• Aucun résultat trouvé

Supercooling capacity of water and the linear crystallization velocity of ice in aqueous solutions

N/A
N/A
Protected

Academic year: 2021

Partager "Supercooling capacity of water and the linear crystallization velocity of ice in aqueous solutions"

Copied!
15
0
0

Texte intégral

(1)

Publisher’s version / Version de l'éditeur:

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

Technical Translation (National Research Council of Canada), 1948-10-26

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

NRC Publications Archive Record / Notice des Archives des publications du CNRC :

https://nrc-publications.canada.ca/eng/view/object/?id=a8437836-ec36-44a8-81f6-8e8c198e0c31 https://publications-cnrc.canada.ca/fra/voir/objet/?id=a8437836-ec36-44a8-81f6-8e8c198e0c31

NRC Publications Archive

Archives des publications du CNRC

For the publisher’s version, please access the DOI link below./ Pour consulter la version de l’éditeur, utilisez le lien DOI ci-dessous.

https://doi.org/10.4224/20331576

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Supercooling capacity of water and the linear crystallization velocity of ice in aqueous solutions

(2)

Ref Ser 421 ~ 2 t h no. TT-79 BLDG COPY NO.

NATIONAL

RESEARCH

COUNCIL

OF

CANADA

DIVISION OF MECHANICAL ENGINEERING A IRC PUB

!

1 4

TECHNICAL TRANSLATION NO. TT

-

79

THE

SLIPERCOOLING CAPACITY OF WATER AND THE LINEAR

CRYSTALLIZATION VELOCITY OF ICE IN AQLlEOLlS SOLUTIONS

KRISTALLlSATlONSGESCHWlNDlGKElT DES EISES IN WASSR~GEN LOSUNGEN

II

BY G. TAMMANN AND A. BUCHNER

OTTAWA

(3)

NATIONAL RESEARCH LABORATORIES Ottawa, Canada TECHNICAL TRANSLATION D i v i s ion. of Mechanical E n g i n e e r i n g Pages

-

P r e f a c e

-

2

-

Text

-

9 F i g u r e s

-

8 Tech, T r a n s , TT-79 Date

-

26 October, 1948,

Lab, Order No,

-

5424A

F i l e

-

12-R4-22

T i t l e : Die U n t e r r n l u n g s f l t h i g k e i t d e s Wassers und d i e

l i n e a r e Kristallisationsgeschwindigkeit des

E i s e s i n wgssrigen L8sungen0 By: G o Tammann and A o ~ f l c h n e r ,

Reference : Ze i t s c h r i f t f u r a n o r g a n i s c h e und a l l g e m e i n e Chemie ( J o u r n a l f o r I n o r g a n i c and General

C h e m i s t r y ) , Vol, 222, 1935, pp, 371-381, Report o f t h e I n s t i t u t e f o r P h y s i c a l Chemistry,

G8 t t i n g e n ,

S u b j e c t : THE SUPERCOOLING CAPACITY OF WATER AND TIE

L I N E A R CRYSTALLIZATION VELOCITY OF ICE I N AQUEOUS SOLUTIONS, S u b m i t t e d b y : J o Lo O r r , T r a n s l a t e d by: He ad, H o A o G o Nathan, Low Temperature L a b o r a t o r y , Approved by: J o H , P a r k i n , D i r e c t o r , SYNOPSIS Very l i t t l e i s known a b o u t t h e c r y s t a l l i z a t i o n v e l o c i t y of w a t e r and i t s s o l u t i o n s o This r e p o r t s e r v e s t o draw a t t e n t i o n t o a f i e l d of s c i e n c e which h a s s c a r c e l y been touched upon by r e s e a r c h ,

(4)

Page

-

( i f ) Te ch, Trans, TT- 99 TABLE OF C O N T E N 2 --

--

P The S u p e r c o o l f n g C a p a c i t y of 'JVater

P

1, The S u p e r c o o l i n g Capa- c i t y o f Pure Water 2 2 , The I n f l u e n c e of F o r e i g n S u b s t a n c e s on t h e S u p e r - c o o l i n g C a p a c i t y of Water 3 P I The L i n e a r C r y s t a l l i z a t i o n V e l o c i t y of I c e i n Aqueous Sol.ut io n s 5

(5)

Page

-

l

Tech, T r a n s , TT-79 THE SUPERCOOLING CAPACITY OF WATER AND TKE

LINEAR CRYSTALLIZATION VELOCITY OF

IC" I N AQUEOUS SOLUTIONS

TH5 SUPERCOOLING CAPACITY OF' WATER

The c r y s t a l l i z a t i o n c e n t r e s of i c e a r i s l n g i n s u p e r c o o l e d w a t e r have

