• Aucun résultat trouvé

The PANDA project at FAIR

N/A
N/A
Protected

Academic year: 2022

Partager "The PANDA project at FAIR"

Copied!
35
0
0

Texte intégral

(1)

Strong interactions studies with Antiprotons

The PANDA project at FAIR

Thierry HENNINO IPN Orsay, France

The structure and dynamics of hadrons IPN, 28 october 2010

(2)

GSI today

FAIR future facility

PANDA in the FAIR layout

(3)

PANDA physics motivation

•With antiprotons, we can have access to a broad sprectrum of QCD objects

Understand the confinement of quarks (charmonium) Find other forms of hadrons (glueballs and hybrids) Origin of mass of strongly interacting systems

Many others opportunities Nucleon

Meson Baryon

‘normal’

‘exotic’

(4)

PANDA physics motivation

LEAR PANDA

(5)

Charmonium spectroscopy

Many states predicted

• below the open charm threshold

• narrow states

• only a few states (8)

• can be formed directly in pp

• above the threshold

• existence of narrow states ( DD)

• new states found. What are they ?

Key parameters for spectroscopy

• statistics

• resolution

• AMAP decay channels with full event characterization

• different entrance channels

• angular distributions

(6)

Charmonium spectroscopy

X(3872):

c1

,

hc2

, mol. states, tetraquark ??

Z(3931): ’c2 2++ (mass too low by 45 MeV)

X(3940):

h

’’

c

? But m too low,

G

too small, channel inconsistencies Y(3940):

h

’’

c

or

c1

?? SU

f

(3) violating decay

Y(4260): 1

--

, but does not fit with any predicted state. Hybrid??

Y(4321) : ……

Beam energy ( M up to 5.4 GeV/c

2

)

L uminosity ( at least 10 × existing machines) Access to a large variety of J

PC

states

Mass resolution ( < 1 MeV )

4 p coverage with B field and extended PID

Statistics ( ~10

4

to 10

6

events per running campaign )

P

A

N

D

A

(7)
(8)

Glueballs and hybrids

Morningstar,Peardon, PRD60(1999)34509 Morningstar,Peardon, PRD56(1997)4043

0+- 2+-

Glueballs and Hybrids

(JPC = 0-- , 0+- , 1-+ , 2+- , 3-+ …) qq, gg, ggg , qqg , qqqq

Numerous predictions:

•Bag model, Constituent gluon model

•Flux tube model, LQCD calculations High statistics (≥ 104 events per running year) Energy (M up to 5.4 GeV/c2)

Resolution in formation (2 10-5) Comparison e+e-/ pp

• in e+e- no glue

• in e+e- formation gives only g like states

• in pp access to many JPC states + glue

• Formation and production:

0+- and 2+- in production

0+- and 2+- NOT in formation

The 2 lowest oddballs predicted

LQCD

(9)

|L-S|<J<L+S

P=(-1)L+1 (q and qbar have opposite parity)

C=(-1)L+S (only for non-flavored systems: u-ubar, s-sbar, etc.)

G=(-1)I+L+S

L=0 (S-wave)  P=-

S=0  0- +

S=1  1- -

L=1 (P-wave)  P=+

S=0  1+ -

S=1  0+ + , 1+ + , 2+ +

L=2 (D-wave)  P=-

S=0  2- +

S=1  1- - , 2- - , 3- -

L=3 (F-wave)  P=+

S=0  3+ -

S=1  2+ + , 3+ + , 4+ +

0 + + 1 + + 2 + + 3 + + 4 + +

0 - - 1 - - 2 - - 3 - - 4 - - 0 + - 1 + - 2 + - 3 + - 4 + - 0 - + 1 - + 2 - + 3 - + 4 - + Forbidden for u-ubar, d-dbar, s-sbar, etc…

Allowed for u-ubar, d-dbar, s-sbar, etc…

Quark-antiquark systems

(10)

PANDA specificity

Production of 

c1,2

(1

++

, 2

++

)

• In e+e- need of an intermediate step to reach these states

Detector resolution dependant

In pp, can be seen in formation directly

Rate measurement: ultimate

resolution given by the beam quality

s= 8  0.5 MeV

pp

pp

(11)

Further topics

• Open charm physics

• Spectroscopy

• Rare decays

• CP violation in charm sector

• EM physics

• …..

Image of a baryon at the quark level

(12)

EM processes

• Inverse Compton scattering pp  gg

• handbag diagram

• GDA parametrize the soft part

• low s: 0.2 pb at q2=30 (GeV/c)2

 200 events per running campain

• rejection of background: p0p0 and p0g ??

