• Aucun résultat trouvé

Melting-Point in Very Narrow Capillaries

N/A
N/A
Protected

Academic year: 2021

Partager "Melting-Point in Very Narrow Capillaries"

Copied!
11
0
0

Texte intégral

(1)

Publisher’s version / Version de l'éditeur:

Technical Translation (National Research Council of Canada), 1962

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

NRC Publications Archive

Archives des publications du CNRC

For the publisher’s version, please access the DOI link below./ Pour consulter la version de l’éditeur, utilisez le lien DOI ci-dessous.

https://doi.org/10.4224/20331665

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Melting-Point in Very Narrow Capillaries Kubelka, P.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

NRC Publications Record / Notice d'Archives des publications de CNRC:

https://nrc-publications.canada.ca/eng/view/object/?id=7cc32d53-ea4b-404c-8ab7-0d2b0a7df283 https://publications-cnrc.canada.ca/fra/voir/objet/?id=7cc32d53-ea4b-404c-8ab7-0d2b0a7df283

(2)

PREFACE

The Division of Ruilding Research has been active over a period of years in studying the freezing of

water in both consolidated and non-consolidated systems. The deterioration of building materials containing moisture, due to their exposure to low temperatures, has remained a problem over a long period of tirne but

it is now generally recognized that the mechanism of

this action is related to the depression of the freezing- point of water in the pores of the materials.

This work by P. Kubelka has provided one of the basic approaches towards the depression of the melting- point in very narrow capillaries, and is therefore

published by

DBR/NRC

for the benefit of all who share interest in this work.

This translation was prepared by Mr. D.A. Sinclair of the Translations Section of the National Research Council, to whom the Division records its thanks. Ottawa

January 1962

R.F. Legget Director

(3)

NATIONAL RESEARCH COUNCIL OF CANADA

Technical Translatfon 1005

Tit 1.e : The melting-point in very narrow capillaries

( h e r den Schmelzpunkt in sehr engen Capillaren)

Author : Paul Kubelka

Reference: Zeitschrift fcr Elektrochemie,

38

(8a) : 611-614, 1932

(4)

TIIE MELTING-POINT I N VERY NARROW CAPILLARLES The t r i p l e p o i n t of t h e monophase s y s t e m , i . e . t h e m e l t i n g - p o i n t a t t h e n a t u r a l vapour p r e s s u r e , c e a s e s t o be a n i n v a r i a b l e p o i n t as soon as o t h e r e n e r g y p o t e n t i a l s b e s i d e s p r e s s u r e a n d t e m p e r a t u r e a r e i n v o l v e d . I n p r i n c i p l e i t i s p o s s i b l e t h a t t h e m e l t i n g - p o i n t c a n be i n f l u e n c e d by a n e l e c t r i c c h a r g e o r , s a y , by l i g h t r a d i a t i o n s t h a t c a n be a b s o r b e d by t h e s y s t e m . These e f f e c t s have n o t y e t been d e m o n s t r a t e d . O b s e r v a t i o n s a n d t h e o r e t i c a l i n v e s t i g a t i o n s on t h e i n f l u e n c e o f t h e s i z e o f t h e p h a s e boundary s u r f a c e s , i . e . o f t h e boundary s u r f a c e e n e r g y , on t h e m e l t i n g - p o i n t , h a v e i n d e e d been made.