-

even a t s m a l l s u p e r c o o l i n g s

-

such g r e a t l i n e a r c r y s t a l P f z a t f o n v e l o c i t i e s t h a t w i t h i n a s h o r t time d e n d r i t f c i c e n e e d l e s a r e s e e n throughout t h e e n t i r e o b s e r v a t i o n v e s s e l , For t h i s r e a s o n t h e observat.ion of t h e f o r m a t i o n of f ' u r t h e r c r y s t a l l i z a t i o n c e n t r e s i s fmpossible, Hence i t i s n o t p o s s i b l e ( b y analogy w i t h o t h e r f l u i d s ) t o determine the s u p e r c o o l i n g c a p a c i t y o f w a t e r a s a f u n c t i o n of t h e s u p e r c o o l i n g , by countfng t h e c r y s t a l l i z a t i o n c e n t r e s which form s p o n t a n e o u s l y w i t h i n a g i v e n time a t a g i v e n

s u p e r c o o l i n g , I t i s o n l y p o s s i b l e t o determine t h e appear- ance of t h e f i r s t c r y s t a l l i z a t i o n c e n t r e a s a f u n c t i o n o f t h e time and temperature, This may be done i n two ways, e i t h e r by c o o l i n g t h e w a t e r s l o w l y and determinfng t h e tem- p e r a t u r e a t which t h e c r y s t a l l i z a t i o n b e g i n s o r by c o o l i n g a small q u a n t i t y o f water a s r a p i d l y as p o s s i b l e t o a known temperature and by measuring t h e time u n t i l t h e f i r s t

c r y s t a l l i z a t i o n c e n t r e forms, Observations were made u s i n g b o t h methods, The r e s u l t s a r e g i v e n below,

For the slow c o o l i n g t e s t s g l a s s t u b e s having an i n n e r d i a m e t e r of 0 , 8 mm, and a w a l l t h i c k n e s s o f 0,4 mm, were u s e d , Each tube was f i l l e d w i t h 0,4 c c , of water and

s e a l e d a t b o t h e n d s , The tubes were p u t i n a b a t h which was c o o l e d by a copper p i p e f i l l e d w i t h d r y i c e , A mechanical s t i r r i n g rod ensured uniform temperature d i s t r i b u t i o n , I n

t h i s b a t h t h e t u b e s were cooled w i t h c o n s t a n t v e l o c i t y b e g i n n i n g a t t h e m e l t i n g p o i n t , The t e m p e r a t u r e a t which

spontaneous c r y s t a l l f z a t f o n began was observed, Normally t h e c o o l i n g r a t e was approximately 0,7 t o 0080C p e r minute, For t h e t e s t s u s i n g t h e r a p i d c o o l i n g method t h e tubes were s i m i l a r b u t heda s m a l l e r w a l l t h i c k n e s s o f o n l y 0 , l mm, The t u b e s were p l a c e d i n a b a t h o f a l c o h o l whose t e m p e r a t u r e was m a i n t a i n e d c o n s t a n t t o w i t h i n O , l e C , The time was measured

from t h e immersion of t h e tube t o t h e b e g i n n i n g o f c r y s t a l - l i z a t i o n ,

(6)

Pag?

-

2

T e c h Trans. TT-79

1,

The Su-1~ C a p a c i t y of Puce W a t e ~

The r e a d i n g s t a k e n fn t h e t e s t s w i t h pure water a r e g i v e n i n Table I ,

Tubes 1 t o 4 c o n t a i n e d o r d i n a r y d i s t i l l e d watek while t u b e s a and b were f i . Z l e w i t h heavy w a t e r c o n t a i n i n g moye than

X P

99,s p e r c e n t D20 The t a b l e g i v e s t h e t e m p e ~ a t u r e s of' the b e g i n n i n g of c r y ~ t a l l i z a t i o n a t v a r i o u s c o o l f n g r a t e s , There a r e d i f f e r e n c e s of s e v e r a l degrees be tween t h e v a r f ous t ~ l b o s , whereas, on r e p e a t i n g t h e measurement f o r e a c h f n d f v i d u a l

t u b e , t h e v a r i a t i o n s amount o n l y t o a few t e n t h s o f a d a g r e e ,

d e s p i t e t h e f a c t t h a t t h e formatlorn o f a c s y s % a l l i a a t l o n c e a t r e IS 8 chance occurInence and conseqilently a P a ~ g c r

v a r i a t i o n would have been expected,

The t e m p e r a t u r e of t h e b e g i n n i n g of c r y s t a l - l i z a t i o n was independent o f tho c o o l i n g r a t e o v e r a wide r a n g e , The formatfon of an i c e n u c l e u s was n e v e r t h e l e s s favoured by sudden c o o l i n g o I n f i v e t e s t s o f tube 1, f o r

example, d u r i n g the c o o l i n g from +20° t o -12°C c r y s t a l l i z a t i o n o c c u r r e d a f t e r 12,0 9 0,8 seconds, and i n t u b e 3, a f t e r

'7,S 2 0,4 seconds, A t slow c o o l i n g , t h e s e two tubes remained a t t e m p e r a t u r e s s e v e r a l d e g r e e s below -12OC f o r 1 6 and 9

minutes r e s p e c t i v e l y , b e f o r e c r y s t a l l f z a t f on s e t i n , I n t h e s e t e s t s , too, an u n e x p e c t e d l y good r e p r o d u c i b i l f t y was n o t e d ,

