• Aucun résultat trouvé

The 3D NAVIGO TM is efficient for performing magnetic resonance imaging/ transrectal ultrasound fusion targeted prostate biopsy - Evaluation du système « 3D NAVIGO TM » pour la réalisation de biopsies prostatiques ciblées par fusion d’image.

N/A
N/A
Protected

Academic year: 2022

Partager "The 3D NAVIGO TM is efficient for performing magnetic resonance imaging/ transrectal ultrasound fusion targeted prostate biopsy - Evaluation du système « 3D NAVIGO TM » pour la réalisation de biopsies prostatiques ciblées par fusion d’image."

Copied!
46
0
0

Texte intégral

(1)

Membres du jury

Mr le Professeur BIGOT Pierre | Président Mr le Dr LEBDAI Souhil | Directeur Mr le Pr AUBE Christophe | Membre Mr le Docteur CULTY Thibaut | Membre Mme le Docteur CARROUGET-RONY Julie | Membre

Soutenue publiquement le :

29 Mai 2019

2019-2020

THÈSE

pour le

DIPLÔME D’ÉTAT DE DOCTEUR EN MÉDECINE Qualification en CHIRURGIE GÉNÉRALE

The 3D NAVIGO

TM

is efficient for performing magnetic resonance imaging/ transrectal ultrasound fusion targeted prostate biopsy

Evaluation du système « 3D NAVIGO

TM

» pour la réalisation de biopsies prostatiques ciblées par fusion d’image

MAGNIER Alexandre

Né le 04 Mars 1991 à Château-Thierry (02)

Sous la direction de M. le Docteur LEBDAI Souhil

(2)
(3)

ENGAGEMENT DE NON PLAGIAT

Je, soussigné MAGNIER Alexandre ...

déclare être pleinement conscient(e) que le plagiat de documents ou d’une partie d’un document publiée sur toutes formes de support, y compris l’internet, constitue une violation des droits d’auteur ainsi qu’une fraude caractérisée.

En conséquence, je m’engage à citer toutes les sources que j’ai utilisées pour écrire ce rapport ou mémoire.

signé par l'étudiant(e) le 04/02/2020

(4)

LISTE DES ENSEIGNANTS DE LA FACULTÉ DE SANTÉ D’ANGERS

Doyen de la Faculté : Pr Nicolas Lerolle

Vice-Doyen de la Faculté et directeur du département de pharmacie : Pr Frédéric Lagarce

Directeur du département de médecine : Pr Cédric Annweiler

PROFESSEURS DES UNIVERSITÉS

ABRAHAM Pierre Physiologie Médecine

ANNWEILER Cédric Gériatrie et biologie du vieillissement Médecine

ASFAR Pierre Réanimation Médecine

AUBE Christophe Radiologie et imagerie médicale Médecine

AUGUSTO Jean-François Néphrologie Médecine

AZZOUZI Abdel Rahmène Urologie Médecine

BAUFRETON Christophe Chirurgie thoracique et

cardiovasculaire Médecine

BENOIT Jean-Pierre Pharmacotechnie Pharmacie

BEYDON Laurent Anesthésiologie-réanimation Médecine

BIGOT Pierre Urologie Médecine

BONNEAU Dominique Génétique Médecine

BOUCHARA Jean-Philippe Parasitologie et mycologie Médecine

BOUVARD Béatrice Rhumatologie Médecine

BOURSIER Jérôme Gastroentérologie ; hépatologie Médecine

BRIET Marie Pharmacologie Médecine

CAILLIEZ Eric Médecine générale Médecine

CALES Paul Gastroentérologe ; hépatologie Médecine CAMPONE Mario Cancérologie ; radiothérapie Médecine CAROLI-BOSC François-xavier Gastroentérologie ; hépatologie Médecine CHAPPARD Daniel Cytologie, embryologie et

cytogénétique Médecine

CONNAN Laurent Médecine générale Médecine

COUTANT Régis Pédiatrie Médecine

CUSTAUD Marc-Antoine Physiologie Médecine

DE CASABIANCA Catherine Médecine Générale Médecine DESCAMPS Philippe Gynécologie-obstétrique Médecine D’ESCATHA Alexis Médecine et santé au Travail Médecine DINOMAIS Mickaël Médecine physique et de

réadaptation Médecine

DIQUET Bertrand Pharmacologie Médecine

DUBEE Vincent Maladies Infectieuses et Tropicales Médecine DUCANCELLE Alexandra Bactériologie-virologie ; hygiène

hospitalière Médecine

DUVAL Olivier Chimie thérapeutique Pharmacie

DUVERGER Philippe Pédopsychiatrie Médecine

(5)