The monophase s y s t e m h a s t h r e e k i n d s of p h a s e boundary

s u r f a c e s , namely c r y s t a l - l i q u i d , c r y s t a l - v a p o u r and l i q u i d - v a p o u r . It h a s s c a r c e l y been n o t e d , h i t h e r t o , t h a t e a c h o f t h e t h r e e boundary s u r f a c e s c a n i n f l u e n c e t h e m e l t i n g - p o i n t , d e p e n d i n g on t h e s p e c i a l a r r a n g e m e n t o f t h e s y s t e m . S i n c e t h e t h r e e t y p e s o f boundary s u r f a c e s p o s s e s s d i f f e r e n t f r e e e n e r g i e s , t h e e x t e n t o f t h e change i n t h e m e l t i n g - p o i n t w i l l depend n o t o n l y on t h e d e g r e e of d i s p e r s i o n , b u t a l s o on t h e s p a t i a l a r r a n g e m e n t of t h e p h a s e s . L e t u s c o n s i d e r t h e f o l l o w i n g a r r a n g e m e n t s : 1. The s o l i d p h a s e i s i n d i r e c t c o n t a c t ( o v e r a l a r g e s p e c i f i c boundary s u r f a c e a r e a ) w i t h t h e l i q u i d p h a s e . The c r y s t a l - l i q u i d boundary s u r f a c e e n e r g y i s h e r e d e c i s i v e f o r t h e change i n t h e m e l t i n g - p o i n t . 2. The s o l i d p h a s e i s d i s p e r s e d i n t h e g a s e o u s p h a s e and i s i n d i r e c b l y ( t h r o u g h t h e g a s e o u s p h a s e ) i n e q u i l i b r i u m w i t h t h e compact l i q u i d p h a s e . Here t h e c r y s t a l - v a p o u r boundary s u r f a c e e n e r g y i s t h e e f f e c t i v e e n e r g y .

3.

The l i q u i d p h a s e i s d i s t r i b u t e d t h r o u g h a n i n e r t , p o r o u s body o f m a t e r i a l d i f f e r i n g from t h e s y s t e m and i s i n e q u i l i b r i u m t h r o u g h t h e g a s e o u s p h a s e w i t h t h e compact s o l i d s u b s t a n c e . Here t h e l i q u i d - v a p o u r boundary s u r f a c e e n e r g y i s d e c i s i v e .

(5)

A 1 l t h o paper1.? h i t i h e r t o wrj. l;t;eri on M : i s s u b j e c t r e 1 att? t o

c a s e 1. On t h c bas.i n oS J. J. l.'homsonls c o n s i d c r n t i . o r i ~ ( : ~ ~ ) arid t h o s c o f P a v l o v ( )

,

Tnnlrnnnri ( 3 ) and Melssner.

(4)

havt: d e r i v e d t h e e q u a t i o n

where Ta, = s t a n d a r d rr~e:l.ting-po:i.rit, T = a l - t e r c d m e l - t i n g - p o i n t , v =

S n l o l e c u l a r volume o f t h e so1:id p h a s e , r =: r a d i u s o f t h e p a r t i c u l e s assumed s p h e r i - c a l , q

-

l a t e n t h e a t o f me1 t:I.ng p e r m o l e ,

a

=

s g c r y s t a l - v a . p o u r b o u n d a r y s u r s S a c e t e n s i o n , a = 1.1.quid-vapour bound- a r y s u r f a c e t e n s i - o n . ~ i e '

:'

) a n d H n b c r

(6)

f g g i v e t h e equa.tli.or1 T - T w -- - - 2vs

T

- 0 03 r q s f '

where asf = c r y s t a l - l : l q u l d b o u n d a r y s u r f ' a c e t e n s r l o n . The d i f f e r e n c e i n t h e two e q u a t i o n s c a n n o t b e due t o t h e f a c t t h a t Tarnnrann a n d

M e i s s n e r a r e c o n s i d e r i . n g meltring i n a n a r r o w c r a c k * . F o r , w h e t h e r w e t t i n g o f t h e c r a c k w a l l b e assumed ( ~ i . ~ . l a . ) o r n o t ( ~ : i . g . l b ) , i r i e i t h e r c a s e o n l y t h e s i z e o f t h e c r y s t a l - 1-i.qu1.d b o u n d a r y s u r f a c e i s i c h a n g e d , j u s t as i n t h e i r i f ' i n i . t e 1iqu:i.d c a s e c o r l s i d e r e d by H a b e r . I f b o t h e q u a t i o n s a r e c o r r e c t , t h e r e f o r e , t h e y must b e i d e n t i c a l , i . e . 0

-

CJ = 0 sf? f f f s f ' T h i s c o n d . i t i o n a c t u a l H y h o l d s f o r t h e rneltrlrig-point ( a n d o n l y f o r t h e m e l t i n g - p o i n t )