The s u p e r c o o l i n g c a p a c i t y o f heavy w a t e r w a s found t o be s l i g h t l y l e s s t h a n that. of o r d i n a r y w a t e r , I t w a s a l s o found t h a t t h e dependence of t h e b e g i n n i n g s f cpys-

i.narg w a t e r . Z e i t s c h r i f t f a r anorganfsche und

(7)

Page -=. 3 Tech,, T r a n s , TT-79 2 , qnf@aloloeFuSoocr2 C a p a c i t y o f Water The i n v e s t f g a t f o n o f t h e s u p e r c o o l i n g c a p a c i t y o f w a t e r , w!-lich y i e l d e d t o t a l l y d i f f e r e n t v a l u e s f o r t h e v a r i o u s t u b e s b u t gave r e s u l t s t h a t c o u l d e a s i l y b e reprao- duced f o r e a c h i n d i v i d u a l t u b e , seemed t o s u g g e s t t h a t t h e v a r i a t i o n s may b e a t , t r f b u t e d t o t h e i n f l u e n c e o f f o r e i g n substances, e s p s c f a l l y s f n c e t h e t e s t s showed t h a t , a s a r u l e , c r y s t a l l f z a t i o n s e t i n a t t.he same p o i n t s o f t h e t u b e s , It i s a known f a c t t h a t , u n d e r c t h e r w i s e i d e n t i c a l c o n d i t l o n s , f o r e i g n s u b s t a n c e s i n s o l u t i o n have a s t r o n g e f f e c t on t h e number o f c r y s t a l l i z a t i o n c e n t r e s b e i n g formed, But e v e n i n s o l u b l e f o r e i g n s u b s t a n c e s , , s u c

a s powdered s t o n e and m e t a l w i r e s , i n f l u e n c e t h i s numherxf; however, n o d i r e c t dependence o f c r y s t a l l i z a t i o n c e n t r e f o r m a t i o n on t h e p r e s e n c e of s o l i d f o r e i g n s u b s t a n c e was o b s e r v e d , , F u r t h e r m o r e , t h e t e s t s o f J, Meyer and W., p f a f f u ) r e v e a l e d t h a t i n m a t e r i a l s w i t h low n u c l e a r numbers ( s u c h a s thymoP, s ~ l o P , benzophenone, and o t h e r s ) t h e number o f c r y s t a l l i z a t i o n c e n t r e s may b e r e d u c e d c o n s i d e r a b l y b y f i l t r a t i o n ,

The t e s t s u p t o t h o p r e s e n t were made w i t h s u b s t a n c e s h a v i n g Bow c r y s t a l l i z a t i o n v e l o c f t i e s , Water h a s n o t been examined a s y e t f n t h i s r e s p e c t b e c a u s e o f i t s h i g h c r y s t a l l i z a t i o n v e l o c i t y , F o r t h a t r e a s o n t h e i f i -

f l u e n c e o f i r o n wf r e s , powders o f r o c k c r y s t a l , q u a r t z

g l a s s , and corondum was i n v e s t i g a t e d I n f i v e t u b e s for. e a c h c a s e . I n t h e t e s t s w i t h i r o n w i r e s ( T a b l e 1 1 ) t h e tempcsa- t u r e o f t h e b e g i n n i n g o f c r y s t a l l f z a t i o n i n p u r e w a t e r was f f r s t of a l l d e t e r m f n e d , Then e l e c t r o h y t i c i r o n w i r e s ,

5 cm, l o n g and 0.2 rnm, i n d i a m e t e r , a f t e r b e i n g c l e a n e d

w i t h w a t e r and a l c o h o l , were p l a c e d i n t h e w a t e r and r e a d i n g 9 o f t h e t e m p e r a t u r e werd a g a i n t a k e n a t whfch c ~ y s t a l l f z a t f o n began s p o n t a n e o u s l y , F i n a l l y t h e w i r e s were kemoved and t h e

t e m p e r a t u r e o f t h e f o r m a t i o n o f t h e f f r s t n u c l e f was a g a i n d e t e r m i n e d , I t becomes c l e a r that; t h e i r o n w i r e r a f s e s t h e t e m p e r a t u r e of t h e b e g i n n i n g o f i ce f o r m a t i o n c o n s i d e r a b l y t h e r e b y i n c r e a s i n g t h e number o f c r y s t a % l i z a t f o n cen- t r e s , A f t e r t h e removal o f t h e w i r e s t h e ~ e ~ c o o l f n ~ ._4-_1-_Y__

-- -

x ) G, Tammann, 2 , p h y s C h e m , 2 5 (18981, p. 456; P , O t h e r , 2 , a n o r g . Chern, 9 1 (99151, p , 24Bo

xr) J,

Meyer and W, P f a f f 2 , a n o r g , u , a l l g , Chern. 217 ( 1 9 3 4 ) ~ p. 257.

