• Aucun résultat trouvé

The duals of Bergman spaces in Siegel domains of type II

N/A
N/A
Protected

Academic year: 2021

Partager "The duals of Bergman spaces in Siegel domains of type II"

Copied!
47
0
0

Texte intégral

(1)

THE DUALS OF BERGMAN SPACES IN SIEGEL DOMAINS OF TYPE II

Anatole TEMGOUA KAGOU

Abstract : In every homogeneous Siegel domain of type II , for some real number p0 > 2,

we characterize the dual of the weighted Bergman space Ap r, when 1 £ p < p0 . In the

symmetric case, we also characterize the dual of

A

p r, with p1 < p < 1 for some p1Î (o,1),

and extend this to two homogeneous non symmetric Siegel domains of type II.

Résumé : Dans les domaines de Siegel homogènes de type II, nous caractérisons le dual de l'espace de Bergman avec poids Ap r, , lorsque 1 £ p < p0 , où le nombre réel p0 dépend du

domaine. Dans le cas où le domaine est symétrique, nous caractérisons également le dual de Ap r, lorsque p1 < p < 1 , avec p1Î (o,1) , et nous généralisons ce résultat à deux

domaines de Siegel homogènes et non symétriques de type II.

I. INTRODUCTION.

Let D be a homogeneous Siegel domain of type II. Let dn denote the Lebesgue measure on D and let H(D) be the space of holomorphic functions in D endowed with the topology of uniform convergence on compact subsets of D. The Bergman projection P of D is the orthogonal projection of L2(D, dn) onto its subspace A2(D) consisting of holomorphic functions. Moreover, P is the integral operator defined on L2(D, dn) by the Bergman kernel B(z, z) which, for D, was computed in [G].

_________

1991 AMS Subject Classification : 32A07, 32A25, 32H10, 32M15.

Keywords : Siegel domain of type II, weighted Bergman space, Bergman kernel,

Bergman projection, Bloch space.

(2)

Let r be a real number. Since D is homogeneous, the function z B(z , z) does not vanish on D, we can set:

a

(

D,B ( , )d ( )

)

L ) D ( Lp,r = p -r z z n z , 0 < p < ¥ .

Let p be a positive number. The weighted Bergman space Ap r, (D) is defined by Ap r, (D) =Lp r, ( )D ÇH D( ).

If r = 0, then Ap r, (D) is simply denoted Ap(D).

The weighted Bergman projection is the orthogonal projection of onto A . It is proved in [BT] that there exists a real number such that = {0} if e £ e and that for ,

P

is the integral operator defined on by the weighted Bergman kernel . In all our work, we shall assume that .

P

e eD e + L2,e( )D A2,e L2,e( )D e > D 2,e( ) ) eD< 0 D ( eD D e >

c B

e 1 e

z

z

( , )

The "norm"

.

p r of (D), with , is defined by:

, A p r, r D > e , p / 1 D ) z ( d ) z , z ( r B p ) z ( f r , p f ÷ ÷ ø ö ç ç è æ ò - n = fÎ

A

p r, (D).

Let r be a positive integer. S.G. Gindikin [G] has defined a differential polynomial

L

r in D that satisfies the property:

(z , z Î D) .

Lr z z r r z

æ

èç öø÷ B( , )z =c B1+ ( , )z

A holomorphic function g in D is said to be a Bloch function in D if g satisfies the estimate:

g

g z B

z

z D z *

=

sup (

ìí

î

)

( )

( , )

üý

þ

< ¥

Î

-L

r r

z

.

(3)

B r={Bloch functions}/N.

For p ³ 1, the space (D) is the quotient space by N of the space of holomorphic functions g in D satisfying the estimate

C

r,rp ¥ < ÷ ÷ ø ö ç ç è æ n -r L r -ò = r p / 1 ) z ( d ) z , z ( r B p ) z ( g ) z , z ( B D ) D ( p r , C g .

For r = 0, the space Cr,rp (D) is simply denoted C (D). rp

In the upper half-plane, p+ = {z ÎC : Im z > 0}, R. Coifman and R. Rochberg proved the following fact: the dual of the Bergman space A1(p+) coincides with the Bloch space of holomorphic functions in p+, and can be realized as the Bergman projection of L¥ (p+). A few years later, D. Békollé in [B4] carried out the same study on symmetric Siegel domains of type II. In fact, he proved that for homogeneous Siegel domains of type II associated with self-dual cones, the dual space of A1 coincides with the Bloch space of holomorphic functions, and for symmetric Siegel domains, this space can be realized as the Bergman projection of L¥. On the other hand, for bounded symmetric domains, K. Zhu ([Z] and [Z1]) studied the dual of the Bergman spaces Ap with small exponents (0 < p < 1) and obtained that their dual is equal to the Bloch space.

Furthermore, in [B6] , D. Békollé proved that when p Î (4/3 , 4) , the dual of (R

Ap 3+ iG) , where G is the spherical cone in R3

,

is equal to Ap'(R3 + iG) ( p' is the conjugate exponent of p ) and when p Î (1 , 4/3] , the dual of Ap(R3 + iG) coincides with the space Crp' (R3+ iG) with r = 1.

(4)

The purpose of this work is to extend these results to the weighted Bergman space (D) , 1 £ p < p

Ap r, 0, in homogeneous Siegel domains of type II, where p0 is a real

number greater than 2 and depends on the domain D ; when D is symmetric, we also show that the dual of Ap r, (D) , p1 < p < 1 , where p1depends on D , is equal the Bloch space.

This latter result is also true for two non symmetric domains.

The first aim of this work is to show that there exists r0> 0 such that whenever r > r0 ,

1° when D is homogeneous and 0 < p £ 1 , B r is isomorphic to a subspace of the dual space

(

Ap r, (D)

)*

of Ap r, (D) and the two spaces are isomorphic when p = 1 ; 2°

the two spaces are equal when p1 < p < 1 when D is symmetric, and the same is true for two particular non symmetric domains.

To show the first claim , let g be in B r and consider the linear functional j on (D) defined by Ap r, ) z ( d ) z , z ( p r 1 1 B ) z ( f ) z , z ( B D( )g(z) ) f ( n + -r -ò Lr = j

(

fÎAp r, (D)

)

. Since n <¥ + -ò p (z,z)d (z) r 1 1 B Df(z) Ap r,

for all f Î (D), it follows that j is bounded, hence belongs to ( (D))*and is represented by g .

Ap r,

Conversely, assume p = 1 . To obtain B r =

(

A1,r(D)

)

*

,

let j Î

(

A1,r(D)

)

*

;

then there exists b Î L¥(D) such that ) z ( d ) z , z ( r B ) z ( f Db(z) ) f ( =ò - n j , fÎ A1,r(D) . Since f(z)=cr,ròDB1+r+r(z,z)f(z)B-r-r(z,z)dn(z), if we set

(5)

, ) ( d ) , ( r B ) ( b ) , z ( DB1 r , r c ) z ( g = rò + +r z z - zz nz we easily get : ) z ( d ) z , z ( r B ) z ( f Dg(z) ) f ( =ò - -r n j .

In fact, since r > r0 , g is a holomorphic function on D satisfying the estimate

{

}

sup ( ) ( , ) . z D g z B z z c b Î - £ ¥ r

On the other hand , by a lemma of Trèves [Tr], there exists . Let h be the equivalence class of all holomorphic solutions of this equation. Then h belongs to B , and the equality

~ ( ) ~ hÎH D such that Lrh=g r ) z ( d ) z , z ( r B ) z ( f D h(z) ) f ( =ò Lr - -r n j

yields the equality

(

A1,r(D)

)

*

=

Br.

We next assume that 0 < p < 1. Let us now define two homogeneous Siegel domains D0 and D1. Set

V0

=

l l l l l l l l l l l l l l l æ è ç ç ç ö ø ÷ ÷ ÷ - - > > > ì ï î ï ï ü ý ïï þ ï ï 11 12 13 12 22 0 13 0 33 11 12 2 22 13 2 33 0 22 0 33 0 : , = í ï ,

.

Observe that V0 is a non self dual cone of rank 3. Define D0 by D0 = R 5

+iV0 . Then D0 is

a homogeneous,non symmetric, tubular domain. On the other hand, D1 is the first example, due to Piateckii- Chapiro , of a homogeneous non symmetric Siegel domain of type II, and

is defined as follows. Let V1 =

(

)

ï ï þ ïï ý ü ï ï î ïï í ì > l l -l > l Î l l l = l 0 22 2 12 11 , 0 22 : 3 R 22 , 12 , 11 be the

45

(6)

spherical cone in R5, and consider the V1 - Hermitian form F1 in C defined by

(

)

F C C C u v uv 1 3 0 0 : ( , ) , , . ´ ® a Then D1 = ( , )z u C C : z z ( , ) . i F u u V Î ´ - - Î ì í ï îï ü ý ï þï 3 2 1

The restrictions on D, p and r are as follows : D is either a symmetric Siegel domain of type II, or D = D0

,

or D = D1 . Then there exists p1 Î (0,1) such that for all p Î ( p1 ,1) , we have

(

A

p, r

(D)

)*

Ì

B . Here are the main steps of the proof. Let j be an element of

(

A

r

p, r

(D)

)*

and set a = rp + r+1 , with r large enough. Let f Î Ap, r(D). Then, in view of the molecular decomposition theorem [BT1] , there exists {li }Îl

p such that f z B z z B z z i i p i r p i i ( )=å ( , ) ( , ) + -l a 1 a ,

where {zi} is a lattice in D. Then we get

j j a a n ( )f = òD (B p(., ) ( )z f z B p z z d z( , ) ( ) -1 .

