• Aucun résultat trouvé

Check - mate

N/A
N/A
Protected

Academic year: 2022

Partager "Check - mate "

Copied!
4
0
0

Texte intégral

(1)

MATh.e .JEANS - “Bogdan Petriceicu Hasdeu” National College, Buzau, Romania Lycée François Arago, Perpignan, France

page

Cet a ti le est dig pa des l es. Il peut o po te des ou lis et i pe fe tio s, auta t ue possi le sig al s pa os ele teu s da s les otes d' ditio .

Check - mate

A e –

Students: MACOVEI Nicolae-Cristian, NICOLAE Mario-Alexandru, VOICILĂ Tristan-Ştefan (8th Grade), MASSIF Damien, ANGLADE Cassandre, GOURBIERE Yohan (1ère S), GIRARDIN Lila, PELTIER Maelys (1èreL).

Schools: “Bogdan Petriceicu Hasdeu” National College, Buzau, Romania Lycée François Arago, Perpignan, France

Teachers: Melania NICOLAE, Marie DIUMENGE, Christelle QUERU

Researchers: Robert BROUZET (Université de Perpignan), Bogdan ENESCU

The subject:

When you play the chess, a king can attack any piece placed in an adjacent square, either horizontally, vertically, or in diagonal. Find the number of ways in which non-attacking kings can be placed on a chess board.

The solutions found:

We have to prove that we can place + , for ≥ non-attacking kings on a chess board, were „non-attacking kings” means that the kings are not attacking each other.

I. First method(1).

We divide the chess board in n squares of the type 2x2.

First, we place the kings on the first column for each square. For every square we have two possibilities to put the kings in this way. The number of the cases is · ∙ ∙ … .∙ =

………

……….

Then, we move the king which is placed on the last square on the second column.

We have · ∙ ∙ … .∙ = possibilities, too.

………

……….

After we have done that we also move the king from the (n-1)th square on the second column.

Again, we will have · ∙ ∙ … .∙ = possibilities

………

……….

(2)

MATh.e .JEANS - “Bogdan Petriceicu Hasdeu” National College, Buzau, Romania Lycée François Arago, Perpignan, France

page

We will repeat this method until every king from each square will be placed on the second column. We will also have solutions.

………

……….

So, for every case we have possibilities. There are n+1 cases, so we have ∙ � + ways to place n non-attacking kings on a chess board.

II. Equation of induction(2)

We name the number of possibilities for placing kings on a board.

We want to find an equation between , �+ �+ .

The total number of cases for + kings is �+ ∙ , including the cases in which the kings attack each other, because for each way we place the first + kings we can place the + th in 4 different ways:

We have to consider the cases in which the (n+1)th king and (n+2)th king attack each other.

For each way we place the first n kings in cases, we have 4 ways to place the last two ones so that they attack each other, because the (2n+2)th king will attack the (2n+3)th king(3).

1 2 ….. 2n+2 2n+3 2n+4

1 … •

2 …

1 2 ….. 2n+2 2n+3 2n+4

1 … •

2 …

1 2 ….. 2n+2 2n+3 2n+4

1 …

2 … •

1 2 ….. 2n+2 2n+3 2n+4

1 …

2 … •

1 2…..2n+1 2n+2 2n+3 2n+4

1 … • •

2 …

1 2…..2n+1 2n+2 2n+3 2n+4

1 … •

2 … •

1 2…..2n+1 2n+2 2n+3 2n+4

1 … •

2 … •

(3)

MATh.e .JEANS - “Bogdan Petriceicu Hasdeu” National College, Buzau, Romania Lycée François Arago, Perpignan, France

page

So, we have to substract ∙ (the number of cases in which the kings attack each other).

Therefore, the number of ways we can place n+2 kings is

�+ = ∙ �+ − ∙ ⇒ ��+ = � ∙ ��+ − �

III. Second method(4)

We can place a king in any row: (1,1), (1,2), (2,1), (2,2) ⇒ � � � �

We can place two kings in 12 ways, and no attack: (1,1) and (1,3), (1,1) and (1,4), (1,1) and (2,3), (1,1) and (2,4), (1,2) and (1,4), (1,2) and (2,4), (2,1) and (1,3), (2,1) and (1,4), (2,1) and (2,3), (2,1) and (2,4), (2,2) and (1,4),(2,2) and (2,4).(5)

We want to prove that : = ∙ + is true, where is the number of possibilities which n kings are not attacking each other, can be placed on a chess board ∙ :

: = ∙ + = possibilities : = ∙ + = possibilities

and are true We suppose that and + are true, ∈ ℕ\{ }

: = ∙ + possibilities (1)