(8)

Page

-

4

Tech,? T r a n s , TT-79

c a p a s i t y i n c r e a s e d s u b s t a n t i a l l y , i n c o n t r a s t wf t h p i p e r o n a l , d l e ~ e , a c c o r d i n g t o P , Othmer" t e s t t s n l , t h e i n c r e a s e d num- b e r o f r l u c l e l remained even a f t e r removal o f t h e w i r e s ,

TABLE

--

I1

The e f f e c t s f t h e powdelps s f r o c k c ~ y s t a l , q u a r t z - g l a s s , and corundum on t h e s u p e r c o o l f n g c a p a c i t y is shown i n Table 111, B o t h q u a r t z powders cause a consLderable incrbeaee I n t h o nurnbe~ o f n u c l e i , whereas t h e a d d i t i o n o f corundum i s w i t h o u t e f f e c t ,

TABLE

--

I11

-z=zz.--

P u ~ o water fl O C

T h e tAir En s o f u t f o n also afP'er:t-s t h e super-

c o o l i n g c apacf tg o f w a t e r , Water c o n t a i n i n g af r c r y s t a l l l i a e s

on an a v e r a g e a t a t e m p e r a t u r e two d e g r e e s h i g h e ? 'than w a t e r

(9)

Page tJ 5

Tech, Trans, TT-~79 The r e s u l t s of t h e s e t e s t s make i t seem probable t h a t a s a g e n e r a l r u l e the spontaneous c r y s t a l l i z a t i o n observed was caused by f o r e i g n s u b s t a n c e s , Consequently i t s h o u l d b e p o s s i b l e , a f t e r removfng t h e s e f o ~ e f g n s u b s t a n c e s , t o superq-

c o o l t h e w a t e r t o a temperature lower t h a n -20°C, t h e l o w e s t temperature r e p e a t e d l y observed, The g r e a t e s t s u p e r c o o l i n g e v e r observed t o d a t e f s 2 9 , 5 ° ~ ~ ) ,

I1 THE LINEAR CRYSTALLIZATION VELOCITY -.OF -- ICE I - N - & U u -

l o The measurement o f t h e c r y s t a l l i z a t i o n v e l o c i t y was

c a r r i e d o u t i n U-tubes which had an i n n e r d i a m e t e r of 1,2 mm, and a w a l l t h i c k n e s s o f 0,s mrn, The temperature b a t h c o n s i s - t e d of a l c o h o l cooled by d r y i c e and c o n t a i n e d i n a t r a n s - p a r e n t Dewar f l a s k , A s p i r a l s t i r r i n g rnecha~lism ensured uniform temperature d i s t r i b u t i o n i n t h e b a t h , , The s t a r t o f

c r y s t a l l i z a t i o n was e f f s c t e d by i n o c u l a t i o n w i t h i c e , The p r o g r e s s of t h e c r y s t a l l i z a t i o n was timed between two marks vrhfch had been made on each arm of t h e U-tube 80 mu- a p a r t

thus e n s u r i n g a s t r a i g h t - l i n e measuring d i s t a n c e , A t low v e l o c i t i e s t h e time measurement was made b y means of a 0,2

second watch, and a t v e l o c i t i e s h i g h e r t h a n 1 , 0 0 0 mm, p e r minute, by a Q,02 second stop-watch, The time taken by t h e

c r y s t a l l f z a t f o n boundary t o p a s s upward and downward through t h e d i s t a n c e between two marks, was d e t e r m i r ~ e d , For v e r y low c r y s t a l l i z a t i o n velocf t i e s ( a few m i l l i n ~ e t r e s p e r minute and l e s s ) t h e U-tube was mounted on a g l a s s s c a l e by means of which t;he p r o g r e s s ~ f t h e c r y s t a l l i z a t i o n was 9abserved, The t e m p e r a t u r e o f t h e b a t h waa maintafned c o n s t a n t d u r i n g the measurement t o w i t h f n k O,OEiO, The i c e was added a f t e r t h e U-tubes had remained a t the e x p e r i m e n t a l temperature

f o r a t l e a s t t h r e e m i n u t e s , To p r e v e n t b u r s t i n g o f the t u b e s , t h e y wepa removed from t h e b a t h b e f o r e t h e l e s t few drops of t h e water c o u l d c r y s t a l l i z e ,

2 , The p r e c f p i t a t i n g i c e c r y s t a l l i z e d i n t h e form o f well- developed d e n d r i t e s , The main growth was i n t h e d i r e c t i o n of t h e stem of t h e d e n d r f t e , As a r u l e , t h e r e f o r e , t h e

growth of t h e stem c o i n c i d e d w i t h t h e a x f s o f t h e t u b e , The s t r u c t u r e o f t h e d e n d r i t e i s e a s i l y recognized, e s p e c i a l l y a t t h e c r y s t a l l i z a t i o n boundary formed by one o r s e v e r a l d e n d r f t i c t i p s , F i g u r e 1 shows t h e appearance of such a d e n d r i t f c t i p , The branches make a n angle of 60 d e g r e e s

t h i c k - I n s t y t u t u ~ e t a l u $ ~ j f

(10)