(7)

. function Bloch a by d represente is Hence . of choice the by ) z (., p B ) z ( g that such g exists there , Trèves of lemma same the by then , c holomorphi is ) z (., p B ce sin , Now j a ÷ ÷ ÷ ÷ ø ö ç ç ç ç è æ a j = r L r Î ÷ ÷ ÷ ÷ ø ö ç ç ç ç è æ a j B

To go further, let . Take r large enough ; then the function satisfies the estimate

hÎL¥( )D ) ( d ) nz ( h ) , z ( B ) z ( G za =òD 1+r z z

{

}

z D G z B z z c h Î -¥ £ sup ( ) r( , )

and G is holomorphic in D. Hence, by the same lemma of Trèves, there exists a function gÎ B r such that

(1) (Lr)g=G.

Now, let P be the operator from into B r which to each assigns the

element g = Ph defined by (1). This operator P is called "Bergman projection" of

into B for the following reason : although P is not the integral operator P which is associated with the Bergman kernel B(V , z) , which has no meaning on , it is easy to show that for , the element Ph of B r can be represented by Ph .

L¥( )D hÎL¥( )D

L¥( )D

L

¥

( )

D

r

hÎL2ÇL¥( )D

The second aim of this paper is to show that the "Bergman projection" P is bounded from onto B r . In order to achieve this goal, we prove that for each real number r sufficiently large and for each GÎH(D) such that

L¥( )D

(8)

{

}

z D G z B z z Î - < ¥ sup ( ) r( , ) , one has the reproducing formula :

(zÎD). G( )z =cròDB1+r( , ) ( )z z G z B-r( , )z z dv( )z

Hence, for each g ÎB , if we set , then hÎ and Ph = g.

r h z( )=(Lr) ( )g z B-r( , )z z L¥( )D

The third aim of this work is to determine on a particular Siegel domain D2of type

II, a kernel K(V , z) that determines P in the following way : for each hÎL¥(D2 ) , a

representative of the element Ph of B is given by the function . D. Békollé has determined such a kernel K in three different Siegel domains of type II, namely, the Cayley transform of the unit ball in C

r

ò z n

za DK( ,z)h(z)d (z)

n

[B1], the

tube over the spherical cone ([B2] and [B3] ), and finally, the tube over the cone of

symmetric positive-definite matrices [B5] . The domain we consider is

ïþ ï ý ü ïî ï í ì Î -Î = ´ u u V i 2 z z : M M ) u , z ( D * * 2 , r 2 2 ,

where M2 (resp. Mr,2 is the set of complex matrices of order 2 (resp. with r lines and 2

rows) , and V the cone of Hermitian positive-definite matrices of order 2. We determine a kernel B0 such that

(2) (B-B0)((z,v),(z,u))ÎL1(D2,dn(z,u)) ((V , v) Î D2 );

(3)

( )

Lr zB0(( , ), ( , ))zv z u º0 . Thus Ph can be represented by :

(9)

Ph( , v) = D (B - B0 (hÎ L

2

z ò )(( , ),( , )) ( , )zv z u h z u dn( , )z u ¥(D2 )).

Unfortunately, for Siegel domains of type II associated with cones of rank greater than 2, the determination of a kernel B0 such that (2) and (3) simultaneously hold seems out of reach.

The fourth aim of this work is to prove that there exists p0 Î (2,¥) such that

whenever p'0 < p < p0 (p'0 is the conjugate exponent of p0 ) , the dual of (D) is

equal to (D) , and when 1 < p < p

Ap r,

r,p'r

Ap r', 0 , the dual of (D) is equal to (D) with r > r

Ap r, C

0.

The plan of this work is as follows. In section II, we recall some preliminary results about affine-homogeneous Siegel domains of type II and we give precise statements of our results. In section III, we prove that B is contained in when 0 < p

£ 1, and that B = (Theorem II.7) ; under some additional assumptions on D,

p and r, we prove that B = (Theorem II.8). In section IV, we show that P = B r (Theorem II.9). In section V, we determine a defining kernel B-B

r ( (Ap r, ( ))D * ) D ( r , ' p A r )* D = (A1,r( ))D * r ( Cr,p'r , ( ))* Ap r D L¥( )D (Ap r, 0 of a

representative of the Bergman projection of a bounded function in the particular domain D0(Theorem II.10). In section VI, we prove that Ap r, ( ))D *= if p'0 < p < p0,

and ( ) (D) if 1 < p < p0 (Theorem II.11).

For p = 1 and r = 0, the above results were first presented in [T]. In the sequel, as usual, the same letter c will denote constants that may be different from each other.

(10)

ACKNOWLEGMENT: We would like to thank D. Békollé and A. Bonami for helpful conversations.

II. STATEMENTS OF RESULTS.

Let V Ì Rn , n ³ 3, be an irreducible, open, convex homogeneous cone which contains no straight line. We first recall the canonical decomposition of V as stated in [G].

NOTATIONS. (i) At the j th step, j =1,2,..., the real line will be denoted by Rjj ; at the k th step, k = 1,2,..., Rk will stand for the nk- dimensional Euclidean space.

(ii) Let GÌ Rs be a convex homogeneous cone which contains no straight line and let j be a homogeneous G - bilinear symmetric form defined on Rt´ Rt . The real homogeneous Siegel domain P = P (G, j) is defined by

P = P(G,j) = {(y,t) Î Rs ´ Rt: y - j(t,t) ÎG}. We shall denote by V(P) the homogeneous cone defined by:

V(P) = {(y,t,r) Î Rs ´ Rt´ R : r > 0 , (ry,t) Î P }.

In order to describe the canonical decomposition of the cone V, we consider at the first step, the cone V(1) = (0,¥) Ì R11. At the second step, we associate with V(1) and with a

homogeneous V(1) - bilinear symmetric form j(2) defined on R2 , the real Siegel domain

P(2) = PæèçV( )1 ,j( )2 öø÷Ì R11 ´ R2 and then, the convex cone

V( )2 =V P( ( )2 )ÌR11´R2´R22 .

At the k th step, we associate with the cone V(k-1) and with a V(k-1) - bilinear symmetric form j(k) defined on Rk , a real Siegel domain P(k) =PæèçV(k-1),j( )k öø÷Ì R11 ´R2´...´Rk

(11)

and the cone V( )k =V P( ( )k )ÌR11´R2´R22´ ´... Rk´Rkk l k jj .

It follows from the results of [G] that every homogeneous cone V which contains no straight line can be decomposed in the form V(l ) (up to a linear isomorphism). The required number of steps to obtain V in this form is called the rank l of V, V= V(l ) ; this yields the following decomposition of the space Rn that contains V :

(4)

R

n

=

R

11

´

R

2

´

R

22

´ ´

...

R

l

´

R

l ,

n

n

i . i

= + å

=

l

l 2

Furthermore, the projection jii( )k of j(k) onto Rii (i < k) is a non-negative form. Thus is positive definite on a subspace R

jii( )k

ik of Rk with dim Rik = nik. We then have:

(5) Rk = ik , . 1 k 1 i R P -= nk i ni k = = -å 1 1

We denote by G(V) the simply transitive group of linear transformations of V described in [G]. With respect to its canonical decomposition, the cone V can be described in the following quantitative manner : let x Î V and let xj , j = 2,...,l (resp. xii , i = 1,...,l )

denote the projection of x onto Rj (resp. Rii) ; then there exists a unique transformation h

Î G(V) such that (h(x)) j = 0 , j = 1,...,l . We set . The functions j defined for j

= 1,...,l , by

~

( )

x

=

h x

c

cj( )x =x~ , j = 1,...,l , define the cone V in the following sense : a point x of

Rn belongs to V if and only if cj(x) > 0, j = 1,...,l .

Since the decomposition (4) of Rn yields in a natural way the following decomposition of Cn :

, Cn=C11´C2´C22 ...´ ´Cl ´Cll

(12)

the functions cj , j = 1,...,l , can naturally be extended as rational functions on C n

. Let r=(r1,...,rl)ÎCl ; we define the rational function (z)

i r on Cnby : (z)r = P

( )

, z Î C j j z j =1 l c ( )r n.

For i = 1,...,l , set mj nj and

i j = > å di= - +(1 ni+mi 2 ) )

, and let d denote the vector

of Rl whose components are di . In the sequel, e will denote the point of V whose

components are eii =1, ej = 0, i = 1,...,l , j = 2,...,l

Let us recall the definition of the conjugate cone V* of V. Consider the inner product < , > defined on Rn with respect to the canonical decomposition of Rn by :

<x,y> = åx yii x y . i ii ii j i j< i j å + 2 j( )( , Then V* is defined by : V* =

{

xÎRn: <x y, > > " Î -0, y V

{ }

0

}

.

The adjoint group G*(V) of G(V) with respect to < , > is the simply transitive group of linear transformations of V*. The cone V* is an irreducible, convex, homogeneous cone which contains no straight line, and it is also of rank l .

We shall denote by c*j the defining functions of V* . We have the following : (1 £ i < j £l ).

n*ij=nij(V*)=nl- + - +j 1,l i 1

(13)

( )

z*r* on Cn by : qi=di 1 .