 ECAL resolution to separate g from p0

• Time-Like Form factors

• pp  e

+

e

-

(from s=5 to 30 (GeV/c)

2

)

• Exclusive channels:

• Transition Density Amplitude (B. Pire et al)

• TL FF in unphysical region by e+e-X (X=g, p0, r)

• Axial FF of the nucleon (E. Tomasi et al)

(13)

Facteurs de forme Space-like et Time-like





  

  CM CM

CM

t  t 

t

 p

2 2

2 2 2

2

sin )

cos 1

) ( 1 (

) 8 (cos

TL TL E

M p

G G d M

_ _ q2<0

e- e-

p p

q2>0

e-

e+ p

p

q2 FFs complexes FFs réels

Unphysical region

Space-like

Time-like

GE(0)=1 GM(0)=p

p+p ↔ e++e- e+p  e+p

p+p ↔ e+ +e- +p0

Accès direct à |GE| et |GM| par ds/dW

GE et GM paramétrisent le courant hadronique SL

TL

s(ppe+e-) dans l’approximation à 1 photon

Analyticité

Propriétés asymptotiques ( q2 ∞ )

Relations de dispersion

3.52 (GeV/c)2

(14)

Ntot=1.1 106 Ntot=64000 Ntot=2000

Taux de comptage et séparation |G E |/|G M |

Simulation de la réaction p p  e+e-

Section efficace normalisée sur les données

3 hypothèses: GE=0, |GE|=|GM| and |GE|=3|GM|

~120 jours, L = 2. 10

32

cm

-2

s

-1

= 2 fb

-1

GE=0 GE=GM GE=3GM

Non corrigé de l’acceptance et de l’efficacité Erreurs statistiques seules

(15)

Séparer pp  e + e - du bruit

Herméticité du détecteur

Identification de particules PID

Trajectographie, corrélations en θ and φ

Coupures sur Minv ou Mmanq

π+π- dominant

μ+μ- ~ e+e- facile à séparer

K+K-~ π+π- , mais mK > mp

Cinématique très proche de e+e-

PID crucial

s(p0p0)/s(ee)=104 -105 à q2=8.2 (GeV/c)2

p0p0 g g e+ e- e+ e- (Dalitz et conversion)

facile à éliminer

Herméticité

Minv(e+e-) / 6 corps

2.4 106

cosCM

1.5 105

q2 = 8.21 (GeV/c)2

s(p p )/s(e+ e- )

3 corps ou plus

2 corps (π

+

π

-

+

μ

-

,K

+

K

-

0

π

0

)

Canaux chargés

Canaux neutres (p0p0)

(16)

Réjection de p + p

PID

Probabilité calculée pour chaque détecteur

MVD, STT , DIRC , ECAL , MUO

Probabilité combinée normalisée

Complémentarité des détecteurs à des impulsions différentes

Fit cinématique

Conservation p et E

CL >0.001

CL(e+,e-)>10×CL(p+,p-)

36 / 9 / 2.3 / 0.6

sexp= 2 mrad ECAL

DIRC STT

p e

(17)

Estimation de la précision atteinte

TL M TL E

G q G

R( 2)

Erreur prédite sur

|GE|/|GM| à PANDA

|GE|=|GM|

Présent 5 % 20% 50% -- -- PANDA < 1 % 2% 10% 23% 50%

D|GM|/|GM|

VMD Iachello VMD étendu

« QCD inspired »

(18)

Medium effects

Hayashigaki, PLB 487 (2000) 96 Morath, Lee, Weise, priv. Comm.

D

50 MeV

D

D+ vacuum nuclear medium

p K

25 MeV

100 MeV

K+

K p p QCD ground state contains qq and also glue

condensate

Effects of non-vanishing < qq > + r and T dependance have lead to considerable theoretical work

The r and T dependance of the qq

condensate has triggered many experiments.

At GSI, CERN, KEK, Bonn, JLAB… in the r, w and f region (the so-called vector meson) Effects also in the scalar meson sector (p, K ) With PANDA, on may have access to the glue part of the QCD vacuum in the charm sector

(19)

Medium effects on cc

Meson

h

C

[0-+]

J/y

[1]

0,1,2

[0,1,2++]

Y(3686) [1]

Y(3770) [1]

Width(fm/c) 11 40000 20/200/100 100000 700000

Expected mass shift

-5 MeV to

-8 MeV

-7 MeV to -10 MeV

-40 MeV to -60 MeV

-100 MeV to

-130 MeV

-120 MeV to

-140 MeV Observation

(BR)

gg

( 4 104 )

e

+

e

-

( 6 102 )