,

a s t h e f o l _l..owing c o n s i d e r a t i o n s h o w s . I f t h e l i q u i d w e t s t h e cr.ysta.1. ( t h i s was a l w a y s a.ssumetl p r e v i o u s l - y a n d c a n probab1.y be a c c e p t e d ) , t l i e r l e v e n b e l o w t h e me1 t i n g - p o i n t t h e c r y s t a l . must a l r e a d y b e c o a t e d w.:i.th a t h i n S i l n l o f rrielted s u b s t a n c e

*

The f a c t t h a t Ivle~i.:.;srier wa.s deal.:i.i?l: w:il;h c r y s t a l p l a t e s w h i c h a r e n o t small. j..n a'll. dircct-i.ori:; h a s b e e n taker1 I n t o a c c o u n t i n

e q u a t i o n (1.) b y u s i n g t h e part.i.c:l.e r a d . l u s . i n s t e a d oS t h e p l a t e thickness

.

(6)

due t o w e t t i n g a b s o r p t i o n .

we his

h o l d s t r u e , o f c o u r s e , even f o r a macroscopic c r y s t a l . ) The t h i cltness o f t h i s f i l m must I n c r e a s e c o n t l n u o u s l y as we a p p r o a c h t h e m e l t i n g - p o i n t , b e c a u s e t h e vapour p r e s s u r e comes c l o s e r and c l o s e r t o t h e s a t u r a t i o n p r e s s u r e o f t h e l i q u i d p h a s e . When t h e m e l t i n g - p o i n t Is r e a c h e d t h e vapour i s s a t u r a t e d i n r e l a t i o n t o t h e l i q u i d and t h e w e t t i n g f i l m must t h u s have a t t a i n e d i t s maximum t h i c k n e s s . T h i s i s c h a r a c t e r i z e d by t h e f a c t t h a t t h e two boundary s u r f a c e t e n s i o n s ( j u s t as i n t h e c a s e o f , s a y , a t h i c k f i l m of o i l on w a t e r ) have becorne i n d e p e n d e n t of e a c h o t h e r , i . e . t h e y have r e a c h e d t h e i r normal v a l u e s c o r r e s p o n d - i n g t o a macroscopic e x t e n s i o n of t h e l i q u i d p h a s e . The f r e e e n e r g y c o n t e n t a o f a s q u a r e crn of tihe c r y s t a l s u r f a c e i s t h u s st3 made up o f t h e e n e r g y c o n t e n t o f t h e c r y s t a l . - L i q u i d boundary s u r f a c e , O s f Y and t h a t of t h e l i q u i d - v a p o u r boundary s u r f a c e , a f g ' T h e r e f o r e , which i t w a s r e q u i r e d t o p r o v e . I n t h e s e c o n d o f t h e above a r r a n g e m e n t s t h e c r y s t a l i s n o t i n d i r e c t c o n t a c t w i t h t h e l i q u i d d u r i n g t h e m e l - t l n g p r o c e s s , b u t i s s e p a r a t e d from i t by a s p a c e f i l l e d w i t h vapour. I f t h e p a r t i c l - e s a r e small., m e l t i n g t a k e s p l a c e by e v a p o r a t i o n o f t h e s u b s t a n c e from t h e c r y s t a l and c o n d e n s a t i o n on t h e l i q u i d . D u r i n g t h e m e l t i n g p r o c e s s , t h e r e f o r e , t h e s i z e o f t h e c r y s t a l - v a p o u r boundary s u r f a c e changes, b u t o t h e r w i s e c o n d i t i o n s remain e n t i r e l y s i m i l a r t o c a s e 1. The e q u a t i o n w i l l t h e r e f o r e a p p l y . T h i s e q u a t i o n can be d e r i v e d d i r e c t l y by c a l c u l a t i n g t h e vapour p r e s s u r e I n c r e a s e o f t h e c r y s t a l a c c o r d i n g

(7)

t o W. Thomson

where p = normal v a p o u r p r e s s u r e , 1 = i n c r e a s e v a p o u r p r e s s u r e o f

S p s

t h e c r y s t a l , t h e n introduc-Lng t h e c o n d i t i o n o f m e l t i n g