( )

z j j z j * = Õ= æèç * öø÷ * r* c ( ) r 1 l

The Siegel domain of type II, associated with the homogeneous cone V of Rn and a V-Hermitian, homogeneous form F : Cm´ Cm® Cn , is defined by :

D=D(V,F) = ( , )z u C C : z z ( , ) i F u u V n m Î ´ - - Î ì î ü ý þ 2 í .

The domain D is then an affine-homogeneous domain. Let Fii denote the projection of F onto Cii , and C(i) the complex subpace of Cm on which Fii is positive definite. Set

; then and . We shall denote by q the vector of

N C C i m ( )

m

i i

= å

=1 l

q

C

m

C

i i

=

=1 l

P

( ) l

whose components are qi , i = 1,...,l .

We now recall the following two expressions of the Bergman kernel B((z,v),(z,u)) of D=D(V,F) :

II.1 PROPOSITION [G] . The Bergman kernel B((z,v),(z,u)) of D is given by

(

)

. d V q d ) ( ) u , v ( F i 2 z , exp c q d 2 ) u , v ( F i 2 z c ) u , z ( ), v , ( B l ò * ÷l -* *+ * ø ö ç è æ-<l z- - > = -÷ ø ö ç è æz- -= z .

NOTATIONS. For , the notation 1+a stands for the vector

. Let ÎR a=(a1,...,al) Rl a'=( ' ,...,a1 a'l) Î ) a ( +a1,...,1+ l l ; we set aa'= 1 1(a a' ,...,a al l' ) and by

53

(14)

a > a' , we mean that ai > a'i for all i Î {1,...,l}. For (z,v) and (z,u) in D Ì C n

´C m , we let b denote the kernel

b((z,v),(z,u)) = z -æ -èç öø÷ -z i F v u d q 2 2 ( , ) .

Notice that B = cb. Moreover, ba and b1+a , a Î Rl , will denote the expressions :

ba((z,v),(z,u)) = z a - - ö ø÷ -z i F v u d q 2 2 ( , ) ( ) æ èç and b1+a((z,v),(z,u)) = z a -æ èç öø÷ - + -z i F v u d q d q 2 2 2 ( , ) ( ) .

Let r be a vector of Rl . For p Î (0,¥) , we set and define the weighted Bergman space A

Lp r, ( )D =Lp( ,D b-r( , )z z dv z( ))

p,r

(D) by Ap,r(D) = Lp,r(D)ÇH(D). We equip Ap,r(D) with the Lp,r(D) - " norm" || || p,r. The weighted Bergman projection Pr is the orthogonal projection of L2,r(D) onto A2,r(D). Recall (cf. [BT] ) that A2,r(D) = {0} when

r n d q i i i £ + -2

2 2( ) for some i Î{1,...,l } and otherwise, Pr is equal to the integral operator defined on L2,r(D)) by the weighted Bergman kernel cr b1+r((z,v),(z,u)) .

Let us now state some prerequisite results :

II.2 THEOREM [BT]. Let a and e be in Rl and (z,v)ÎD. Then we have :

b v z u b z u z u d z u

D 1+

(15)

if and only if ei i i n d q > + -2

2 2( ) and a e , i = 1,...,l. In this case, the following equality holds :

i i i i n d q - > -2 2( - ) b v z u b z u z u d z u D 1+ - c b v v ò a z(( , ),( , )) e( , ), ( , )) n( , )= a e, a e z- (( , ), ( , )) . z We shall need the following reproducing formulas which, indeed, improve those obtained in [BT] (Theorem II.6.1, p.225), and whose proof, based on ideas of [BBR], will be given in the appendix:

II.3 THEOREM. Let r be a vector of Rl such that

i i i ) q d 2 ( 2 2 n r -+

> for all i = 1,...,l and p a

real number such that 1£ < ê -2 2 - 1+ ë ê ú û ú p n d q r n i i i

min ( ) ( i) . Then for all e Î Rl such that

ei i i i n d q p p r p > + - - + 2 2 2 1

( ) (i = 1,...,l ), the reproducing formula Pef = f holds for all f ÎAp,r(D).

II.4 PROPOSITION [BT]. Let aÎ Rl be such that ai ³ 0, i = 1,...,l . Then : ba z(( , ), ( , )v z u £c ba a z(( , ), ( , ))v z v

and

(

)

ba z( , )v +( ' , ' ), ( , )z v z u +( ' , ' )z v £c ba a z(( , ), ( , ))v zv , for all (z,v), (z',v'), (z,u) and (z',u) in D.

II.5 LEMMA [R] . For all f Î Ap,r(D) (p > 0) , we have the estimate :

(16)

f z u p cb r z u z u f p r p ( , ) (( , ), ( , )) , £ 1+ .

DEFINITION : A vector rÎ Rl is a V-integral vector if

( )

lr** is a polynomial in l.

In the sequel, r will be a V-integral vector. We associate to r the differential polynomial (

L

r)z in Cn in the following way : for lÎ Cn,

(

L

r )zexp(<l,z>) =

( )

lr**exp(<l,z>) (zÎ Cn).

Let us now recall the following lemma due to F. Trèves [Tr] which is crucial in our work.

II.6 LEMMA [Tr]. For each holomorphic function G in D, there exists a holomorphic function g in D such that (Lr)z g(z,v)=G(z,v) for all (z,v) Î D.

DEFINITION : A function g Î H(D) is a Bloch function if :

g z u D z g z u b d q z u z u * = Î -- + ì í ïï î ï ï ü ý ïï þ ï ï < ¥ sup ( , ) (Lr) ( , ) (( , ), ( , )) r 2 .

Set N = {gÎH(D) : ( )g º 0 }. We define the Bloch space B r and the space (D) in the following manner, where we set

Lr

C

r,rp s= - +2dr q :

B r ={Bloch functions in D}

/

N ,

(17)

ï ï þ ïï ý ü ï ï î ïï í ì ¥ < ÷÷ø ö ççè æ n ò Lr - s -= r Î p 1 ) u , z ( d )) u , z ( ), u , z (( D b p r p ) u , z ( f z ) ( p r f : ) D ( H f , C r

/

N. These two spaces have the following topological property:

.

*

C

r,rp . C ,rrp ( )D r n d q i i i > + -2 2 2( ) , ,..., 1 i , 2 ni i> = l r ( , )f g = òD(Lr)z g z u b( , ) -s(( , ), ( , )) ( , )z u z u f z u b r z u- (( , ),( , ))z u dn( , )z u r = - +2d q.

LEMMA : (B , ) and ( (D) , ) are complex Banach spaces.

Our first two results read as follows:

II.7 THEOREM. Let D be a homogeneous Siegel domain of type II. Let p be a real number and r a vector of Rl such that 0 < p £ 1 and , i = 1,...,l . Then the following assertions hold:

(i) B r is isomorphic to a subspace of (Ap,r(D))*,

(ii) B r is equal to A1,r(D))* ) if r with equivalent norms.

The duality (A1,r(D)), B ) is given by

, where s

(18)

II.8 THEOREM : Let D Ì CN be either a symmetric Siegel domain of type II, or D = D0, or D = D1. Let p1 =

2

2 1

N

N+ and let r be a vector of R such that r n d q i i i > + -2 2 2( ) , i = 1,...,l . Then for all p Î (p1 ,1) and all rÎ Rl such that

l ,..., 1 i , i ) q d 2 ( p i r 2 1 i ) q d 2 ( 2 2 i n i - + = + + + -+ + -> r

,

we have B r = (Ap,r(D))*, with equivalent norms. Moreover, the duality (Ap,r(D)), B r ) is given by

) u , z ( d )) u , z ( ), u , z (( p r 1 1 b ) u , z ( f )) u , z ( ), u , z (( b ) u , z ( g z ) D ( ) g , f ( n + -s -ò Lr = , with . q d 2 + -r = s

REMARK: In the symmetric case, R.R. Coifman and R. Rochberg ([CR], p. 43-44) stated

that Ap,r(D)) and A r p 1 1, 1 ( ) - + +

D have the same dual. The proof of Theorem II.8 relies on their atomic decomposition theorem . For a proof of the atomic decomposition theorem, cf. [BT1].

Theorems II.7 and II.8 will be proved in section III.

Let h Î L¥(D) and let r be a V-integral vector such that ri > ni

2 (i = 1,...,l) . Then, in view of Theorem II.2, the following function G is holomorphic in D:

, G( , )zv =òDb1+s(( , ),( , )) ( , )z v z u h z u dv z u( , )

(19)

where . q d 2 + -r = s ( , ) ( , ) g z u =G z u

By Lemma II.6, there exists such that

. Let g be the equivalence class of all holomorphic solutions of this equation. Then g Î B ; hence, we can define an operator P from L

~

g

Î

H D

( )

(Lr z) ~ r ¥(D) into B in the following way : r Ph = g.

P is called the "Bergman projection" of L¥(D) into B . Let us justify this name : the Bergman projection P is usually the integral operator defined on L

r

2

(D) by : Ph(z ,v) =òD B

(

(z,v),(z,u)

)

h(z,u)dn(z,u) (h Î L2(D)).

Now, let h Î L L¥(D) ; since (Lr z z) b(( , ),( , ))v z u =c br 1+s z(( , ),( , ))v z u (recall

s= r

-2d+q r

), one easily obtains that Ph is a representative of the element Ph = g of B .