J/y g

( .01 / .3 / 0.2 )

e

+

e

-

( 8 103 )

e

+

e

-

( 8 105 )

c0

Stark effect:

Peskin, Luke, Lee Potential models:

Brodsky et al QCD sum rules:

Weise, Klingl, Lee

1-10 events per day

(20)

Medium effects

Other interesting possibilities

• J/ y in the medium (relation to QGP) under controlled kinematics: a few 100 counts/day

• Effect on open charm mesons D

+

and D

-

• no rescattering free decay channel and ct too large  no direct observation possible

• production threshold lowered due to modified in-medium mass (10 MeV effect might be detectable from a rate measurement)

• partially masked by fermi motion  seems however handable

• 105 D+D-/year (‘good’ events ?? )

•Anti K in matter ….

(21)

Hypernuclear physics

u/d quarks replaced by 2 s-quarks

Only 6 double-strange nuclei seen today Unique possibility for LL interaction studies

X- capture:

X-p  LL + 28 MeV

X

-

3 GeV/c

Kaon

s

_

X

L L

trigger

p_

Slowing down 2.

and capture of X in secondary

target nucleus

1.

Hyperon- antihyperon

production at threshold

+28MeV

g

3.

g-spectroscopy with Ge-detectors

g

(22)

What is PANDA made of ?

• ‘No empty space’  Almost full hermiticity

• High rate capability : up to 10

7

p interactions per sec

• Tracking of + & - from 100 MeV/c up to 10 GeV/c

• High resolution EM calorimetry (0.01  10 GeV/c)

• Vertex measurements

• Extended PID capabilities ( g, e,  , p , K, p)

• As low as possible material budget

• High level, fast and flexible triggering system

• High Energy p Storage Ring with cooling

(23)

GSI today

FAIR future facility

PANDA in the FAIR layout

(24)

High Energy Storage Ring

• Circumference 442 m

• Injection at 3.7 GeV/c

• Acceleration / cooling p

p

: 1.5 – 15 GeV/c

• High intensity mode

2 1011 p/s L= 2. 1032 cm-2s-1

p/p= 10-4 (stoch. cooling)

• High resolution mode

2 1011 p/s L= 2. 1031 cm-2s-1

p/p= 10-5 (e- cooling)

• Keep open possibility for

polarised p

(25)

Le détecteur PANDA (antiProton ANnilation at DArmstadt

Forward Spectrometer Target Spectrometer

ECAL

RICH

MUON MUON

TRACKING

E/HCAL

DIRC

Contribution IPN Orsay

(26)

Target spectrometer

• Solenoidal field 2 T

•Uniformity 2%

•Gas jet, droplet target, solid

• density up to 2. 1015 at.cm-2

•MVD for vertex tracking

• srj=100 m (D+ have ct=310 m)

•Tracking detector (TPC/STT)

• s= 1%

•DIRC for PID

•ECAL for e and g

•Muons detection

TS

Tracking detector

(27)

Micro Vertex Detector

• requirements

• vertex detection ( ct(D+) ~310 m )

• sxy and sz < 100 m

• low material budget X/X0 < 4%

• high rates

• design

• 5 concentric barrels + 6 disks

• Hybrid pixel (50×200/100×100

m2)

• Strip detectors

• 540 modules totalling 70000 ch.

• dE/dx measurements for PID

x/X0=f()

(28)

Tracking with TPC

• Parameters

• L=1.2 m, r=0.15-0.42 m

• Drift field E || B v=28 mm/s

• Gas: Ne/CO2 (+CH4/CF4)

• Multi-GEM stack for amplification and ion backflow suppression

• Pad size ~2 x 2 mm2 100000 ch.

• Simulations

• srj= 0.15 mm sz= 1 mm

• p/p=1%

• s(dE/dx)=6% (40 to 80 meas.)

•Challenges

• continuous flow

• space charge

(29)

Tracking with STT

• 5000 individual straws

• X/X

0

= 1 % minimum

• s

rj

= 0.15 mm, s

z

=2.9 mm

• mom. resol. s

pt

/p

t

=1.2%

• high counting rates

• Ar/CO

2

at 2 bar

• Skew angle +-3°

•Lower dE/dx resol. 10%

•Tracklet length uncertainty

• fewer independant ‘cells’ (27)

4-10axial layers 5skewed double-layers

7axial layers

= 12.2 m s= 176 m Single tube

resolution measured

(30)

Cerenkov

• separate  , p , K and p up to ~1.5 GeV/c

• DIRC’s in TS:

• fused silica bars

• mirror imaging

• photon detection (PMTs)