Page .- 6 Tech, Trans, TT-5'9 n e s s o f t h e s t e m and t h o b r a n c h e s v a r f e s cor',sfdarzabl.y v i f t k ~ t h e c o n c e n t r a t i o n of t h e s o l u t i o n a n d t h e s u p e ~ ~ c o ~ l f n g , A t s l i g h t s u p e r c o o l f n g , t h i n , b a r e l y r e c o g n i z a b l e f o r m a t i o n s a r f s e ,> A t c o n s i d e r a b l e s u p e r c o o l i n g t h e b ~ a n c h e s a r e o f ten s o t h i c k t h a t t h e y c o l l i d e and t h e d e t a i l s arde no l o n g e r d i s t i n c t , The c r y s t a l l i z a t i o n f r o n t t h e n c o n s i s t s o f one o r more I c e t i p s which, however, always have t h e c l i a r a c t e r i s t i o c u t l i n e of t h e d e n d r i . L i c tip:;, w i t h arL m g l e ( i f appx 3 x l m E t e l y

60 d e g r e e s a t t h e t o p , I n p u r e w a t e r d e n d r i t e s t e m s h a v i n g

a t i i i c k n e a s u p t o 0 , 5 nna,, were o b s o ~ v e d , . 1Vlicroscopic measure- ment o f i n d i v i c i u n l d e r i d r i t e s , which c r y s t a l l f z e d a t losv

c r y s t a l l f z a t i o n v e l o c f t y from a 58 p e r c e n t g l y c e r i n e sc#lu-

t i o n , ; r e v e a l e d a t h i c k n g s s o f a p p c o x f m a t e l y 0,02 mm,, for t h e s t e m s , 0,005 m n i , f o r t h e b r a n c h e s , and 0,001 rim, f o r t h e

f i n e s t twigs, 'The p l a n e o f t h e d e n d r - f t e s lies i n t h e hexa.5 g o n a l g r o u p of i c e , hence t21 d e n d r i t e s c o r r e s p o n d t o one o f

t h e s i x r a y s o f a

snow flak ex^,

I n p u r e wateri a t slight s u p e r z c o o l i n g , . bvf de d e v f a t t o n s f ' m m t h e t u b e a x i s wexye o b s e r v e d i n t h e d i r e c t i o n o f t h e d e r l u r i t e stem&, r o s u l t , I n g i n R con-

s i d e r a b l y d e c r e a s e d c r y s t s l l i z a t i o n v e l c c i t y x x ) , I n d i l i ~ t e s u c r o s e s o l u t i . o n s t h e dendrite s t e m and t h e b r b s i e k i e s ~ o ~ ~ l o - tfmes showed a c u r v a t u r e w i t h a r a t i i u s o f a few t e n t h s c s f a

m f l l i m e t r e which r e s u l t e d i n a r e d u c e d c r y s t a % l i z a t f o n v e l o c i t y , , T h i s e x p l a i n s t o a c e r t a i n e x t e n t t h e Z i f f e r e ~ l c e s in t h e v a l u e s found i n t h o l i t e r a t u r e f o r t h e c r g s t a b l i z a t f - o n v e l o c i t y o f f c o from p u r e w a t e r , , U p t o t h e p r a e s e n t t k i s e e d i f f e r e n c e s were a t t r i b u t e d t o v a r y i n g t e s t c o n d . l . t i o n s ( tube d i a m e t e r , t h i c k n e s s of t h e t u b e w a l l s ) ,; ~ i l i c n i : h a l ~ ) , who

made hi8 measurements uricier a1:aost t h e stme c o r l r . l l ? ; i ~ ~ i s ss

t h e a ~ t h o r s o f t h e p r a e s e n t r e p o r t , f c u n d v a l u e s ~ I i f c l i w6re s 1 ~ 1 ~ ~ l P e r by a p p p o x f n l a t e l y s e v e n p e r c e n t , s i n c e h i s t-ubea w e r e b e n t t h r e e t i m e s i n ordon. t o o b t a i n a borlger m e a s u r i n g d l ss=. t a n c e , 3 , F l ~ u r e s 2 t o 4 s h c j w the d e p e n c l e n c ~ o f t h e c r y s t a 2 . l l z a t i o n v e 7 , o ~ ~ i t y o f i c e from v a r i o u s so3ut.Fa3ns on t h e s u p e r c c c ~ l i n g , The numbors g i v e n i n t h e f i g u r e s a r e t h e mo4s s f t h e s u b - s t a n c e s d i s s o l v e d i n 1,000 gm, w a t e r , The c ~ y s t a l l i z a t f o n v o l s c f t y was g e n e r a l l y f o l l o w e d u p a s f a r a s the e r g s t a l - B i z a t i s n c a p a c i t y ~ e m i i t t e d , , The d e c r e a s e i n c r v s t a l l i z a t f o n

xm) G , 'Tamrnann and A , ~ a c h n e r , Yoc, e i t ,

(11)