Our third result reads as follows:

II.9 THEOREM. Let D be a homogeneous Siegel domain of type II. Let r be a V-integral vector such that ri > ni

2 (i=1,...,l). Then PL

¥(D) =

B r and P has a bounded right inverse.

Theorem II.9 will be proved in section IV .

Our fourth result reads as follows :

(20)

II-10 THEOREM: Let D2 z u M M r z - z u u V 2i and = (5,5). =ìíï Î ´ *- Î îï ü ý ï þï ( , ) 2 2 * r Then

there exists a kernel b0 in D2 such that :

(i) with respect to (z , v) , b0 ((z , v) , (z ,u)) is holomorphic in D2 and (Lr)z b0 ((z , v),(z,u)) º 0 ,

(ii) for all (z , v) ÎD0 , (b- b0 )((z , v) , (z ,u)) Î L1(D2 , dn (z,u)) . Hence, for each h Î L¥(D2 ) , the function Ph defined on D2 by

(

)

(

)

Ph( ,v) = Dz ò 2 b-b0 ( , ), ( , )zv z u h z u d( , ) n( , )z u is a representative of Ph.

This result will be proved in section V.

Our fifth result focuses on the case p > 1 and reads as follows:

II-11 THEOREM : Let D be a homogeneous Siegel domain of type II. Let p be a real number and r a vector of Rl such that (i=1,..., )

i q) 2(2d 2 1 n i r l -+ > and ïþ ï ý ü ïî ï í ì + - -i n i r i q) 2(2d 2 i 2n i min < p < 1 . Then we have the following assertions.

(i) If max i 2ni 2 2(2d q)i ri ni < p < mini 2ni 2 2(2d q)i ri ni + - -+ - -ì í ï îï ü ý ï þï + - -ì í ï îï ü ý ï þï 2 2 2( d q i ri) , then (A p,r

(21)

(ii) (Ap,r (D))* = Cr,rp' ( )D whenever ri > ni

2 , i = 1,...,l , with equivalent norms. The duality (Ap,r (D),Cr,rp' ( )D ) is given by

( , )f h D b

(

( , ),( , )z u z u

)

( )

( , ) ( , )

(

( , ),( , )

)

( , ), zh z u f z u b r z u z u d z u

= ò -s Lr - n

where s = r -2d+q.

This theorem will be proved in section VI.

III. PROOFS OF THEOREMS II.7 AND II.8. III.1 PROOF OF THEOREM II.7

(i) Let g Î Br and consider the linear functional j defined on Ap,r (D) by :

( )

(

)

(

)

r z z s z z z z z ( )f D g( , )v b ( , ),( , ) ( , )v v f v b ( , ), ( , ) r p v v = ò L - - + 1 1 j where s = r

-2d+q and 0 < p £ 1. By Lemma II.5, we have the estimate :

(

)

(

)

. r , p f c p 1 r , p f ) v , ( d ) v , ), v , ( r b p ) v , ( f D c ) v , ( d ) v , ( ), v , ( p r 1 1 b ) v , ( f D £ -z n ÷ø ö çè æò z - z z £ z n z z + -z ò

Hence j possesses the following property: | j(f)| £ c||g||*

|

|f||p,r ,

and thus ||j|| £ c||g||* . Therefore j Î (A p,r

(D))

*

. This proves the inclusion of Br into

(22)

(Ap,r (D))

*

.

(ii) Let p = 1, and let j be in (A1,r (D))

*

. Then by the Hahn-Banach theorem, there exists a bounded function k in D such that

(

)

j( )f = òD k z u f z u b( , ) ( , ) -r ( , ), ( , )z u z u dn( , ).z u

On the other hand, by Theorem II.3, we have the following reproducing formula for every f Î A1,r (D) :

(

(z,u),( ,v)

)

f( ,v)b r

(

( ,v),( ,v)

)

d ( ,v). r 1 b D ) u , z ( f =ò + +s z z - -s z z n z

Therefore by the Fubini theorem, we easily get

(

)

(

)

(

(z,u),(z,u)

)

d (z,u). r b ) u , z ( f ) v , ( d ) v , ( ), v , ( r b ) v , ( k ) u , z ( ), v , ( r 1 b D D ) f ( n s -- ÷ø ö çè æò + +s z z - z z nz ò = j

Set g(z,u) = . Observe next that

g Î H(D) and that by Theorem II.2, the following estimate holds :

(

)

(

)

D b r z u v k v b r v v d v ò 1+ +s ( , ), ( , )z ( , )z - ( , ),( , )z z n z( , )

(

)

g z u( , ) £C k¥bs ( , ), ( , )z u z u

(

(z,u) Î D

),

since ,i 1,...,l. i ) q d 2 ( 2 i n i >- - =

s Then in view of Lemma II.6, there exists h in Br such

that Lrh = g. Therefore

( )

(

)

j( )f D r ( , ) ( , ) s ( , ), ( , ) n( , ) zh z u f z u b r z u z u d z u

= ò L

-and thus, j is represented by the element g of Br . This proves the reverse inclusion of (A1,r (D))* in Br. ð

(23)

We shall now prove another reproducing formula whose proof relies on the dominated convergence theorem. In view of this formula, the Bergman weighted projection Pr also reproduces functions which satisfy certain uniform estimate.

III.2 PROPOSITION : Let r and e be two vectors of Rl such that

l.. ,..., 1 i , i i ) q d 2 ( 2 2 i n i r and i ) q d 2 ( 2 i n i> - - > +- +e =

e Let G be in H(D) such that

{

}

sup ( ) ( , ) . z D G z b z z Î -e < ¥ Then P rG = G.

PROOF : Consider the sequence {Gn } defined by

G n z G z ie n b z n ie ( )= æ + , , èç öø÷ aæèç öø÷

where the positive exponent a is to be specified later. There exists c > 0 such that for every z in D and every positive integer n :

G z ie n cb z ie n z ie n cb ie n ie n + æ èç öø÷ £ æèç + + öø÷ £ æèç öø÷ e e , , ,

where the latter inequality is yielded by Proposition II.4 since ei> 0 . Then , when we

keep n fixed, the function za G z ie n + æ

èç öø÷ is bounded and the following inequality holds :

D G n z b r z z d z Cn D b z n ie b r z z d z ò ( )2 - ( , ) n( )£ ò 2aèçæ , öø÷ - ( , ) n( ).

63

(24)

We choose a so that 2 1

2 2

ai ri ni

d q i

- - >

- ( - ) for all i = 1,...,l. Hence by Theorem II.2, the latest integral converges and furthermore, PrGn = Gn for all n .

On the other hand, by Proposition II.4, since ai > 0 and ei > 0, we have :

. c ) z , z ( b n ie z ( G ) z , z ( b ) z ( n G -e £ + -e £

Also, by Theorem II.2, under our assumptions

i ) q d 2 ( 2 i n i> - -e and l, ,..., 1 i , i i ) q d 2 ( 2 2 i n i r +e = -+ > we get : D b r z b r d ò 1+ ( , )z - +e z z n z( , ) ( )< ¥.

Henceforth, by the dominated convergence theorem, we easily obtain the equality PrG = G.

REMARK : This result extends the one obtained in [B2] for symmetric Siegel domains of

type II, via the bounded circular realization of the domain. Our proof is straight and includes all homogeneous Siegel domains of type II.

III.3 COROLLARY : Let p Î (0, 1] . Let a and rbe vectors of Rl such that

i r 1 i ) q d 2 ( 2 i n i> - - + +

a and for all i 1,...,l,

) q d 2 ( 2 2 n r i i

i> +- = Then for all

jÎ(Ap,r(D))

*

and for all z0 in D, we have

( )

( )

(

)

( )

D bp z z b p z b p z z d z b p z ò æ è ç ç çç ö ø ÷ ÷ ÷÷ -= æ è ç ç çç ö ø ÷ ÷ ÷÷ a j a a n j a 0 1 0 , ., , ) ( ) ., .

(25)

PROOF : By Proposition III.2, it is sufficient to show that (6) sup z DÎ

( )

( )

j a a b p z b r p z z ., , . æ è ç ç çç ö ø ÷ ÷ ÷÷ + -< ¥ 1

But since jÎ (Ap,r(D))

*

, we obtain that

( )

( )

j a a a b p z c b p z p r c b r p z z ., (., ) , ' , æ è ç ç çç ö ø ÷ ÷ ÷÷ £ £ - -1 ,

where the latest estimate follows from Theorem II.2. This proves Corollary III.3 .

ÿ

III.4 PROOF OF THEOREM II.8

Let D Ì CN be a symmetric Siegel domain of type II, or let D be equal to D0or

D1 . Remark that for p Î 2

2 11 2 2 2 N N and r R satisfying ri ni d q i + æ èç öø÷ Î > + -, ( ) , l the domain

D satisfies the hypotheses of the molecular decomposition theorem [BT1] for functions in

Bergman spaces Ap,r (D) ; more precisely, for such values of p and r, there exist constants c = c(p,r) and C = C(p,r) such that for every f Î Ap,r(D), there exists an lp -sequence {li}

such that

(

)

f z ibp z zi b r p i zi zi ( )= ( , ) , + -= ¥ å l a 1 a 0 (zÎ D) ,

where {zi} is a lattice in D and the following estimate holds :

c f p rp C f

ip p rp

, £ål < , .