EVEILLARD Mathieu Bactériologie-virologie Pharmacie FAURE Sébastien Pharmacologie physiologie Pharmacie

FOURNIER Henri-Dominique Anatomie Médecine

FURBER Alain Cardiologie Médecine

GAGNADOUX Frédéric Pneumologie Médecine

GARNIER François Médecine générale Médecine

GASCOIN Géraldine Pédiatrie Médecine

GOHIER Bénédicte Psychiatrie d'adultes Médecine GUARDIOLA Philippe Hématologie ; transfusion Médecine

GUILET David Chimie analytique Pharmacie

HAMY Antoine Chirurgie générale Médecine

HENNI Samir Chirurgie Vasculaire, médecine

vasculaire Médecine

HUNAULT-BERGER Mathilde Hématologie ; transfusion Médecine IFRAH Norbert Hématologie ; transfusion Médecine

JEANNIN Pascale Immunologie Médecine

KEMPF Marie Bactériologie-virologie ; hygiène

hospitalière Médecine

LACCOURREYE Laurent Oto-rhino-laryngologie Médecine

LAGARCE Frédéric Biopharmacie Pharmacie

LARCHER Gérald Biochimie et biologie moléculaires Pharmacie LASOCKI Sigismond

LEGENDRE Guillaume Anesthésiologie-réanimation

Gynécologie-obstétrique Médecine Médecine

LEGRAND Erick Rhumatologie Médecine

LERMITE Emilie Chirurgie générale Médecine

LEROLLE Nicolas Médecine Intensive-Réanimation Médecine LUNEL-FABIANI Françoise Bactériologie-virologie ; hygiène

hospitalière Médecine

MARCHAIS Véronique Bactériologie-virologie Pharmacie

MARTIN Ludovic Dermato-vénéréologie Médecine

MAY-PANLOUP Pascale Biologie et médecine du développement et De la reproduction

Médecine

MENEI Philippe Neurochirurgie Médecine

MERCAT Alain Réanimation Médecine

MERCIER Philippe Anatomie Médecine

PAPON Nicolas Parasitologie et mycologie médicale Pharmacie

PASSIRANI Catherine Chimie générale Pharmacie

PELLIER Isabelle Pédiatrie Médecine

PETIT Audrey Médecine et Santé au Travail Médecine PICQUET Jean Chirurgie vasculaire ; médecine

vasculaire Médecine

PODEVIN Guillaume Chirurgie infantile Médecine

PROCACCIO Vincent Génétique Médecine

PRUNIER Delphine Biochimie et Biologie Moléculaire Médecine

PRUNIER Fabrice Cardiologie Médecine

REYNIER Pascal Biochimie et biologie moléculaire Médecine RICHARD Isabelle Médecine physique et de

réadaptation Médecine

(6)

RICHOMME Pascal Pharmacognosie Pharmacie RODIEN Patrice Endocrinologie, diabète et maladies

métaboliques Médecine

ROQUELAURE Yves Médecine et santé au travail Médecine ROUGE-MAILLART Clotilde Médecine légale et droit de la santé Médecine ROUSSEAU Audrey Anatomie et cytologie pathologiques Médecine ROUSSEAU Pascal Chirurgie plastique, reconstructrice

et esthétique Médecine

ROUSSELET Marie-Christine Anatomie et cytologie pathologiques Médecine

ROY Pierre-Marie Thérapeutique Médecine

SAULNIER Patrick Biophysique et biostatistique Pharmacie

SERAPHIN Denis Chimie organique Pharmacie

TRZEPIZUR Wojciech Pneumologie Médecine

UGO Valérie Hématologie ; transfusion Médecine

URBAN Thierry Pneumologie Médecine

VAN BOGAERT Patrick Pédiatrie Médecine

VENIER-JULIENNE Marie-Claire Pharmacotechnie Pharmacie

VERNY Christophe Neurologie Médecine

WILLOTEAUX Serge Radiologie et imagerie médicale Médecine

(7)