-

e q u a l i t y of vapour p r e s s u r e s between t h e two p h a s e s

-

where p = vapour p r e s s u r e of t h e l i q u i d , and f i n a l l y , c o n n e c t i n g f t h e s e w i t h t h e e q u a t i o n which we o b t a i n by d e v e l o p i n g t h e l a t e n t h e a t of m e l t i n g as t h e d i f f e r e n c e between t h e h e a t s o f e v a p o r a t i n g a n d s u b l i m a t i o n a f t e r C l a u s i u s - C l a p e y r o n a n d i n t e g r a t i n g from T t o Too*. The two a r r a n g e m e n t s d i s c u s s e d r e s u l t , g e n e r a l l y s p e a k i n g , i n i r r e v e r s i b l e , u n s t a b l e e q u i l i b r i a , b e c a u s e t h e s l i g h t e s t change o f t e m p e r a t u r e r e s u l t s i n t h e c o m p l e t e d i s a p p e a r a n c e o f e i t h e r t h e s o l i d o r t h e l i q u i d p h a s e and t h e e a r l i e s t s t a t e ( w i t h r e s p e c t t o t h e d e g r e e of d i s p e r s i o n ) c a n n o t bc r e s t o r e d by r e v e r s i n g t h e t e m p e r a t u r e c h a n g e . Only M e i s s n e r f s s p e c i a l a r r a n g e m e n t s

-

m e l t i n g i n a narrow c r a c k

-

r e s u l t i n a p r a c t i c a l l y r e v e r s i b l e e q u i l i b r i u m , s i n c e t h e c r y s t a l , a t l e a s t i n one d i m e n s i o n , i s m e c h a n i c a l l y p r e v e n t e d from e x p a n d i n g beyond t h e w i d t h o f t h e c r a c k . I n p r i n c i p l e t h e s t a b i l - i t y would be cornplete i f M e i s s n e r f s c r a c k were o f c o n s t a n t w i d t h and e n c l o s e d on al.1 s i d e s .

The t h i r d a r r a n g e m e n t , where t h e l i q u i d p h a s e i s a b s o r b e d i n a n i n e r t , p o r o u s body a n d by i n t e r v e n t i o n o f t h e g a s e o u s p h a s e i s

*,

N e g l e c t i n g t h e dependence o f t h e h e a t o f m e l t i n g on t h e t e m p e r a t u r e .

(8)

i n e q u i l i b r i u m with t h e conlpa.c.1; csolic! p h a s e , I.eads t o e q u i l i b r i a t h a t a r e always r c v e r s i b 1 . e . 14elt:i.ng agari-n t a k e s p l a c e by sub1.ima- t i o n from t h e s o l i d . p h a s e and c o n d e n s a t i o n on the 1.iqul.d p h a s e .

F o r t h i s c a s e , as f o r c a s e 2 , t h e fol-1 owing m e l t i n g - p o 5 n t e q ~ a t i o n can be d e r i v e d i n t h e same manner:

where v f = molecul.ar volulne of t h e l i q u i d , = edge a n g l e of t h e l i q u i d r e l a t i v e t o t h e i n e r t body, r = c a p i l l a r y r a d i u s . T h i s a r r a n g e m e n t i s o f s p e c i a l i n t e r e s t b e c a u s e , unl.ike t h e o t h e r two, i t p e r m i t s us t o a t t a i n v e r y c o n s i d e r a b l e l o w e r i n g s o f t h e m e l t i n g - p o i n t experimental1.y. F o r example, t h e i n o r g a n i c g e l s and a c t i v a t e d c h a r c o a l s a r e p o r o u s b o d i e s w i t h c a p i l l a r y d i a m e t e r s of t h e o r d e r of

lo-'

cm, whereas t h e p h a s e s e p a r a t i o n f o r t h e o t h e r two a r r a n g e m e n t s i s l i m i t e d t o a p p r o x i m a t e l y cm. It i s t h u s p o s s i b l e t o o b t a i n e f f e c t s t h a t a r e a t h o u s a n d t i m e s g r e a t e r , 1 . e . i n s t e a d of a m e l - t l n g - p o i n t r e d u c t i o n o f t h e o r d e r o f O . l O , r e d u c t i o n s o f t h e o r d e r of 1 0 0 ° , a s M e l s s n e r h a s f o u n d .