(26)

Moreover, the vector a of Rl is defined as follows. Let r denote a V-integral vector in Rl such that when we sets= r

- +2d q, the following condition is satisfied:

l. ,..., 1 i p i r 2 1 1 i ) q d 2 ( 2 2 i n i = + + + -+ > s

The vector a is given by a = sp+1+r.

Let j Î(Ap,r (D))

*

. For f Î Ap, r (D), define the sequence {fN} of functions in D by (7) f z ibp z zi b

(

)

r p i N zi zi N( )= ( , ) , + -= å l a 1 a 0 (zÎ D).

Then {fN} converges to f in Ap, r (D). Hence j(fN) goes to j(f) as N tends to infinity. Now, in view of Corollary III.3, we get :

( )

( )

( )

(

)

j a a j a a n b p .,zi D bp zi z, b p .,z b p z z d z, ) ( ) æ è ç ç çç ö ø ÷ ÷ ÷÷= ò æ è ç ç çç ö ø ÷ ÷ ÷÷ -1 (i Î Z+),

and combining this with (7) yields for every positive integer N :

( )

( )

p(z,z)d (z). 1 b z ., p b ) z ( N f D N f n a -÷ ÷ ÷ ÷ ø ö ç ç ç ç è æ a j ò = j .

This easily implies that for every positive integer N :

(8)

( )

p(z,z)d (z). 1 b z ., p b ) z ( N f D ) N f ( n a -÷ ÷ ÷ ÷ ø ö ç ç ç ç è æ a j ò = j

(27)

other hand, it follows from (6) that

(

)

( )

(

)

(

fN f

)

(z)pb r(z,z)d (z) D ' C ) z ( d ) z , z ( p r 1 1 b ) z ( f N f D C ) z ( d ) z , z ( p 1 b z ., p b ) z ( f N f D n -ò £ n + -ò £ n a -÷ ÷ ÷ ÷ ø ö ç ç ç ç è æ a j -ò

where the latest inequality follows from Lemma II.5. Henceforth, since {fN} converges to f

in Ap,r(D), we conclude that the right hand side of (8) tends to

( )

(

D f z b p z b p z z d z ò æ è ç ç çç ö ø ÷ ÷ ÷÷ -( )j ., , ) ( ) a a n 1

)

. We have then proved that for every f in Ap, r (D) :

( )

p(z,z)d (z). 1 b z ., p b ) z ( f D ) f ( n a -÷ ÷ ÷ ÷ ø ö ç ç ç ç è æ a j ò = j

Now,by Lemma II.6, since the function za j b p z

a (., ) æ è ç ç çç ö ø ÷ ÷

÷÷is holomorphic in D, there exists

g in H(D) such that Lrg(z) = bp(.,z) . Furthermore, with the choice of a and with

÷ ÷ ÷ ÷ ø ö ç ç ç ç è æ a j s=a- -1 r

p , we deduce from (6) that for every zÎ D, the following estimate holds :

(28)

sup z DÎ

( )

( )

j a s b p .,z b z z, . æ è ç ç çç ö ø ÷ ÷ ÷÷ - < ¥

Hence g is a Bloch function in D, and g clearly represents the bounded linear functional

jÎ(Ap,r (D))

*

in the following manner :

j( )f D rg z b( ) s(( ), ( ) ( )z z f z b ( , ) n( ). r

p z z d z

= ò L - - +

1 1

Moreover, g* £ j . This proves the inclusion of (Ac p,r (D))

*

in Br. Theorem II.8 is entirely proved. 

IV. PROOF OF THEOREM II.9.

Since PL¥(D) Ì Br , let us prove that Br Ì PL¥(D). Let g Î Br and set

( )

(

)

h v g v b v v with d q ( , )z ( , ) ( , ),( , ) . r z z s z z s r = - = - + L 2 Then h Î L ¥(D) . We are

going to show that Ph = g. It suffices to prove the equality :

( )

L

(

)

( )

L

(

)

r z zg( , )v = òD b1+s z( , ),( , )v z u r zg z u b( , ) -s ( , ), ( , )z u z u dn( , ).z u Setting e = s , this equality follows from Proposition III.2. To complete the proof, let us determine a right inverse of P. Define R as follows:

Rg( , )zv =

( )

Lr z zg( , )v b-s z

(

( , ), ( , )v zv

)

(

gÎBr

)

.

Then PRg = g and Rg Î L¥(D). Furthemore Rg L¥( )D £ g* and thus R £1 This . completes the proof of Theorem II.9. 

(29)

V. PROOF OF THEOREM II.10. V.1 Preliminaries on D2.

The cone V =

{

z Î M2, z Hermitian , z > 0

}

is of rank 2 and linearly equivalent to the spherical cone in R4 ; moreover, it is self-conjugate with respect to the inner product

< z ,z > = z11z11+ z12z12+ z21z21 + z22 z22 ,

where Set We also

have n . 2 M to belong 22 z 21 z 12 z 11 z z and 22 21 12 11 ÷÷ø ö ççè æ = ÷÷ø ö ççè æ z z z z = z e=æ è ç ö ø ÷ 1 0 0 1 .

12 = 2 , n1 = 0 , n2= 2 , d = (-2,-2) . The functions that define the cone V are

defined by , 2( ) 22

(

2

)

22 21 12 11 ) ( 1 z =z -zzz c z =z zÎM . c

Let F: Mr,2 ´ Mr,2 ® M 2 be defined by F(v,u) = u

*

v where u = (u1, u2) and v = (v1, v2) are in Mr,2 with v1 ,v2 in Cr (i = 1,2) . Hence F11 (v,u) = u1*v1, F22 (v,u) = u2* v2 and it is clear that Fiiis concentrated on

Cr ´ C r and is positive definite on Cr

(i = 1,2). Therefore q = (r,r).

Let r = (5,5) be a V-integral vector. It is straightforward that

( )

Lr z ¶ ¶z ¶z ¶ ¶z ¶z =æ -è ç ç ö ø ÷ ÷ 2 11 22 2 12 21 5 and

( )

Lr z z

(

)

r

(

)

r z B( , ), ( , )v z u =c B d q ( , ),( , )v z u + - + 1 2 ,

69

(30)

where B is the Bergman kernel of D2. It then follows from Theorem II.2 that is integrable with respect to (z,u) in D

( )

Lr z zB

(

( , ),( , )v z u

)

2 since r = (r1, r2), r1> 0, r2> 1. We are now ready to state the following lemma whose proof is just computational.

V.2 LEMMA : Let a1 and a2be two integers such that a1Î

{

-4,-3,-2,-1,0

}

or a2Î

{

-3, -2,-1,0,1

}

. Then

( )

Lr zc2a c a z2 1 1 2 0 - - æ - -èç öø÷º z i u v *

* , where (z,u) and (z,v) belong to

D2.

The proof of the next lemma is somewhat lengthy and will be given in the appendix.

V.3. LEMMA : The following functions are integrable in D2 :

(a) u r r ie z i 2 4 1 5 2 8 2 c- + c- + æ -èç öø÷ ( ) ( ) * ; (b) u r r ie z i 25 1 5 2 9 2 c- +( )c- +( )æèç - *öø÷ ; (c) u z r r ie z i 24 12 1 5 2 9 2 c- +( )c- +( )æèç - *öø÷ ; (d) u z r r ie z i 2 4 21 1 5 2 9 2 c- +( )c- +( )æèç - *öø÷ ; (e) u z r r ie z i 2 5 21 1 5 2 9 2 c- +( )c- +( )æèç - *öø÷ ;

(31)

(f) u u r r ie z i 1 2 4 1 5 2 9 2 c- +( )c- +( )æèç - *öø÷ ; (g) u u r r ie z i 1 25 1 5 2 9 2 c- +( )c- +( )æèç - *öø÷ ; (h) u u r r ie z i 1 2 4 1 5 2 9 2 c- +( )c- +( )æèç - *öø÷ .

We shall also use the following lemma.

V.4. LEMMA : Let (z, v) be in D0. Then there exists two positive constants c1and c2 such that for all (z,u) Î D2, the following estimates hold :

a) c ie z i z i u v c ie z i 1 2c èçæ -2 öø÷ £ c z2èçæ -2 - öø÷ £ 2c2æèç -2 öø÷ * * * * ; b) c ie z i z i u v c ie z i 1 1c èçæ -2 öø÷ £ c z1æèç -2 - ø÷ö £ 2 1c æèç -2 öø÷ * * * * .

PROOF : This is a straightforward consequence of the following lemma due to A. Koranyi:

LEMMA ([CR] , cf. also [BT1] ) Let D be a symmetric Siegel domain of type II and let d denote the Bergman distance on D2. Then there exists a constant CD such that for all z , z ,

z' in D , B z B z CDd z z ( , ) ( , ' ) ( , ' ) z z - £1 whenever d(z,z') £ 10.