MAÎTRES DE CONFÉRENCES

ANGOULVANT Cécile Médecine Générale Médecine

BAGLIN Isabelle Chimie thérapeutique Pharmacie

BASTIAT Guillaume Biophysique et biostatistique Pharmacie

BEAUVILLAIN Céline Immunologie Médecine

BELIZNA Cristina Médecine interne Médecine

BELLANGER William Médecine générale Médecine

BELONCLE François Réanimation Médecine

BENOIT Jacqueline Pharmacologie Pharmacie

BIERE Loïc Cardiologie Médecine

BLANCHET Odile Hématologie ; transfusion Médecine

BOISARD Séverine Chimie analytique Pharmacie

CAPITAIN Olivier Cancérologie ; radiothérapie Médecine

CASSEREAU Julien Neurologie Médecine

CHAO DE LA BARCA Juan-Manuel Médecine

CHEVALIER Sylvie Biologie cellulaire Médecine

CLERE Nicolas Pharmacologie / physiologie Pharmacie

COLIN Estelle Génétique Médecine

DERBRE Séverine Pharmacognosie Pharmacie

DESHAYES Caroline Bactériologie virologie Pharmacie

FERRE Marc Biologie moléculaire Médecine

FORTRAT Jacques-Olivier Physiologie Médecine

HAMEL Jean-François Biostatistiques, informatique médicale Médicale HELESBEUX Jean-Jacques Chimie organique Pharmacie

HINDRE François Biophysique Médecine

KHIATI Salim Biochimie et biologie moléculaire Médecine JOUSSET-THULLIER Nathalie Médecine légale et droit de la santé Médecine JUDALET-ILLAND Ghislaine Médecine Générale Médecine KUN-DARBOIS Daniel Chirurgie Maxillo-Faciale et

Stomatologie Médecine

LACOEUILLE Franck Biophysique et médecine nucléaire Médecine

LEBDAI Souhil Urologie Médecine

LANDREAU Anne Botanique/ Mycologie Pharmacie

LEBDAI Souhil Urologie Médecine

LEGEAY Samuel Pharmacocinétique Pharmacie

LE RAY-RICHOMME Anne-

Marie Pharmacognosie Pharmacie

LEPELTIER Elise Chimie générale Pharmacie

LETOURNEL Franck Biologie cellulaire Médecine

LIBOUBAN Hélène Histologie Médecine

LUQUE PAZ Damien Hématologie; Transfusion Médecine MABILLEAU Guillaume Histologie, embryologie et

cytogénétique Médecine

MALLET Sabine Chimie Analytique Pharmacie

MAROT Agnès Parasitologie et mycologie médicale Pharmacie

MESLIER Nicole Physiologie Médecine

MOUILLIE Jean-Marc Philosophie Médecine

NAIL BILLAUD Sandrine Immunologie Pharmacie

PAILHORIES Hélène Bactériologie-virologie Médecine

(8)

PAPON Xavier Anatomie Médecine PASCO-PAPON Anne Radiologie et imagerie médicale Médecine

PECH Brigitte Pharmacotechnie Pharmacie

PENCHAUD Anne-Laurence Sociologie Médecine

PIHET Marc Parasitologie et mycologie Médecine

PY Thibaut Médecine Générale Médecine

RAMOND-ROQUIN Aline Médecine Générale Médecine

RINEAU Emmanuel Anesthésiologie réanimation Médecine

RIOU Jérémie Biostatistiques Pharmacie

ROGER Emilie Pharmacotechnie Pharmacie

SAVARY Camille Pharmacologie-Toxicologie Pharmacie

SCHMITT Françoise Chirurgie infantile Médecine

SCHINKOWITZ Andréas Pharmacognosie Pharmacie

SPIESSER-ROBELET

Laurence Pharmacie Clinique et Education

Thérapeutique Pharmacie

TANGUY-SCHMIDT Aline TESSIER-CAZENEUVE Christine

Hématologie ; transfusion

Médecine Générale Médecine

Médecine

VENARA Aurélien Chirurgie générale Médecine

VIAULT Guillaume Chimie organique Pharmacie

PROFESSEURS EMERITES

Philippe MERCIER Neurochirurgie Médecine

Dominique CHABASSE Parasitologie et Médecine Tropicale Médecine

Jean-François SUBRA Néphrologie Médecine

AUTRES ENSEIGNANTS

AUTRET Erwan Anglais Médecine

BARBEROUSSE Michel Informatique Médecine

BRUNOIS-DEBU Isabelle Anglais Pharmacie

CHIKH Yamina Économie-Gestion Médecine

FISBACH Martine Anglais Médecine

O’SULLIVAN Kayleigh Anglais Médecine

PAST

CAVAILLON Pascal Pharmacie Industrielle Pharmacie

LAFFILHE Jean-Louis Officine Pharmacie

MOAL Frédéric Pharmacie clinique Pharmacie

ATER

KILANI Jaafar Biotechnologie Pharmacie

WAKIM Jamal Biochimie et chimie biomoléculaire Médecine

(9)

REME RC IE ME NT S

À mon maître et président du jury, Monsieur le Professeur Pierre BIGOT Vous me faites l’honneur de présider cette thèse.