The difficulty w i t h t h i s a r r a n g e m e n t , however, l i e s i n t h e f a c t t h a t one c a n n o t d e t e r m i n e by d i r e c t o b s e r v a t i o n w h e t h e r t h e s u b s t a n c e i n t h e s e narrow c a p i l l a r i e s i s l i q u i d o r solrid; t h e

d e t e r m i n a t i o n must be made i n d i r e c t l - y . T h e r e a r e two b a s i c p o s s i - b l l i t i e s f o r d o i n g t h i s . One i s f i r s t t o s o a k t h e p o r o u s s u b s t a n c e above t h e m e l t i n g - p o i n t o f t h e s u b s t a n c e t o be investigated w i t h t h e q u a n t i t y o f l i q u i d c o r r e s p o n d i n g o n l y t o a f r a c t i o n o f i t s

c a p i l l a r y volume, s o t h a t t h e l i q u i d f i l l s t h e n a r r o w e r c a p i l l a r i e s b u t l e a v e s t h e o t h e r s empty. Now, c o o l i n g t h e s y s t c n i and c o n t i n u - o u s l y m e a s u r i n g t h e vapour p r e s s u r e , we r e c o r d t h e vapour p r e s s u r e c u r v e , i . e . t h e i s o s t e r e of t h e l i q u i d , c o n t a i n e d I n t h e c a p i l l a r i e s .

As l o n g as t h e i s o s ' i e r e i s a srnooth c u r v e , t h e subs.1;a.nce I n t h e

c a p i l l a r i e s i s cl.car1.y s t r i l l 1 . i q u i d . C o o l i d g e

( 7 )

o b t a i n e d i s o - s t e r e s of benzene .in a c t i v a t e d c h a r c o a l ~ h i . c h remained srnooth down t o - 3 3 O C , c o r r e s p o n d i n g t o a m e l t i n g - p o i n t loweraing o f a b o u t 40".

(9)

Actually, Coolidge interpretes his results differently. He assumes that benzene remains liquid below the melting-point, but believes that instead of completely filling the individual capillar- ies, it covers the entire surface of the charcoal with a uniform adsorption or wetting film. He thus believes that the specific effect of the charcoal surface, not the degree of dispersion of the benzene, is responsible for the lowering of the melting-~oint. This interpretation, which assumes that the equilibrium between the benzene and activated charcoal is governed by adsorption and not by capillary condensation stands in contradiction to the condition of 11

covalent pressures

"(81,

which has been proved valid for benzene. Another way is to bring the substance to be investigated below its melting-point, i.e. in solid form, into contact with silica gel, activated charcoal and similar substances and, by weighing, to

determine the quantity of substance that passes over to the porous body. If this experiment is repeated with various kinds of porous substances, then, if the above considerations are correct, all these porous substances must absorb liquid to the extent that all capillaries with diameters below a certain limit, the same for all substances, will be filled up, while all other capillaries remain empty. Then, if the structure of the porous substance, i.e. the distribution of the capillary volume with respect to the individual capillary diameters, is known from previous capillary condensation tests(9), it is merely necessary to convert the quantities of

substance obtained by weighing into parts by volume of liquid and to determine by comparison with the structure curves of the porous substance whether these volumes correspond to the above assumption, i.e. whether in each case the volume of liquid agrees with the

capillary volume up to the given limiting diameter.

o ow ever,

if the quantity of substance retained by the porous material is

entered in the calculation as

a

volume of solid substance then this agreement will not hold.)

Tests which will be reported in detail by the author elsewhere, enable us to prove in the manner indicated here, that iodine in

