 0160--4557 CAPACITOR-FXI> .1UF t···20" SO'JDC LE.R Ih299 CAC04X7RI04HOSOA

C;''.4 0160-4557 CAPACITOR·-FXD .1UF +·-·20" 50VDC CER 16::!99 CAC04X7RI04M050A

C25 11160--4557 CAPACITOR-rXll .1UF +'''20'X SOVDC CER 16;::99 C~C04X7Rl04HOSOA

C~>'6 o 160-4~;57 CAPACITOR-FXD .1UF +,-20" 50VDC CER 16299 CAC04X7RI04M050A C27 0160·-4557 CAPAr;ITOR-FXI> .1IJF +,,23" 50'JDC CE.R 16<'.99 CAC04X7RI04H050A

C;;'.8 o 160-4S57 CAPACITOR-FXD .1UF +·_·20r. SOVDC CER 16f.~99 CAC04X7R104M050A

C29 0160--4557 CAPACITOR-FXil .11JF ·~""20r. 50'.'I>C CER 16<.'99 CAC04X7RI04H050A C:~O 01(,0-4557 CAPACITOR-FXD .1UF +·_·20" 50VDC CER 16299 CAC04X7RI04M050A C31 0160-4557 CAPACITOR-FX'O .1UF +",20" 50'.'ilC CER 16<"99 CAC04X7R104H050A

C:52 0160-4::;57 CAPACITOR-FXD .1UF +·_·20" SOVDC CER 16299 CAC04X7RI04M050A

C33 0160--4557 CAPAC I TOR -rXI> .1UF t· .. 20" 50VDC CE.R 16<~99 CAC04X7RI04HOSOA

C34 0160-4::;57 CAPACITOR-FXD .1UF +,-20" S(lVDC CER 16299 CAC04X7RI04MOSOA

C35 0160-4557 CAPACITOR-TXD .11.lF +·,20" 50VDC CE.R 16299 CAC04X7R104H050A

C:56 0160-4::;57 0 CAPAC I nw -FXD .1UF +·_·20% 50VDC CER 16299 CAC04X7RI04M050A

C37 0160--4:7;57 0 CAPACITOR-FXI> .1UF +,,20" 50'JDC CER 16,!99 CAC04X7RI04H050A

C38 o 160-4~;57 0 CAPACITOR-FXD .1Ut +-20r. SOVDC CER 16299 CAC04X7R104M050A C39 0160-4~;57 0 CAPAr:ITOR-FXD .1UF -t·-20" 50'.'DC CER 16,:99 CAC04X7Rl04H053A C40 0180-21379 7 CAPACITOR-FXI> 22l.JF+50-10'X 2~,VI>C AI.. 284BO 0180 '-2879 C41 0180 -·2879 7 CAPAClTOR-FXI> 2<.'UF+50"·10r. 2~;VDC /!,L 28480 0180-2879

R1 0683-1025 9 4 RESISTOR 11( 5i:' . . 25W FC TC=·-400/+f.,OO 01121 CHl025

R2 0683-4725 2 3 RESIGTOR 4.'?K ~J~ .25W FC TC=--400/+700 01121 C94725

R3 0683-1025 9 RESISTOR 1K S% .2SW FC TC=-400/+600 01121 CB1025

R4 11310-0322 9 5 NETWORK -·RES Il·~np20. 0 OHM X 4 01121 40139200J

R~5 0683-1025 9 RESISTOR lK 5X, .25W FC TC=--400/+600 01121 CBI025

R6 0683-4715 0 REGIGTOR 4'70 ~j% ,2~;W FC TC=·400/+600 01121 eB4715

R7 1810-0:322 9 NETWORK·-REG B-SIP20.0 OHM X 4 01121 40f.lFl200J

R8 1810-,,0322 9 NETWORK·_·RES 0 ·~3IP20. 0 OHM X -4 31121 4089200J

R9 0683'-4'725 2 RESISTOR 4.7K ~jl't .25W Fe TC=-40 0 /'~70 0 01121 CF.l47:?5 RI0 0683-4725 2 RESISTOR 4. '?K !"iX . 2!':',W FC TC=·-40 0/+70 0 01121 C94725