We are now ready to handle the proof of Theorem II.10 :

(32)

PROOF OF THEOREM II.10. We can define b0 in the following manner :

(

)

(

)

, 3 v * u i 2 * z 2 i 2 * z ie 2 i 2 * z ie ) r 7 ( 2 2 v * u i 2 * z 2 i 2 * z ie 2 i 2 * z ie ) r 6 ( 1 i 2 * z ie ) r 4 ( 2 v * u i 2 * z ) r 4 ( 2 i 2 * z ie ) r 5 ( 2 ) r 4 ( i 2 * z ie ) r 4 ( 2 v * u i 2 * z ) r 4 ( 2 ) 1 ( v * u i 2 * z ) 1 ( ) r 4 ( 1 v * u i 2 * z ) r 4 ( 1 ) u , z ( ), v , ( 0 b b ú ú û ù ÷÷ø ö ççè æ ÷ ø ö ç è æz- -c -÷ ø ö ç è æ -c ÷ ø ö ç è æ -+ -bc -÷÷ø ö ççè æ ÷ ø ö ç è æz- -c -÷ ø ö ç è æ -c ÷ ø ö ç è æ -+ -ac -÷÷ø ö ççè æ ÷ ø ö ç è æ -+ -c -÷ ø ö ç è æz- -+ -c ÷ ø ö ç è æ -+ -c + -÷ ø ö ç è æ -+ -c -ê ë é ÷ ø ö ç è æz- -+ -c ÷÷ ÷ ø ö çç ç è æ ÷ ÷ ø ö ç ç è æ -z + -c -÷ ø ö ç è æz- -+ -c = z -where

(

0,v2

)

. 22 0 0 i ) 1 ( v , ) 1 ( and 2 ) r 6 )( r 5 )( r 4 ( , 2 ) r 5 )( r 4 ( ÷ ÷ ø ö ç ç è æ ÷÷ø ö ççè æ z = ÷ø ö çè æz + + + = b + + = a

Then b0 ((z,v),(z,u)) is a holomorphic function of (z,v) in D2. Furthermore, in view of

Lemma V.2 and the fact that c z1 1 2 1 ( ) * * ( ) - -æ è ç ç ö ø ÷ ÷ z

i u v does not depend on z11 , z21 and z12 , we have

( )

Lr zb0

(

( , ),( , )z v z u

)

º This proves the first assertion. 0.

Using the identity a n b n b a

k n a k b n + + = -= å - + + -( 1) ( 1) ( ) ( ) ( 0 1 1 k) and

in view of Lemma V.4 , we have the estimate :

(

)

(

)

(

12 21 12 z21 21z12 2 12 v2 2 12 u2 v1 2v1z21 u2 4u2 u1v1 v2

)

. i 2 * z ie 2 4 1 1 v 1 u i 2 i 11 2 2 v 4 2 u i 2 i 22 i 2 * z ie ) r 8 ( 2 ) r 5 ( 1 c ) u , z ( ), v , ( 0 b b + + z + z + z + z + z z ÷ ø ö ç è æ -c + + -z ÷ ÷ ø ö ç ç è æ + -z ÷ ø ö ç è æ -+ -c + -c £ z

(33)

-Hence in view of Lemma V.3 , (b-b0 ) ((z,v) ,(z,u)) is in L1(D2, dn(z,u)). This completes the proof of Theorem II.10. ð

VI. PROOF OF THEOREM II.11.

VI.I. THEOREM [BT] . Let e and r be in Rl such that

i ) q d 2 ( 1 i> -e and , i ) q d 2 ( 2 2 i n i r -+

> i=1,…,l. Then Pe is bounded from Lp,r (D) into Ap,r (D) if

max ,..., , ( ) ( ) min,..., ( ) . i ni d q i ri ni d q i i p i ni d q i ri ni = + - -+ - -ì í ï îï ü ý ï þï< < = + - -1 12 2 2 2 2 2 2 1 2 2 2 2 l e l

I.2 PROOF OF THEOREM II.11. (i) In view of Theorems II.3 and VI.1, we have Pr f =

f for every f Î Ap,r (D), and P gr c g

p r, £ p r, p r, . One easily obtains the announced

results from the Hahn-Banach and Riesz representation theorems.

(ii) Let jÎ (Ap,r (D))

*

. By the Hahn- Banach theorem , there exists g Î Lp',r (D) such that for all f Î Ap,r(D) , we have

(

)

j( )f = òD g z u f z u b( , ) ( , ) -r ( , ), ( , )z u z u dn( , ).z u Set s= r - +2d q. By Theorem II.3, Ps+rf = f , f Î A p,r (D) , then

(

)

(

(z,u),(z,u)

)

d (z,u) r b ) u , z ( f ) u , z ( g r , r T D ) u , z ( d ) u , z ( ), u , z ( r b ) u , z ( f r P ) u , z ( g D ) f ( n -+ s ò = n -+ s ò = j

where Ts+r ,r is the adjoint operator of Ps+rwith respect to the inner product < f , g >2, r =òD f z u g z u b( , ) ( , ) -r

(

( , ),( , )z u z u d

)

n( , ),z u

(34)

and it is expressed in the following way :

(

)

). D w ( ) u , z ( d ) u , z ( ), u , z ( r b ) u , z ( f )) u , z ( , w ( r 1 b D ) w , w ( b ) w ( f r , r T Î n -+ s + ò s -= + s Since ri ni and p n d q i ri ni d q i ri > > + - -+ - -æ è çç öø÷÷ 2 2 2 2 2 2 2 2 ' max ( )

( ) , it follows from Theorem VI.1 that T

r r g p r cp r gp r

s + , ' , £ , ' , .

Clearly, the function za bs(z ,z ) Ts+r,rg(z) belongs to H(D) , then by Lemma II.6 , there exists h ÎH(D) such that Lrh(z)= bs(z,z) Ts+r,rg(z) for every z in D. Then h

ÎCrp', r( )D and

Crp', r( )D

h £ jc . Thus, finally, h represents j in the following way :

(

)

( )

(

)

j( )f = òD b-s ( , ), ( , )z u z u Lr h z u f z u b r z u( , ) ( , ) - ( , ), ( , )z u dn( , ).z u

Conversely, let h Î Crp', r( )D ; thenthe function za b- s(z ,z ) Lrh (z) belongs to

Lp',r (D) and the linear functional jdefined by

(

)

( )

(

)

j( )f = òD b-s ( , ),( , )z u z u Lr h z u f z u b r z u( , ) ( , ) - ( , ),( , )z u dn( , )z u (fÎAp,r(D)) is such that h p' (D). r , c r £

j C Hence jÎ (Ap,r (D))

*

. Therefore this proves assertion (ii)

and Theorem II.11 is entirely proved.

REMARK : Let r and p satisfy the hypotheses of assertion (i) of Theorem II.11, and let

r be a vector of Rl such that ri >ni

2 for all i = 1,...,l. Then Cr,r is equivalent to p

(35)

Ap,r(D) in the following manner : every equivalence class in C contains one and only one representative f belonging to A

r,rp ( )D

p,r

(D) , and conversely, every fÎAp,r(D) is a representative of an equivalence class in C . In fact, first let g Î . Set h(z)=b

r,rp ( )D

)

Cr,rp ( )D

s

(z,z)Lr g(z) and f = Pr

h ;

then by Theorem VI.I

,

f belongs to A p,r

(D) under our assumptions on p, since h belongs to Lp,r(D). Therefore Lrf = Pr+s

(

Lrg

). On the other

hand,

Lr gÎ Ap, sp+r(D) ; then Pr+s

(

Lrg

) =

Lr g . Hence Lrg = Lrf and then, f is a

representative of the class g in Cr,rp (D .

), ( r 1 b ) , z ( h + h d ) , ( r r 1 b n h z + s + + z) dn(h) ÷ø ö d ) z , z ( n s -rp, r(D)

Next, let f ÎAp,r(D) be such that Lrf º 0. Then f = Prf , and this implies that

Tr+s,rf(z) = b --s

(

z,,z) Lrf(z) º 0. By the Fubini theorem, one easily obtains that

(

)

1 b ) , ( r b ) z ( f D c ( r b ) z , ( D ) , ( r b ) ( f D c ) ( f r , r T r P h h -ò = çè æò z -h h -h ò = z s +

where the latest equality follows from the reproducing formula Pr+s(b1+r(. , z) ) (h)= b1+r(h , z) for all h and z in D, since the function b1+r(. , z) belongs to Ap,r(D) and

ri > ni

2 for all i = 1,...,l . Finally, we conclude that Pr(Tr+s,rf) =Pr (f) = f, and since Tr+s,r f º 0, this implies that f º 0. Hence each class in C has only one representative in Ap,r(D) .

(36)

Conversely , let f Î Ap,r(D) ; then Prf = f and for all z in D. Hence, by Theorem VI.1, T

Lr z s z zf( )b- ( , )=Tr+s,r f( )z , r+s,r f belongs to L p,r (D) since p d q i ri and i ni > + - -+ - -ì í ï îï ü ý ï þï > max i 2ni 2 2(2d q)i ri ni 2 2 2( ) r 2 rp, r( )D

for all i = 1,...,l. Therefore f is a

representative of a class in C .

APPENDIX

PROOF OF LEMMA V. 3 .

We first remark that for all (z, u) Î D2 :

(*) u ie z i 2 2 2 2 < c ( - *) .

By this remark (*), we have the estimate :

u r r ie z i r r ie z i 24 1 5 2 8 2 1 5 2 6 2 c- + c- + æ - c c èç öø÷ £ - + - + -æ èç öø÷ ( ) ( ) * ( ) ( ) * .