(10)

a p p r o x i m a t e l y 100° below t h e m e l t i n g - p o i n t . Nowhere n e a r s o g r e a t a l o w e r i n g of t h e m e l t i n g - p o i n t as e v e r been o b s e r v e d i n t h e monophase s y s t e m . T h i s o f c o u r s e i s n o t a c a s e of s i m p l e s u p e r - c o o l i n g . It i s a r e v e r s i b l e e q u i l i b r i u m . Summarv 1. The m e l t i n g - p o i n t of d i s p e r s e d monophase s y s t e m s c a n be i n f l u e n c e d n o t o n l y by t h e c r y s t a l - l i q u i d boundary s u r f a c e e n e r g y , b u t a l s o by t h e c r y s t a l - v a p o u r o r l i q u i d - v a p o u r boundary s u r f a c e e n e r g y . Which of t h e t h r e e . b o u n d a r y s u r f a c e e n e r g i e s t a k e s e f f e c t depends on t h e s p a t i a l a r r a n g e m e n t o f t h e s y s t e m . 2 . Two d i f f e r e n t e q u a t i o n s a r e g i v e n i n t h e l i t e r a t u r e f o r t h e i n f l u e n c i n g of t h e m e l t i n g - p o i n t by t h e c r y s t a l - l i q u i d boundary s u r f a c e e n e r g y . With t h e a i d of a newly d e r i v e d r e l a t i o n s h i p

between t h e t h r e e boundary s u r f a c e t e n s i o n s o f t h e monophase s y s t e m i t i s d e m o n s t r a t e d t h a t t h e two e q u a t i o n s a r e i d e n t i c a l .

3 .

The c a s e o f i n f l u e n c i n g t h e m e l t i n g - p o i n t by t h e l i q u i d - vapour boundary s u r f a c e e n e r g y , which a p p l i e d when t h e l i q u i d i s a b s o r b e d by a n i n e r t p o r o u s s u b s t a n c e and i s i n e q u i l i b r i u m

t h r o u g h t h e g a s e o u s p h a s e w i t h a compact s o l i d p h a s e , i s d e a l t w i t h more f u l l y . T h i s a r r a n g e m e n t p e r m i t s t h e e x p e r i m e n t a l r e a l i z a t i o n of r e v e r s i b l e r e d u c t i o n s of t h e m e l t i n g - p o i n t of t h e o r d e r of 1 0 0 ° .

(11)

References

Thomson, J . J . A p p l i c a t i o n s of dyna.mics t o p h y s i c s and c h e m i s t r y . London,

1888.

p . 251.. ( c f

.

F r e u n d l i c h , Kap.i.lla.rchemie, 1: 145 and 4 6 0 ) .

Pawlow. 2 . phys. Chem. 65: 1, 1909 e t c . ( c f . F r e u n d l i c h l o c . c i t . ) .

Tarnrnann. 2. anorg. a l l g . Chem. 110: 166, 1920. Meissner. Z . anorg. a l l g . Chem. 110: 169, 1920.

R i e . D i s s e r t a t i o n . Vienna, 1920; 2 . phys. Chem.

104:

354, 1923.

Haber. Ber. Dtsch. chern. Ges. 55: 1722, 1922. Coolidge. J . Am. Chem. Soc.

46:

596, 1924. Kubelka, P . 2 . Elektrochem. 37:

638, 1931.

c f . Kubelka, P . K o l l ~ l d - 2 . 55: 129,

1931;

Kubelka, P . and Muller, M. K o l l o i d - 2 . 58:

189,

1932.

Wetted

L i q u i d Crystal layer Liquid G a s f i l m c r y s t a l wetted layer

F i g . l a F i g . l b

Diagram of t h e m e l t i n g p r o c e s s i n t h e Meissner gap The l i q u i d wets t h e w a l l

Figure

Diagram  of  t h e   m e l t i n g   p r o c e s s   i n   t h e   Meissner  gap  The  l i q u i d   wets  t h e   w a l l

Références

Documents relatifs

[r]

[r]

Residency in a family medicine–run hospital Many programs offer family medicine training in secondary and primary care hospitals, run primarily by family doctors (including McGill’s

initialisation (par lecture) des variables d'entrée ; writeln est facultatif, readln indispensable. pas de point virgule avant

(1) to the importance of providing the Organization with fully documented information covering the terms of reference of the consultant and the problems

safekeeping. The pynabyte utility DYNASTAT displays your current system configuration. 'The steps described below will change the drive assignrnentsso that you will

C, SnssNr{aNN: Normal bundles for codimension 2locally flat imbedd- ings. E.: Affine structures in

There are no program restrictions on the number of points per curve, the number of scales or labels per graph, or the number of different graphs which Inay be