Rl1 un 0-0322 9 NETWORK '-R E~:; 8· .. 8YP20.0 OHM X 4 01121 4CBFl200J

R12 1810-0384 3 DEl. AY L.INE TOTAl. DELAY: 50 NS <TAPS AT 01961 20666

R13 H110-0:322 9 NFTWORK·-RES 881P20 • 0 OHM X 4 01121 4013F.1200.T

R14 0683"'1025 '7 RESISTOR 11( ~,% ,?5W Fe TC=-400/~600 (l1121 CItl025

R1S 06B3-2;;!05 9 ;~ RFSISTOR 2;~ 5i!. ;~~jW FC TC=-AOO/+500 011?1 CFt2205

R16 06133-,2205 9 RESTf:>TOR 2;>. :';% . ~.~~iW FC TC=-AOO/I'500 ()1121 CB2~~n5

TP1 0:360-0S35 TERMINAl.. TFST POINT PCB 00000 ORDER BY Dl'nCRIPTION

ll12 1820--0606 9 1 IC GATE TTL. S ANI) TPI... 3 .. HIP 01295 !:;N74!311N

1.I13 H120-1112 8 4 IC FF TTl. LS D .. ·TYPE PllS"-[DCF:--TR Ie 01295 SN'74LS74AN

1.J14 18<.'0'-1367 5 1 IC GATE TTL. B ANI) QUAI> 2 HIP 01295 !3N74S08N

1.115 H120-1449 4 1 Ie GATE TTl. S Ot? QUAD 2"·JNP 01 ;:'95 8N'74832N

L116 11320-1201 6 2 IC GAlE TTl. l.B j!,NI> QUAD ;., ",I'll' 31295 SN74LS08N 1.I17 1f:120-1216 3 Ie DenR TTI_ L8 3 ·TO .. ·-8 .. ·LJNF 3"-INP 01295 SN'741.8138N

U21 1020-·1112 8 IC FF TTL LS 1)., YPl'. POS-··EDGE"·TRT.G 01295 SN74LS74AN

1.I22 1020-1989 7 ., IC CNfR TTl... LS BIN DUAL 4 .... BIT 07263 741..8393PC

1J23 18i.'0··1112 8 IC FF TTI._ I .. S 1)-., YPt:: POS-E.DCE-.. TRIG 01i'.95 SN741..S74AN U24 1f:l;~0-1112 8 Ie FF TTL l..S D-TYPE pnS-'ED(~E:-TRIG 01:'.95 SN'74L87-4AN

(22)

Reference HP Part c Qty Designation Number 0

1.)25 1820····0629 0

1.126 11:120-1212 9 2

1.)27 1820-2102 8

1.142 1£:120-0682 5

1I43 1820'-'11'n 9

1.144 1820-1212 9

\J4!'i 1820-1989 7

1I46 1820-2024 3 3

LJ52 1820-·0693 B 2

l.I53 18;,!0-1202 7

US4 1820-,1201 6

l.I::iS 1820-2024 3

U56 18i.'O-1208 3 2

1.I71 1820-0693 8

U72 1820-,2024 3

l.I73 1820-1~~08 3

U74 1820-2634 1

U7S 1f.120-1439 2 2

LJ76 1820·_·1439 2

1'!!':i1·-0697 5 2

ei180-0192 16

Table 6-3. Replaceable Parts

Description

IC FF TTL S J"K NEG-"EDGE .. ·TR IG Ie FF TTL LS J'-K NFG-FDGE-"TR IG Ie LCH TTL LS D-·TYPE DCll..

Ie GATE TTL 8 NAND QUAD 2 .. INP IC GAlE TTL l..8 NAND QUAD 2--tNP Ie FF TTL L8 J"-K NFG"-EDGF"-TRIG tC CNTR TTl.. L8 BIN DUAL 4-InT IC DRVR TTL LS l.INE DRVR oeTL IC FF TTL S D-.. TYPE POS-·EDGE-·' RIG IC GATE TTL l.S NAND TPL 31NP IC GATE TTl .. l..S AND QUAD 2 .. ·INP IC DRVR TTL l..S LINE DRVR OCll..