Page -- 7

Tech, ' P r u l s - TT-79

t h e v a r i o u s s u b s t a n c e s a t i d e n t i c a l mol c o n c e n t r b t f on, A s

y e t t h e a v a i l a b l e d a t a a r e n o t s u f f i c i e n t t o g i v e % n f o m ~ a t i o n concerning t h e e f f e c t s of t h e s e v a r i o u s s u b s t a n c e s , The de- c r e a s e i n t h e c r y s t a l l i z a t i o n v e l o c i t y of i c e caused b y

s u c r o s e i s p a r t i c u l a r l y l a r g e , Sucrose f a r exceeds the o t h e r s u b s t a n c e s i n m o l e c u l a r weight and t h e r e f o r e h s s a p a r t i c u - l a r l y low r a t e of d i f f u s i o n , , This probably e x p l a i n s t h e s t r o n g e f f e c t ,

I t was o n l y pcissible t o a t t a i n t h e maximum c r y s t a l l i z a t i o n v e l o c i t y when t h i s was l e s s t h a n 100 mm, p e r minute With s m a l l values of t h e maximum c r y s t a l a b l z a t i o n

v e l o c i t y , l e s s t h a n 1 5 rnm, p e r m i n u t e , marked maxima of t h e c r y s t a l l f z a t f o n velocf t y o c c u r , These maxima l i e , i n t h e p r e s e n t c a s e , between 7" and l b O of s u p e r c o o l i n g f n agreement w i t h t h e f i n d i n g s f o r c h e m i c a l l y pure s u b s t m c e a ,

4 , The dependence of t h e c r y s t a l l f z a t i a n v e l o c i t y on the terriperature may b e r e p r e s e n t e d Tor pure s u b s t a n c e s l i k e o t h e r r e a c t i o n v e l o c f t i e s by an e q u a t i o n of the form:

where T1 and

T2

a r e t h e temperatures a t t h e c r y s t a l l i z a t i o n boundary, For s m a l l v a l u e s of the c r y s t a l l i z a t i o n v e l o c f t y

t h e s e temperatures do n o t d i f f e r from t h e t of t h e b a t h , I f t h f s formula i s a p p l i e d t o t h e dependence of t e m p e ~ a t u r e on t h e c r y s t a l l i z a t i o n v e l o c i t y o f s o l u t i o n s , then t h e f a c t must kje t a k e n i n t o account t h a t t h e c ~ y s t a l l i z a t i o n v e l o c i t y i e i n f l u e n c e d n o t o n l y by t h e temperature a t t h e c r y s t a l l i z a t i o n boundary, f ,,e,

,

t h e e q u i l i b r i u m t e m p e r a t u r e , b u t a l s o by t h e r a t e of d i f f u s i o n of the d i s s o l v e d s u b s t a n c e , The r a t e o f d i f f u s i o n , however, d e c r e a s e s v e r y subs t a n t i a l l y w i t h de-

c r e a s i n g temperature, thus r e d u c i n g the c r y s t s l l i z a t - i o n velos= c i t y , For t h i s r e a s o n t h e formula does n o t h o l d f o r l a r g e concent,ration and temperature i n t e r v s l a , For s m a l l ones however, i t i s i n agreement w i t h t h e observations, The l o g a r i t h m of t h e c r y s t a l l f z a t i o n v e l o c i t y i s a l i n e a r f u n c t i o n of t h e c o n c e n t r a t i o n o r of t h e temperature a t t h e c r y s t a l l i z a t i o n boundary, The a d d i t i o n o f f o r e i g n m a t t e r u s u a l l y lowers t h e m e l t i n g p o i n t , The same a p p l i e s t o t h e c r y s t a l l f z a t f o n v e l o c i t y of t h e c r y s t a l s of t h e s o l v e n t a t i d e n t i c a l s u p e r - coolfngs, although t h i s d e c r e a s e i s s u b s t a n t i a l l y l a r g e r and s a t i s f i e s o t h e r laws, In a bilnsry s e r i e s of mfxtukes t h e c r y s t a l l i z a t i o n v e l o c i t y d e c l i n e s w i t h t h e d i s t a n c e from t h e two components, hence f o r f d e n t f c a i i s u p e r c s o l f n g s t h e

(12)

Page

-

8

Tech, T r a n s , TT-79

two c u r v e s o f c r y s t a l l i z a t i o n v e l o c i t y i n dependence on t h e c o n c e n t r a t i o n must i n t e r s e c t e x a c t l y a s t h e c u r v e s o f f u s i o n do. However, i t i s n o t requIr3ed t h a t t h e p o i n t o f i n t e r - s e c t i o n o f t h e t w o c u r v e s o f c r y s t a l l f z a t i o n v e l o c i t y s h o u l d l i e a t t h e e u t s c t i c c o n c e n t r a t f o n , A t t h i s p o i n t of' inter- s e c t i o n t h e c r g s t a l l i z a t i o n v e l o c i t i e s sf t h e two components a r e e q u ~ l i f each component c r y s t a l l f z e s s e p a r a t e l y , However, i f b o t h c r y s t u l l i z e t o g e t h e r , t h e n t h e z r y s t a l l l z a t f o n v e l o c i t y