• RICH in FS

• Aerogel or C

4

F

10

• ring detection

Focusing barrel DIRC geometry

tprop=f(j)

1 )

cos(  

n

Cerenkov effect: emission of light on a cone if v>c

Detector Surface Solid

Radiator

Particle Track

Cherenkov Photon Trajectories

(31)

Target Spec. ECAL

coverage

• Hermiticity (98%)

• ~20000 crystals

• compact (X0=0.9 cm)

• E resolution

• 1.9% at 1 GeV

• timing properties

• t ≤ 10 ns

• excellent res. s=0.5 ns

• broad dyn. range

• 10 MeV to 10 GeV

• APD in B field

• operated at -25°C

• radiation tolerant

backward end cap

145°-175° 16-sector barrel 22°-145°

forward end cap

10°-22°

(32)

Muon detection

•Muon identification

•Range system

•Muon: only EM

interaction  long range

• p, K,p: strongly

interacting  ‘stopped ’

Iron/Mini Drift Tubes sandwich

MDT detector

(33)

Forward spectrometer

• 

H

×

v

= 10° ×

• 8 stations with x.y meas.

• Mini Drift Cell

• s = 100 m

• tracking in B field

Bdz=2Tm

• p/p = 1% at 5 GeV/c

• Shashlyk ECAL

• Pb / Scint / WLS  4% E-1/2

• Hadron calorimeter HCAL

• Fe / Scint / WLS  .34 E-1/2

• RICH

• C4F10 or aerogel

• TOF

• muons detectors

FS

STT Tracker

ECAL RICH

HCAL

(34)

EMC

DIRC

Méthode de la moyenne tronquée avec une coupure ajustée en fonction de l’impulsion (srf (STT)=150 m) s(Gauss) = 10% (16 mesures)

1 GeV/c

Ng= 15 - 30

s(mrad) = 10/(Ng)1/2

1.8 à 2.5 mrad

E/p vs p Extension gerbe Efficacité (e) Réseau de neurone

hadronic shower

36 / 9 / 2.3 / 0.6

Particle Identification

DE in STT

(35)

Conclusion

• PANDA offers new, challenging and brillant future for precise studies of QCD objects in excellent experimental conditions

• FAIR and PANDA ready by 2018/9 for experiments

• PANDA is an international collaboration of ~450 physicists, representing 50 laboratories over 17 countries

• FAIR cost: 1200 M€ (75% paid by Germany, 25% by other countries)

• PANDA cost: 60 M€ (out of which ~1/4 for the calorimeter)

Basel, Beijing, Bochum, Bonn, IFIN Bucharest, Brescia, Catania, Cracow, Dresden, Edinburg, Erlangen, Ferrara, Frankfurt, Genova, Giessen, Glasgow, GSI, KVI Groningen, Inst. of Physics Helsinki, FZ Jülich, JINR Dubna, Katowice, Lanzhou, LNF, Mainz, Milano, Minsk, TU München, Münster, Northwestern, BINP

Novosibirsk, Pavia, Piemonte Orientale, IPN Orsay, IHEP Protvino, PNPI St. Petersburg, KTH Stockholm, Stockholm, Dep. A. Avogadro Torino, Dep. Fis. Sperimentale Torino, Torino Politecnico, Trieste, TSL Uppsala, Tübingen, Uppsala, Valencia, SINS Warsaw, TU Warsaw, AAS Wien

Références

Documents relatifs

Data of high precision provide important constraints for partial wave analysis..

7.15 shows the resolution as a function of the tagged photons applying a threshold at 0.75 MeV on the deposit energy on each crystal (for beam option 1).. The resolution at 1 GeV

Chapter 8: based on the formalism derived in the appendix A, the experi- mental observables for the elastic reaction induced by proton scattering from electrons are calculated in

Since the statistical uncertainty in α and ε is very small and only due to the size of our simulations (not dependent of the measurement, but on the number of generated events), I

Hence, even if a large constituent quark mass is chosen in order to suppress the unphysical decays into quarks, one obtains a poor description of the -meson propagator and

All charged particle tracks, excluding those of the leptons from the J= decay, were used for primary vertex reconstruction if they had sucient associated hits in the VD.. The

En effet, nous avons observé que l’écrivain fait appel au terme« Algérie » environ une centaine de fois, une exagération qui n’est pas des moindre ; où il va même

Syen nessufev-d seg-sent tulmisin yellan d tilsasiyin i vef bnant am : tafyirt n tazwara d taggara, tutlayt, adeg, akud, iwudam, tigawin, tadiwennit akked uglam. Propp, i