This latest function is integrable by Theorem II.2. Hence (a) is proved . The same estimate permits to conclude that (b) is true . For the next three integrals, by the previous remark (*), it is sufficient to prove that for a suitable choice of d

(

d = 0 for (c) and (d) and d = 0.5 for (e)

),

the following function is integrable in D2 :

g z u z r r ie z i d( , )= c- +( )c- + +( d)æ *- . èç öø÷ 12 1 5 2 7 2

(37)

To this aim, we shall use computational techniques due to Békollé in [B2] . Let a1 and a2 be two real numbers such that 0 < a1 < 1 and 1 < a2 < 3 + 2d, and consider the sets D3 and D4 defined by : D z u D z u r r ie z i D D D 3 2 1 4 1 2 4 2 2 4 2 3 = Î £ - + + - + + æ -èç öø÷ ì í î ü ý þ = ( , ) ( , ) ( ) ( ) * \ . : gd c a c a

In D1 , |gd (z, u)| is dominated by an integrable function in D2by our assumption on a1and a2 and Theorem II. 2. In D4 , it is obvious that

, ) u , z ( h c ) u , z ( gd £ d 2 ) u , z ( h where d is equal to : h z u z r r ie z i d( , )= c( + -a ) / c-( -a + + d) / æ - * èç öø÷ 12 1 6 1 2 2 10 2 2 2 2 .

From the very definition of c1and c2 , we have :

h z u c z r r ie z i d( , )= ¶ c- -( a + ) / c- -( a + + d) / æ - * èç öø÷ ì í î ü ý þ 1 1 4 2 2 8 2 2 2 2 .

Therefore one easily gets :

V. = V* of functions defining two are 11 ) ( * 2 and 11 21 12 22 ) ( * 1 where , d ) ( V 2 / ) 1 r ( * 2 ) ( 2 / ) 2 r 2 4 ( * 1 12 i 2 * z ie , exp c ) u , z ( h l = l c l l l -l = l c l l ò ÷l c -a + + d l c -a ø ö ç è æ-<l - > = d

Hence, by the Plancherel-Gindikin formula [BT] with Cm=Mr2, we get :

(38)

(

)

(

)( )

(

)

( )

. r ) ( 2 ) ( 1 c * q c ) u ( d u * u , 2 exp m C ce sin , d 2 12 2 2 2 2 12 22 11 4 2 1 2 11 Vexp 11 22 ' c V 1 r 2( )exp( 2 ,u*u d r * 2 2 r 2 2 * 1 2 12 e , exp m C d (u) c ) u , z ( d 2 ) u , z ( h 2 D -÷ø ö çè æc*l c* l = -* l = n > l < -ò l l d + a -÷ ø ö ç è æl l - l -d -a -a l ò l +l = ÷ ø ö ç è æ ò <l > l c -a + + dc -a + - l - <l > l ò n = n d ò

By a polar coordinate change of variables, the integration with respect to l12

converges if a2< 3 + 2d, and we have :

h z u d z u d d D d( , ) n( , ) exp( (l l ))l a l a d l l . 2 11 22 111 22 4 2 2 11 22 0 0 2 = - + - - + ¥ ò ¥ ò ò

Henceforth, this integral converges by our assumption on a1 and a2 . This proves

assertions (c), (d) and (e) .

Following the same pattern, it is sufficient to prove that the function fd(z, u) defined by : ÷ ø ö ç è æ -c c = - + - + +d d(z,u) u ie2iz* f ) r 6 ( 2 ) r 5 ( 1 1

is integrable in D2

(

for (f), take d = 1; for (g), take d = 0. 5 , and for (h), take d = 0

)

. The techniques used before imply that it is sufficient to prove that if 0 < a1 < 1 and 1 < a2 < 2 + 2d , we have : |fd (z,u)| £ |Kd(z,u) |2 where K z u c u r r ie z i d c a c a d ( , )= - * - + - - + + æ è ç ç ç ö ø ÷ ÷ ÷ -æ èç öø÷ 1 1 6 1 2 2 8 2 2 2 2 is square integrable in D2. It is clear that :

(39)

2 ( )d ; r 1 2 2 2 2 r 2 4 1 i 2 * z ie exp V 1 u c ) u , z ( K l l ÷ ÷ ÷ ÷ ø ö ç ç ç ç è æ -a + * c d + + a -* c ÷ ø ö ç è æ-<l - > ò = d then : ) u ( d d ) ( r 1 2 ) ( 2 r 2 2 1 2 1 u e , exp( c ) u , z ( d 2 ) u , z ( K 2 D n l l + a -* c l d + + a -òò -<l > c* = n d ò

(

)

(

)

(

( 11 22)

)

11 1 223 2 2d 11d 22. exp 0 0 c d 2 1 1 2 12 . 22 11 1 2 2 2 11 22 Vexp 11 22 c l l a -d + l a -l l + l -ò¥ -ò¥ = l d + a -÷ ø ö ç è æ l -l l a -d -a + -l l ò - l +l =

This converges by our assumption on a1 and a2 . 

PROOF OF THEOREM II.3.

We first prove the following lemma:

A LEMMA. Let pÎ[ 1, ¥ ) and let r be a vector of Rl such that ri ³ -1 (i = 1,...,l). Let f Î Ap,r(D). Then for every (y,u) Î V ´ Cm such that y - F(u,u) Î V, the holomorphic function fy, u defined on Rn +iV by

fy, u (z) = f (z+iy,u)

belongs to the Hardy space Hp (Rn+iV). Moreover, there is a constant C = C(p,r) such that for all f Î Ap,r(D) and (y,u) Î V ´ Cm satisfying y - F(u,u) Î V, then

. f )) u , iy ( ), u , iy (( r 1 Cb p ) iV n R ( p H u , y f p r , p + £ +

Proof of Lemma A. First take (y,u) = (e,0). Let P be a polydisc centered at (ie,0) with

(40)

closure contained in D. Let (R1 ,...,Rn+m) be the multiradius of P. Then : (1) f x( +ie, )0 p£C P xò +( , )0 f(x h+i , )v pd d dx h n ) . (v

If P’ is the projection of P on iV ´ Cm , we obtain :

(2) P' f( i ,v)pd d (v) d . 1 R x ) v ( d d d p ) v , i ( f ) 0 , x ( P x+ h x h n £òx- < çèæò x+ h h n ö÷ø x ò +

Combining (1) and (2) yields

( )

(

)

Rn f x ie pdx C R n Rn P f i v pd d v d

ò ( + , )0 £ 1 ò ò ' (x h+ , ) h n( ) x.

Since P' is a compact set contained in

{

(ih,v)ÎiV´Cm:h-F(u,u)ÎV

}

(

c'r£b-r (z h+i , ),(v z h+i , )v £cr

, there are two positive constants cr and c'r such that

)

for all (ih,v) Î

P’ and xÎ Rn. Hence, for every f Î H(D) , the following holds :

(

(

)

)

. p r , p f r C p ) v , i ( f ' P n R r C dx p ) 0 , ie x ( f n R £ h + x ò ò £ + ò d ) v ( d d ) v , i ( ), v , i ( r x+ h x+ h h n x -b

Next assume that (iy,u) is an arbitrary point of D. Since D is affine-homogeneous, there is g

Î G(D) such that g-1(x+iy,u) = (x+ie,0) for every x in Rn . Set h = fog. Then

(

( i ,v),( i ,v)

)

d d d (v). b ) v , i ( h C dx ) ie x ( h dx ) u , iy x ( f r p D r p R p Rn n n h x h + x h + x h + x ò £ + ò = + ò

-Make the change of variables x = x‘ , (ih,v) = g-1(ih‘ ,v’). Then the equality

(

(x iy,u),(x iy,u)

)

cb g det -2= + + yields that

(41)

(

) (

)

(

)

(

)

b i v i v b i v i v g cb i v i v b x iy u x iy u ( , ), ( , ) ( ' ' , ' ),( ' ' , ' ) det ( ' ' , ' ),( ' ' , ' ) ( , ), ( , ) . x h x h x h x h x h x h + + = + + = + + - + + 2 1 Furthermore, for r Î Rl, one can prove that

b-r

(

(x h+i , ),(v x h+i , )v

)

=cr b-r

(

( 'x h+i ' , ' ), ( 'v x h+i ' , ' )v

)

br

(

(x+iy u, ), (x+iy u, )

)

. Hence:

(

)

R n f x iy u pdx c r b r x iy u x iy u f p r p ò ( + , ) £ ' + ( + , ), ( + , ) , 1 . So, dx p ) u ), y ( i x ( f n R V sup p ) iV n R ( p H u , y f ò + +h Î h = +

(

)

(

(x iy,u),(x iy,u)

)

f pp,r. r 1 b r ' c p r , p f ) u ), y ( i x ( ), u ), y ( i x ( r 1 b n R V sup r ' c + + + = h + + h + + + ò Î h £

The last equality follows from Proposition II.4 since ri ³ -1 (i = 1,...,l ). 

The following corollary can be deduced from results in [SW] :

B COROLLARY. Let pÎ[ 1, ¥ ) and let r be a vector of Rl such that ri³ -1 (i = 1,...,l ).

Let (iy,u) Î D and y’ ÎV. Then for all f Î Ap,r(D) ,

R n f x i y y u pdx R n f x iy pdx

ò ( + ( + ' ), ) £ ò ( + )

and

(42)

lim ' ' ( ( ' ), ) ( , ) y y Rn f x i y y u f x iy u pdx ® Î ò + + - + = 0 0 G .

