• Aucun résultat trouvé

On <span class="mathjax-formula">$- \frac{d^2}{dx^2} + V$</span> where <span class="mathjax-formula">$V$</span> has infinitely many “bumps”

N/A
N/A
Protected

Academic year: 2022

Partager "On <span class="mathjax-formula">$- \frac{d^2}{dx^2} + V$</span> where <span class="mathjax-formula">$V$</span> has infinitely many “bumps”"

Copied!
8
0
0

Texte intégral

(1)

A NNALES DE L ’I. H. P., SECTION A

M. K LAUS

On −

dxd22

+ V where V has infinitely many “bumps”

Annales de l’I. H. P., section A, tome 38, n

o

1 (1983), p. 7-13

<http://www.numdam.org/item?id=AIHPA_1983__38_1_7_0>

© Gauthier-Villars, 1983, tous droits réservés.

L’accès aux archives de la revue « Annales de l’I. H. P., section A » implique l’accord avec les conditions générales d’utilisation (http://www.numdam.

org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques

http://www.numdam.org/

(2)

7

On - $$d2 / dx2 + V where V

has infinitely many

«

bumps

»

M. KLAUS (*)

Institut fur Theoretische Physik A,

RWTH Aachen, Templergraben 55, 5100 Aachen

Ann. Inst. Henri Poincare, Vol. XXXVIII, 1, 1983,

Section A :

Physique théorique.

ABSTRACT. characterize the

negative part

of the essential spectrum of H = -

d2 dx2

+ V where V is made up of «

bumps »,

their

separation

increasing

with distance. We show that

00, 0] ]

consists pre-

cisely

of those

points

which are accumulation

points

of

eigenvalues

of

Hamiltonians

having

one

bump.

RESUME. - On caracterise la

partie negative

du spectre essentiel du Hamiltonien H = -

~2

d x 2

+

V,

ou Vest forme de « bosses » dont la

sepa-

ration croit avec la distance. On montre que n

( - 00, 0] ]

est

1’ensemble des

points

d’accumulation de valeurs propres des Hamilto- niens a une bosse.

1. INTRODUCTION

To fix our ideas let us

begin

with some notation.

and { (i

E

Z)

be two sequences of real

numbers, satisfying bi

1

( *) Supported by the Deutsche Forschungsgemeinschaft.

Present address: Dept. of Math., VPI, Blacksburg, VA 24061, USA.

Annales de l’Institut Henri Poincaré-Section A-Vol. XXXVIII, 0020-2339/1983/7/X 5,00/

@ Gauthier-Villars

(3)

8 M. KLAUS

sequel ~ ~p

denotes

Lp norm, II IIp,q

the norm of an operator from

Lp

to

Lq ; simply ~ ~ means ~ ~2

or

II I I I 2, 2 . Suppose

that

obeys

and

Define

so that V consists of «

bumps » (Wi)

whose

separation (ai+ 1

-

bi)

increases

as i -+ :t oo. Let

Ho

= -

d2/dx2.

Then

Wi

is

infinitesimally

form-bounded with respect to

Ho,

i. e.

where a &#x3E; 0 can be chosen

arbitrarily

small.

Moreover,

condition

(1.3)

allows us to

choose ~ independently

of i.

Similarly,

follows from

( 1. 5) by using

« localisation »

[1 ].

Then the KLMN theo-

rem

[2] ] gives meaning

to H =

Ho

+ V. We recall that

Q(H)

=

Q(Ho) (i.

e. the form domains

agree)

and

For any further

properties

of H we refer the reader to

[3 ]. Finally,

let

S

= {

E

0|~ sequence {in} (in

E

Z)

and

negative eigenvalues Ezn

of

Ho

+

Win

such

that |inI

~ oo and

Ein

~ E as n ~ oo

}.

The purpose of this note is to prove :

THEOREM

(1.1).

-

[0,

00

]

U S.

REMARKS 1. - The author thanks I. Herbst for useful conversations

concerning

this

problem

when the author was at

Charlottesville,

and the

Deutsche

Forschungsgemeinschaft

for its support

during

the time when this note was written.

2. For

potentials

of this type,

provided

the

separation

of the

bumps

increases

sufficiently rapidty,

Pearson

[4] ] proved

the remarkable result that

[0, oo)

c

(the singular

continuous

spectrum).

For the poten- tials considered in

[4] ]

it follows from our result that

65.~.(H) _ [0, oo).

3.

Any

closed subset

of ( - oo,0] can

occur as a set S

by suitably

selec-

Henri Poincaré-Section A

(4)

9 d2

ON - 20142014 + V WHERE V HAS INFINITELY MANY « BUMPS »

~X’

ting

the

potentials Wi. However,

for all i E

Z,

then S coincides with the set of

negative eigenvalues

of

Ho

+ W. These

points

must be

cluster

points

of

eigenvalues

of H

(since they

cannot be

eigenvalues

of

infinite

multiplicity).