7 1 1 1 g e n e r a l 1 3 i r ~ c r e n u e ~ ? . i z h t l y , coinpared wit21 tth ovvlile of

t,rle ifidividl-l#1 compsnent, 'fie r e a s o n f o r tllis i s Zhht tk?e s e p a r a t i o n o f t h e two s u b s t a n c e s due t o d f f f u s i o n Is f e s i l f - tat;ed b y t h e ex' s t e n c e o f b o t h t y p e s o f c r y s t a l a t tile c r y s t a f =

1 1 z a t l o n frorlt'j, With a m i x t u r e o f t w o components which,

f n t h e pQre ~ t i ~ f ; e have v e r y d f f f c ~ ~ e n t ; c r ~ y s t a l l l z a t i o n velo- c i t i e s , t h e r e a r e c o n c e n t r a t i o n s from whfch e v e n the com- p o n e n t of P a r g s c r y s t a l l f z a t i o n v e l o c i t y c r y s t ; a l l i z e s a t a Power r a t e t h a n t h e p u r e compi>nent o f Power c r y s t a l l i z a t i o n

v e l o c i t y , The i n v e s t i g a t i o n o f g l y c e ~ i n e - w a t e r s o l u t i o n s s e r v e d a s an e x a m p l e , The m a x i m u m c r y s t a l l i z a t i o n vein i t y o f p u r e g l y c e r i n e i s a p p r o x i m a t e l y 0 , l rnm.. p e r m i n u t s m y , Plaom a s o l u t i o 1 1 c o n i ; a l l z l n g 6 0 p e r cant g l y c e r i r i c t h e i c e c r y s t a l l i z e s a t H ~naximui:: c r y s t a l l i z a t i o n v e l o c i t y o f 0,093 rnm, = J e r m i n u t e However, t h e c r y 3 t a l l i z a t i o n v e l o c i t y o f f c o , as

ell as t h a t o f .Qycerint: from 6:) $and 85 p e r c e n t s o 2 u t i s n s , i s a t l e a s t t e n t i m e s s m a k l e ~ ,

5 , Tkle m a g n i t ~ i d e o f t h e c r y s t a l l i z a t i o n v e l o c i t y i s i m p o r t a n t

f o r dec!ding w h e t h e r a s o l u t f o n can b e t ~ a ~ s f o r m e d t o t h e g l a s s - - lf ke s t a t e by r a p i d c o o l i n g , , Small q u a n t f t i e s ( a p p r o x i m a t e l y

Q,'i c e , ) o f e u t e c t i c s o l u t i o n s o f KOH, WaOH, TICB, and CaC12, - whose maximum c r y s t a l l f z a t i o r l v e l o c i t y i s l o w e r than a p p l a ~ x i ' ~ m a t e l y 20 rnrn, p e r m f n u t s , c o u l d b e m a i n t a i n e d g l a s s - l i k e by c o o l i n g i n l i ~ ~ i f d a i r , , 6 , I n t h e concerltzaatforls i n v e v t f g ~ t e d t o d a t e a d d i t i o n s o f d i s s o l v e d for-eii;n r r i 2 t t e ~ r e d u c e t h e c r y s t a l l i z a t i on v e l o c f t y sf i c e , I f , how eve^, t h e e f f e c t of s m a l l q u a n t i t i e s o f d i s - s o l v e d m a t t e r ( s a y l e s s t h a n 0,OB mol p e r 1 S t r e ) i s i n v e s t i - g a t e d , i t i s found that, a s m a l l a d d i t i o n does n o t have a de- c r e a s i n g e f f e c t b u t , on t h e c o n t r a r y , a n i n c r e a s i n g e f f e c t on t h e c r y s t a l l i z a t i o n v e l o c i t y o f i c e , Consequently, a t i d e n t i c a l s u p e r c o o l i n g s , r n a ~ k a d maxima can be f o u n d on t h e c u r v e s r e p r e s e n t i r l g t h e c r y s t a l l i z a t i o n v e l o c i t y a s a f u n c t i o n of t h e c o n c e n t r a t L o n , These c u r v e s f o r s o l u t i o n s o f NaOH,, H C 1 , N a C 1 , and s u c r o s e a r a v e n i n : z a r e s 5 t o 8, The r e -

-

=- ,--= ---=

.

p

Tamann and A , fSotschwak,

Z i a n o r g , u , a l l g o C h e m , 1 5 9 ( 1 9 2 6 ) , p , 27,

G o Tmilann and E , J e n c k e l , 2, a n o r g , u , a l l g . Chem. 193 ( l g a o ) , P O 7 6 ,

(13)