PROOF OF THEOREMII.3 : Let e be a vector of Rl such that ei > n

d q i i + -2 2 2( ) (i = 1,...,l ). Recall that for every f Î A2, e(D) , Pef is given by the following formula:

P f z ue ( , )=ceòD b1+e

(

( , ), ( , )) ( , )z u zv

)

f zv b-e z z

(

( , ), , )v v d

)

n z( , )v

(

(z,u) Î D

).

Hence

Pe extends as an operator on Lp,r(D) if

(

)

(

)

D b z u v p b r p p v v d v ò + - -æ è ç ö ø ÷ < ¥ 1 e ( , ), ( , )z ' e ' ( , ), , )z z n z( , ) when p > 1 (resp. if sup

(

) (

)(

)

( , ) ( , ), ( , ) ( , ), , ) z e z e z z v D b z u v b r v v Î + -ì í î ü ý þ< ¥ 1

when p = 1) for all (z,u) Î D. By Theorem II.2

(

resp. by Proposition II.4

)

, this is the case if and only if

ei i i i n d q p p r p > + - - + 2 2 2 1 ( ) (i = 1,...,l ) and p when p > 1

[

resp. if 1+e i n d q r n i i i < = - - + ì í î ü ý þ min ,..., ( ) ( 1 2 2 1 l i)

i³ ei-ri ³ 0 (i = 1,...,l ) when p = 1

].

For p = 1, this reduces to the two

conditions ri³ -1 and ei ³ ri (i = 1,...,l ).

It suffices to show that for every (z ,v) Î D, under our assumptions on e, r and p , the bounded linear functional j(z,v)defined on Ap,r(D) by

(

)

(

)

j z( , ) ( )v f =f( , )zv - òce D b1+e z( , ), ( , ) ( , )v z u f z u b-e ( , ),( , )z u z u dn( , )z u which is identically 0 on Ap, r(D) Ç A2, e(D) , vanishes identically on Ap, r(D). The

(43)

desired conclusion followsfrom the following lemma :

C LEMMA : Let e and r be two vectors of Rl such that ei> n

d q i i + -2 2 2( ) and ri > n d q i i + -2 2 2( ) (i = 1,...,l ). Then for every p Î [1,¥), the subspace Ap, r(D)ÇA2, e(D) is dense in Ap, r(D).

Proof of Lemma C. We use the following notations : for z = (x+iy) Î D , we write z n for x iy n u n + æ è ç ö ø ÷

, , and we write ie for (ie,0). Let f Î Ap, r(D). Let a be a positive

number to be chosen later. Consider the sequence {fq} defined by f z c f z ie q b z q ie q( )= æ + , è ç ö ø ÷ æ è ç ö ø ÷ a a (z ÎD ) ,

where ca = b- a (0, ie). We will show that for a large , fq Î Ap, r(D) Ç A2, e(D) for every positive integer q, and that lim

, . q f fq p r ® ¥ - = 0 The function z f z ie q a æ + è ç ö ø

÷ is bounded by Lemma II.5 and Proposition II.4. Take

a big enough so that the function z b z

q ie c b z qie a aæ , a a( è ç ö ø ÷ = , ) belongs to Ap, r(D) Ç

A2, e(D) for every qÎ N. Next, by the Minkowski inequality, we have the estimate :

(44)

. p 1 ) z ( d ) z , z ( r b p ) z ( f q ie z f p ie , q z b c D p 1 ) z ( d p 1 ie , q z b c p ) z ( f D r , p q f f ú ú ú û ù ê ê ê ë é n -÷÷ø ö ççè æ + ÷÷ø ö ççè æ a a ò + ú ú ú û ù ê ê ê ë é n -÷÷ø ö ççè æ a a ò £

-By Lemma II.4, there is a positive constant Aa such that for all z Î D and q Î N, we have

c b z q ie A a aæ , a è ç ö ø

÷ £ . Hence, by the dominated convergence theorem, the first integral on

the right side of the estimate goes to 0 as q goes to infinity. Now, to study the second integral, it suffices to prove that

I D f z ie q f z p b r z z d z q= ò æ + è ç öø÷ - ( ) - ( , ) n( )

goes to 0 when q goes to infinity. Set z = (x+iy, u) Î D and obtain that Iq is equal to

(

)

. n R V F(u,u) Rn dx y F(u,u) (2d q)rdy d (u) p ) u , iy x ( f u , q e iy x f ò ò + ò + + - + - - - n ú ú ú û ù ê ê ê ë é ÷ ÷ ÷ ø ö ç ç ç è æ ÷÷ø ö ççè æ ÷÷ø ö ççè æ

Observe that Corollary B yields the following two facts :

dx p ) iy x ( f n R p 2 dx p ) u , iy x ( f u , q e y i x f n R ÷÷ø- + £ ò + ö ççè æ ÷÷ø ö ççè æ + + ò and lim , ( , ) . q R n f x i y e q u f x iy u p dx ® ¥ò + + æ è ç ö ø ÷ æ è ç ö ø ÷ - + = 0

(45)

is integrable on {(y,u) : y Î V+F(u,u) , u Î Cm} with respect to the measure

(

y-F(u,u)

)

-(2d-q)r dydn(u) . Hence, by the dominated convergence theorem, it follows that Iq goes to 0 as q tends to infinity. Lemma C is proved. •

Thus Theorem II.3 is entirely proved.

REFERENCES

[B1] D. Békollé : Le dual de la classe de Bergman A1 dans le transformé de Cayley de la boule unité de Cn . C. R. Acad. Sci. Paris 296 (1983), pp. 377-380 .

[B2] D. Békollé : Le dual de la classe de Bergman dans le complexifié du cône sphérique, C. R. Acad. Sci. Paris 296 (1983), pp. 581-583 .

[B3] D. Békollé : Le dual de l'espace des fonctions holomorphes intégrables dans des domaines de Siegel. Ann. Inst. Fourier (Grenoble) 34 (1984), pp. 125-154 .

[B4] D. Békollé : The dual of the Bergman space A1 in symmetric Siegel domains of type II. Trans. Amer. Soc. 296 (1986), pp. 607-619 .

[B5] D. Békollé : The Bergman projection of L¥in tubes over cones of real, symmetric, positive-definite matrices. Trans. Amer. Soc. 296 (1986), pp. 621-639.

[B6] D. Békollé : Solutions avec estimations de l'équation des ondes . Séminaire d'Analyse Harmonique, 1983-1984, Publi. Math. Orsay (1985) pp.113-125.

[BBR] D.Békollé, A.Bonami & F. Ricci : Work in progress.

(46)

[BT] D. Békollé & A. Temgoua Kagou : Reproducing properties and Lp- estimates for Bergman projections in Siegel domains of type II. Studia Math. 115 (3) (1995), pp. 219-239.

[BT1] D. Békollé & A. Temgoua Kagou : Molecular decompositions and interpolation. Integral Equations and Operator Theory (to appear)

[CR] R. R Coifman & R. Rochberg : Representation theorems for holomorphic and harmonic fonctions in Lp. Astérisque 77 (1980), pp. 11-66, Soc. Math. France .

[G] S. G. Gindikin : Analysis in homogeneous domains. Russian Math. Surveys 19 (4) (1964), pp. 1-89 .

[R] R. Rochberg : Interpolation in Bergman spaces. Mich. Math. J. 29 (1982), pp. 229-236 . [SW] E. M. Stein & G. Weiss : Introduction to Fourier Analysis on Euclidean spaces.Princeton Univ. Press, Princeton, New Jersey (1971) .

[T] A. Temgoua Kagou : Domaine de Siegel de type II : noyau de Bergman. Thèse de Doctorat de 3ème Cycle, Université de Yaoundé I (1993) .

[Tr] F.Trèves : Linear partial differential equations with constant coefficients. Mathematics and its applications, Vol. 6, Gordon Breach, New York, 1966 .

[Z] K. Zhu : Bergman and Hardy spaces with small exponents. Pacific J. Math. Vol. 162, No1 (1994), pp 189-199.

[Z1] K.Zhu : Holomorphic Besov spaces on bounded symmetric domains II. Indiana Univ. Math. J. 44 (4) (1995), pp 1017-1031.

Department of Mathematics Faculty of Science P.O. Box 812

University of Yaounde I Yaounde (Cameroon)

(47)

Références

Documents relatifs

L’accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » ( http://rendiconti.math.unipd.it/ ) implique l’accord avec les

In this paper, we obtain two gluing techniques for constructing self-dual lattices by analyzing the constructions of self-dual lattices in [7], [8], [22] and refining

6.1. I n this section we shall obtain some lower bounds for the inner coefficient of domains which have a certain separation property. We establish now a

Thus the moduli spaces of bounded com- plete Reinhardt pseudoconvex domains with real analytic boundaries or any two bounded complete Reinhardt strictly pseudoconvex domains in A

we shall prove that the result is the topology of uniform convergence on subsets lying strictly inside D3. To conclude this paper, we shall study the group of

ABSTRACT. — By use of wave packets and a push-forwards, we build a model for Toeplitz operators. This model is achived as the composition of the operator of multiplication by a

The dual locale Fn B o f a seminormed space B in the category o f sheaves on X is a compact, completely regular locale.. The proof of this assertion is similar to

First of all, this theory allows us to construct cohomology classes which are represented by values of Eisenstein series and which completely describe