It was this structure of the

negative

spectrum which aroused our interest. In

fact,

we do not know of any

previous example

that would show such a behavior.

4. Of course, the idea behind Theorem

( 1.1 )

is that the

bumps

become

more and more «

independent » as i ~ I

~ oo . This

easily

translates into the result

[0, (0)

~ S ~

6ess(H) by constructing

suitable

Weyl

sequences.

Since this method is so well-known we

skip

this part of the

proof.

For the

opposite

inclusion one has to find a sequence of

potentials Win

whose

eigenvalues Ei~

converge to any

given (negative)

E c S. This will follow

indirectly, by exploiting

the

properties

of the

Birman-Schwinger

kernel

which allows us to

decouple

the

bumps.

That we can do without any spe- cific

growth

condition on the

spacing

of the

bumps

is due to our

using

of

the

right

compactness criterion for a certain

integral

kernel

(Proposi-

tions

(2 .1 ) (2 . 2)).

2 PROOF OF THEOREM

( 1.1 )

AND SOME AUXILIARY RESULTS We introduce

where =

Wi(x - cJ

and

(2 . 3)

should indicate that the first sum in

(2 . 2)

can be viewed as a direct sum of operators.

By

virtue of

( 1. 5)

and

( 1. 6)

all operators in

(2 .1 )-(2 . 3)

are bounded. Let now and

pick

a

corresponding Weyl sequence {fn}.

Set gn

= V V |1/2fn~, noting

that lim

III |V|1/2fn~

&#x3E;

0,

for otherwise

((Ho -

0 for a sub-

sequence.

Set hn

=

(Ho - E)fn.

Then a little calculation

gives

and we see --+ 0. Thus has a

Weyl

sequence. Then Lemma

(2.4) along

with

Prop. (2.2) provide

us with

a

sequence { /.,~ },

--+ -

1,

each

being eigenvalue

of

Vol. XXXVIII, 1-1983.

(5)

10 M. KLAUS

By

the

Birman-Schwinger principle [5 ],

E is

eigenvalue

of

for all n. Then

Ho

+

Wi~

has an

eigenvalue Ein approaching

E as n oc,

for,

if not, we could find a 5 &#x3E; 0 such that

(E - ð,

if n is

sufficiently large.

But since

Win obeys ( 1. 5) uniformly

in n and

-~ -

1, Ho

+

W~n

is a small

perturbation

of

Ho -

Hence

by perturbation theory [6] ]

for n

large enough.

This contradiction

implies

E E S. Theorem

( 1.1 )

is

proved.

II

The

following Propositions

will lead us to Lemma

(2.4)

which has been used in the above

proof.

Our first

goal

is to prove

that

is

compact.

Let

/R(jc)

= 1

if x ~ R, xR(x)

= 0 if &#x3E; R

(R ~ 0).

If

K(x, y)

is an inte-

gral

kernel then K denotes the

corresponding

operator.

PROPOSITION

(2 .1 ). Suppose

that

K(x, y)

is x R-measurable func- tion. Let

and suppose that

ht(R)

--+ 0 as R --+ oo and oo

(i

=

1, 2).

In addi-

tion suppose that

/RK/R: L2([R)

--+

L2([R)

is compact. Then K :

L2([R) --+

is compact.

Proof

2014 It is well known that

by interpolation

one gets the estimate

(note

that

hi(0). II

K

111,1 ~ h,(0)).

Estimating XRK, KXR

and

( 1 - XR)K(l - XR) by

means of this bound

yields

lim

~RK~R

= K in norm as R --+ oo . Hence K is

compact. /

If g : [R --+ [R is any

given function,

let

PROPOSITION

(2.2).

- is compact in and converges

~

i~ j

in norm to

¿ KiiE)

as N ---&#x3E; 00.

i~ j

Annules de l’Institut Henri Poincaré-Section A

(6)

11 d2

ON - 20142014 + V WHERE V HAS INFINITELY MANY « BUMPS »

dx2

Let Recall that

(Ho - E) -1

has kernel

exp 0

( -

.a -

y I)

where E = -

a2,

a &#x3E; 0. Then

Assuming

that i &#x3E; 0 we see that the contribution from the sum

over j

&#x3E; i is bounded

by

where we have used the

simple

estimate

Similarly,

the contribution from

summing over j

i is dominated

by

Thus

A similar bound holds if i ~ -

in.