TC GATE TTl.. L8 OR QUAD 2 .. 1NP Ie FF TTl ... 8 D·-TYPE P OS"-['OGE'-TR I G IC DRVR TTL LS I..INE DRVR OCTl_

Ie GATE TTL L8 or~ QUAD 2 .. -JNP IC INV TTl.. AL8 HEX

IC HlJXR IDATA·-SEL TTL LS 2 .. TO-1-'LINE IC MUXR/DATA .. ·SFI.. TTl.. 1..8 2"T()--1-1.1NE

MH1CEU.ANEOl.IS PARTS EYEI..JT JUMPER

RAM·- 64K

Mfr Code

n1295 01;"95 01295 01295 01295 01295 07263 01295 01295 01295 01295 01295 01295 01295 01295 01295 01295 01295 31295

,'8480 28480

Mfr Part Number

HN74S11?N SN74L5112AN 5N7·4L5373N SN74S03N SN74LSOllN SN74L5112AN 741 .. S393PC 8N74LS244N SN74574N SN'74LS10N SN74L808N 8N74L.5244N SN741..832N 8N74S74N 8N74L5244N SN'74L532N SN74AL804N SN'74LS258AN SN741.S258AN

1251-,0697 5190,-0192

(23)

HFR ZIP

NO. MANUFACTURER NAME ADDRESS CODE

00000 ANY SATISFACTORY SUPPLIER

01121 ALLEN-BRADLEY CO MILWAUKEE WI 53204

01295 TEXAS INSTR INC SEMICOND CMPNT DIV DALLAS TX 15222

01961 PULSE E,NGINEE1IING INC SAN DIEGO CA 92111

04'713 MOTOROLA SEMICONDUCTOR PRODUCTS PHOENIX AZ 85008

07263 FAIRCHILD SEMICONDUCTOR DIV MOUNTAIN VIEW CA 94042

16299 CORNING GLASS WKS COMPONENT DIV RALEIGH NC 2'7604

19701 MEPCO/ELECTRA CORP MINERAL WELLS TX '7606'7

24546 CORNING GLASS WORKS (BRADFORD) BRADFORD PA 16'701

28480 HEWLETT-PACKARD CO CORPORATE HQ PALO ALTO CA 94304

34344 MOTOROLA INC FRANKl.IN PARK IL 60131

343'71 HARRIS SEMICON DIV HARRIS-INTERTYPE MELBOURNE FL 32901

34649 INTEL CORP MOUNTAIN VIEW CA 95051

50088 MOSTEK CORP CARROLLTON TX '75006

555'76 SYNERTEK SANTA CI.ARA CA 95051

56289 SPRAGUE ELECTRIC CO NORTH ADAMS MA 0124'7

9163'7 DALE El.ECTRONICS INC COLUMBUS NE 68601

Références

Documents relatifs

MEMORY WRITE COMMAND: active low signal to instruct the memory subsystem to read the data present on the data bus.. MEMORY REFRESH REQUEST:

• Processor card (CPU) timing diagram Buffered PROM board block diagram • Buffered RAM memory card block diagram • Refresh buffer card block diagram.. Refresh

The Am97/0000 Series boards are single board MUL TIBUS memory systems that include a memory array, refresh logic, parity generator and checker, two latching

When the Address inputs have been stable for the worst-case (longest) value of tAA and Chip Select has been active for the somewhat shorter worst- case value of tACS, the data

The 7707 comprises seven functional elements: bus buffers; memory support, management, and access logic; dynamic memory array; refresh timer; and parity logic.. STD

The converted point is then translated into the following refresh code and loaded into memory at the location specified by the refresh address register... The

We use the term full refresh to denote a refresh in which all available judgments are used in training and relevance likelihood scores for all the documents are calculated..

The first step of our design flow for dynamic address se- quencer generation is the data flow graph annotation: this annotation step aims to handle the timing requirements for data