Page

-

9 Tech, Trans, TT-79 s p e c t i v e s u p e r c o o l i n g s a r e g i v e n a t t h e r i g h t - h a n d s i d e of each curve, The i n c r e a s e i n t h e c r y s t a l l i z a t f on velocf t y of i c e which i s e v i d e n t d u r i n g t h e f i r s t a d d i t i o n t o t h e water may be interplaeted i n t h e f o l l o w i n g manner, Due t o

t h e f o r m a t i o n of i c e t h e c o n c e n t r a t i o n of t h e i c e forming type of molecule w i l l be reduced, The t r a n s i t i o n of the o t h e r molecule types t o t h e i c e forming type i s a c c e l e r a t e d by t h e a d d i t i o n s , I n d i l u t e s o l u t i o n s t h e r e i s a s l i g h t l y h i g h e r c o n c e n t r a t i o n of t h e i c e forming type of molecule

than i n pure w a t e r , causfng an i n c r e a s e i n t h e c r y s t a l l i z a t i o n v e l o c f t y , I n t h e c a s e o f l a r g e r a d d i t i o n s , however, t h e

d e c r e a s e of the c r y s t a l l i z a t i o n v e l o c i t y caused b y t h e de- c r e a s e i n the e q u i l i b r i u m temperature p r e v a i l s , With i n - c r e a s i n g s u p e r c o o l i n g the maximum c r y s t a l l i z a t i on v e l o c i t y becomes more d i s t i n c t , The r a t e of t ~ a n s i t i o n of t h e

molecules of water i n t o the i c e forming type d e c r e a s e s w i t h dropping temperature and t h e a c c e l e r a t i n g e f f e c t of the added substance becomes more pronounced, For t h e a d d i t i o n of NaCl t h e i n c r e a s i n g e f f e c t i s s m a l l e r t h a n f o r a d d i t i o n s o f H C 1 and NaOH, t h u s s h i f t i n g t h e maximum t o s m a l l e r NaCP

c o n c e n t r a t i o n s , Thi s s h i f t i n g i s more pronounced f n t h e c a s e of sucrose,,

(14)

FIG.1 ICE DENDRITE v FIG. 1 - 4 T T - 7 9

+

20°

FIG. 2 CRYSTALLIZATION VELOCITY

I N MM/MIN PLOTTED

AGAl NST THE SUPERCOOLING.

F IG.3 CRYSTALLIZATION VELOCITY F I G .4 CRYSTALLIZATION VELOCITY

MIN PLOTTED PLOTTED AGAINST THE

(15)

t F I G . 5 - 8 T T - 7 9 2 0 0 0 0

1

0 0.1 0.2 0.3 04 0.5 FIG. 5 F I G . 6 MM N ACL

+

-+-i\

t

O 001 0.02 0.03 0.04

0

0-01 0.02 003 0.04 0.05 FIG.7 FIG. 8

CURVES OF CRYSTALLIZATION VELOCITY AS A FUNCTION OF SOLUTION CONCENTRATION.

Figure

FIG.  2  CRYSTALLIZATION  VELOCITY  I N   MM/MIN  PLOTTED

Références

Documents relatifs

This study examines the international climate policy process and overlapping national policy processes in the United States, Japan, and the Netherlands through the lens

Los gestores directos eran en su mayoría actores locales, empresas y la sociedad civil, mientras que los gestores indirectos eran a menudo organizaciones de alcance nacional y

A ce titre et compte tenu de l’importance de l’investissement dans le monde moderne, les pays développés et ceux en voie de développement tendent à promouvoir le volume

We first consider the information gathering problem, and plot peak and average age for all the proposed trajectories of the mobile agent: the Metropolis-Hastings randomized trajectory

These include: better integration among housing market sub-models, such as predictors of residential mobility becoming determinants of choice set formation; explicit modeling of

Dans bien des cas d'après les enquêtés, les produits de terroir se distinguent par leur qualité organoleptique : ainsi le litchi Thieu de Thanh Ha est réputé "plus sucré, et

ficus‐ indica seeds, in this study cakes resulting from the pressing were macerated in ethanol and then a Supercritical Antisolvent Fractionation (SAF) technique was used for

( دﺎﺼﻴ يذﻝا ئرﺎﻘﻝﺎﻓ نّﻜﻤﺘﻴ ﻻ لﺎﺜﻤﻝا لﻴﺒﺴ ﻰﻠﻋ ﺔﺘوﺤﻨﻤﻝا تﺎﻤﻠﻜﻝا ﻩذﻫ ف ﺎّﻤﻤ ،ﺎﻬظﻔﻝ نﻤ ﺎﻫﺎﻨﻌﻤ كاردإ ﻪﻴﻠﻋ رّذﻌﺘﻴ ﻲﻝﺎﺘﻝﺎﺒو ،ﺎﻬﻨﻤ تذﺨُأ ﻲﺘﻝا ﺎﻬﻝوﺼأ ﺔﻓرﻌﻤ نﻤ