+ : �+ = �+ ∙ + possibilities (2) We want to demonstrate that + is true, ∈ ℕ\{ }

+ ∶ �+ = �+ ∙ +

We know that �+ = �+ ∙ (**) We are replacing (1) and (2) in (**) ⇒

�+ = [ �+ ∙ + − ∙ + ] ∙ ⇒

�+ = ∙ + − − ∙ ⇒

�+ = ∙ + ∙ ⇒

�+ = �+ ∙ + , ∈ ℕ\{ } ⇒

⇒ + � ∈ ℕ\{ } ⇒ � ∈ ℕ\{ }

(10)

IV. Third method(11)

We know that: =4 and =12 and �+ = ∙ �+ − ∙ , ≥

�+ − ∙ �+ = ∙ �+ − ∙

� ∶ ��+ − ∙ � = �, ≥ ⇒ �+ − ∙ �+ = �+

⇒ ��+ = ∙ �, ≥

If = ⇒ = − ∙ = − = ⇒ =

= ∙ �− = ∙ �−

�− = ∙ �− ⎸ ∙ ⇒ ∙ �− = ∙ �−

�− = ∙ �− ⎸ ∙ ⇒ ∙ �− = ∙ �−

.

1 2 1 2

1 2 3 4 1

2

(4)

MATh.e .JEANS - “Bogdan Petriceicu Hasdeu” National College, Buzau, Romania Lycée François Arago, Perpignan, France

page = ∙ ⎸ ∙ . �−�− ∙ = �−

Summing these equations, we will have:

= �− ∙ , where = ⇒

= �− ∙ ⇒ � = �+ , ≥

So , �+ − ∙ = �+�+ = �+ + ∙

= ∙ �− + = ∙ �− +

�− = ∙ �− + �− ⎸ ∙ 21 ⇒ ∙ �− = ∙ �− +

�− = ∙ �− + �− ⎸ ∙ 22 ⇒ ∙ �− = ∙ �− + ..

= ∙ + ⎸ ∙ �−�− ∙ = �− ∙ + Summing these equations, we will have:

= �− ∙ + ∙ − ⇒ = �− ∙ + − ⇒

= �− ∙ + ⇒ � = ∙ � + , � ≥

Notes d’édition

‘athe : Fi st o putatio ‘athe : I du tio elatio ship ‘athe : + a d +

This is ot a di e t p oof of the o putatio of pa t I as o e a e usi g the e u e e elatio of Pa t II.

O e ould oti e that the o putatio ade i pa t I do ot sho that all the ases a e des i ed this a , so e a ot e su e that the pa t I o pute all ases.

The pa t II ill e useful to get a o plete a s e of this p o le .

As a o lusio , o e e pe t that the alue of a is the sa e as the u e hi h is o puted i pa t I. This is the goal of pa t III.

This ase is ot e useful, a d does ot e plai h all the ases a e des i ed. The i e e pla atio i pa t ould e used i stead.

So e eda tio al e a k : e ha e to e a little it o e a eful : fi st hoose k i N*, the suppose pk a d p k+ .

This is useless

These p e eedi g sig s a e useless

We should ite: the p k+ is t ue. The efo e, e ha e sho that p is t ue fo all i N*

A o lusio ould ha e ee i e. The p o le i t odu ed at the egi i g. It should e i te esti g to thi k a out o e ted uestio s.

Fo e a ple, hat happe s if e ha ge the fo of the hess oa d, a d take a s ua e? What happe s ith k ights i stead of ki gs? …

This pa t is deali g ith te h i al o putatio s. The e is o ge e alizatio eithe so e othe o e t a out e te sio of this p o le . This ould e o do e the eade .

Références

Documents relatifs

″Animation.html″ : cette page est créée avec un logiciel d’animation, elle contient des interpolations de mouvement des caractères représentant la phrase Lycée Secondaire

– On appelle javacc  sur ce fichier pour créer un fichier MaClasse.java avec un programme Java d’analyse du langage, ainsi que divers fichiers annexes.. – On appelle javac sur

Melania NICOLAE Collège National “Bogdan Petriceicu Hasdeu” de Buzau, Roumanie Researchers : Robert BROUZET, Bogdan

Find a way to cut a circular pizza into 12 congruent pieces so that at least a piece of the 12 does not contain a margin.. A restaurant offers pizza with”1001 different combination

Le jeu du tir au but est un jeu qui se joue ` a deux joueurs : un gardien qui peut choisir de plonger soit ` a droite, soit ` a gauche, et un tireur qui peut tirer soit ` a droite,

Par exemple le pouce peut d´ ecrire les phalanges des autres doigts et on peut ainsi compter jusqu’` a 12 sur une seule main.. Certains ont invent´ e des fa¸cons de compter jusqu’`

Les deux groupes ayant travaillés sur un même sujet font une présentation commune de leurs recherches. Une présentation dure 15

Panneau format sucette situé dans le hall des arrivées / tapis bagages Panneau N°209. Format 2m² (1,20 x