Since

y)

is «

symmetric » (apart

from a

unimportant

factor and the

right

side of

(2 . 8)

can be made

arbitrarily

small

by choosing n large,

we can

appeal

to Pro-

position (2.1)

and conclude

that

is compact.

i,j

ffi

The norm convergence as N -+ oo follows from that

ofK~

and

W

And this follows from estimates

( 1. 5) ( 1. 6)

which can also be used

to

esti-

mate

( f (V -

to the effect that

where -). 0 as N -). 00

(Note

that the

assumption Wi~1

00

assures us

that ~W(N)i - Wi~1

-). 0

uniformly

in i~Z as N -).

(0),

Pro-

position (2.2)

is

proved,

II

Our next

goal

is to describe the spectrum of In

general

B

E!1

~

An)

much

larger

than n

are arbitrary

bounded

Vol. XXXVIII, 1-1983.

(7)

12 M. KLAUS

operators

(e.

g. let

An

==

T -

where T is defined in

[d,

p.

210,

Ex.:

3.8]:

is the unit circle

while 0"( An)

is the closed unit

disk).

In

~ ~ n

our case,

however,

we have

Proof 2014 Only

the c inclusion is nontrivial.

Ki(E)

is of the form

AiBi

with

A,

=

B, bounded.

Since 0} =

0}

[71 and o

BiAi is self-adjoint,

we see that

such that

(~, - 5,

A +

5) ft 6(KI(E))

for any i E Z.

By

a commutation for- mula

[7] ]

if Z E then

(Ai

=

A, Bi

=

B)

so that

where

p(Z)

= dist

[Z, (r(BA)].

If Z = 03BB we may

replace p(Z) by 03B4

for any

M

Letting K~=@K,(E);

it is clear that 1 -~

-M i

strongly

as M -~ oo, first

for I Z large enough

and then

by

continuation

[6,

p.

427] ]

also for Z = 1 Hence

03BB~03C3( $ Ki

and we are done..

LEMMA .

(2 . 4).

2014 03BB E 6

(~ Ki

has a

singular

sequence Ç&#x3E; 3 sequences

B i

{ and {

such that E

~,in ~ ~ and

oo oo.

Proo, f. 2014 Only

the ==&#x3E; direction has to be

proved. By Proposition (2 . 3)

if

03BB~03C3(~Ki)

then and if no sequence with the above

properties exists,

for

only finitely

many i and 03BB is an isolated

spectral point,

i. e. i~ is an

eigenvalue

of finite

multiplicity

and thus would

not admit a

singular sequence. /

Annales de l’Institut Henri Poincaré-Section A

(8)

13

~

ON -

20142014,

+ V WHERE V HAS INFINITELY MANY « BUMPS »

REFERENCES

[1] J. D. MORGAN III, I. Op. Theory, t. 1, 1979, p. 109-115.

[2] M. REED, B. SIMON, Methods of Modern Mathematical Physics, t. II, Academic Press, 1975.

[3] B. SIMON, Quantum Mechanics for Hamiltonians defined as Quadratic Forms, Prin-

ceton Univ. Press, 1971.

[4] D. PEARSON, Comm. Math. Phys., t. 60, 1978, p. 13-36.

[5] M. REED, B. SIMON, Methods of Modern Mathematical Physics, t. IV, Academic Press, 1978.

[6] T. KATO, Perturbation theory for linear operators, Second Ed., Springer, 1976.

[7] P. A. DEIFT, Duke Math. J., t. 45, 1978, p. 267-310.

(Manuscrit reçu le 17 décembre 1981)

Note added

in proof

B. SIMON

(private communication)

has found another

proof

of Theorem

( 1.1 ).

Vol. XXXVIII, 1-1983.

Références

Documents relatifs

KELLY, Enriched functor categories, Lecture Notes in Mathematics, Vol. DUBUC, Kan extensions in enriched category theory, Lecture Notes in Mathematics,

On se donne deux ensembles 9 et 9 de petites catégories. Cette catégorie admet pour sous-catégories pleines les.. On définit à partir de V des catégories et des

Si s est modérément ramifiée, elle est induite d’un caractère modérément ramifié Il de l’extension quadratique non ramifiée de F, à. valeurs dans

Soit (n, V) une représentation irréductible de G ayant un caractère central, et de dimension infinie.. Les fonctions de Kirillov

Il suffit d'imposer que les matrices où ƒ est appliquée, appartiennent à M +. L'implication inverse est, en général, fausse comme nous le verrons dans le § 3. Elle est vérifiée

L’accès aux archives de la revue « Nouvelles annales de mathématiques » implique l’accord avec les conditions générales d’utilisation ( http://www.numdam.org/conditions )..

Préoccupé par le désir d'atteindre au maximum de simplicité dans l'exposition de cette question toujours effrayante pour les débutants, je me suis aperçu qu'elle perdrait beaucoup de

Sont premiers absolus dans le domaine considéré : i° Les nombres premiers réels de la forme ^h — î -, 2° Le nombre i + i dont la norme est égale à i \ 3° Les nombres x-\-yi,