Je vous remercie pour vos nombreux enseignements et conseils avisés au cours de mon internat.

Vous avez su contribuer à ma progression tout au long de ma formation.

Soyez assuré de mon profond respect.

À mon directeur de thèse,

Monsieur le Docteur Souhil LEBDAI,

Je te remercie pour l’encadrement que tu as apporté à ce travail, le temps que tu y as consacré, ton soutien et ta disponibilité constante.

Je t’en suis sincèrement reconnaissant.

Aux membres du jury,

Monsieur le Professeur Christophe AUBE

Je remercie également M. le Professeur Aube d'avoir accepté avec enthousiasme de faire partie de ce jury. Je souhaite également le remercier, et à travers lui l’ensemble de son équipe, pour l’excellence de son travail et la richesse apportée dans notre pratique quotidienne. Je souhaite ainsi remercier particulièrement le Dr Nedelcu qui a amplement contribué à la réalisation de cette étude.

Monsieur le Docteur Thibaut CULTY

Je ne remercierai jamais assez le Dr Culty pour tout ce qu’il m’a appris, avec patience et confiance. Merci également pour cet excellent semestre à Château Gontier ainsi que pour avoir accepté de faire partie de ce jury.

Au Dr Julie CARROUGET-RONY

Tu as été une excellente co-interne, toujours aidante pour les jeunes internes inexpérimentés que nous étions lors de notre arrivée dans le service. Je suis ravi de pouvoir te compter parmi les membres de ce jury.

(10)

REME RC IEM ENTS

À tous ceux qui ont contribué à ma formation médicale :

Aux médecins urologues :

Merci également à tous les médecins qui m’ont encadré au cours de cet internat et qui m’ont fait progresser jour après jour.

Au Dr Elena Brassart qui nous aide au quotidien à progresser afin que nous ne restions pas de simples ragondins.

Au Pr Abdel-Rahmène Azzouzi pour ses enseignements au cours de mon internat et pour sa contribution à cette étude.

Au service d’urologie du Mans du Dr Amie et à l’excellence de sa pédagogie, aux Dr Latteux et au Dr Frachet. Ce semestre parmi vous, votre bonne humeur et vos enseignements sont inoubliables et m’ont fait entrevoir un mode de pratique que je ne peux qu’admirer.

Je remercie particulièrement, pour leur disponibilité, leur encadrement et pour m'avoir appris qu'il n'était ''pas si compliqué que ça d'opérer'' le Dr Faivre d'Arcier et le Pr Bruyère. Merci également de m’avoir accueilli au sein de votre équipe, et finalement de m’avoir appris à penser autrement.

Aux différents services qui m’ont accueilli :

Au service de chirurgie pédiatrique du Pr Podevin et au Dr Schmitt.

Au service de chirurgie orthopédique et traumatologie du Dr Moui.

Au service de chirurgie digestive du Mans des Dr Serra-Maudet et Dr Etienne.

Au service de chirurgie vasculaire et thoracique du Pr Picquet et notamment au Dr Daligault et au Dr Haupert pour leur humour et leur bonne humeur quotidienne.

À tous mes co-internes et/ou chefs de clinique:

À Paul P. (et à son grain de folie), à Pierre G. et François B. : Débuter en urologie n’a pas été facile, mais débuter parmi vous a été un véritable plaisir !

À Marie, Tristan, Shahed, Sara, Adrien, Samuel, Cécile, Maxime, Claire, Sophie, Seb, Lulu, Arthur À mes co-internes tourangeaux : Tristan, Gaël, Mehdi, Erika

Aux équipes soignantes des services d’hospitalisation, de consultation et des blocs opératoires, ainsi qu’aux secrétaires avec qui j’ai eu la chance de travailler : cette page de remerciement seule ne saurait résumer les bons moments passés à vos côtés. Je n’aurais pas pu poursuivre cette voie sans votre compagnie et votre soutien quotidien.

A l'ensemble du personnel infirmier, aide soignant des services hospitaliers et des blocs opératoires que j'ai pu côtoyer avec plaisir lors de ces différents semestres.

A tous mes Co internes qui ont permis de passer

(11)

REME RC IEM ENTS

À mes amis,

À Cédric : Tu es un véritable frère pour moi. Les innombrables bons moments passés ensemble ne sont qu’un début, sois-en assuré. Merci pour ton amitié sincère et inébranlable.

Aux Rémois : à Michou (J.D. au miel !), Mehault (on finira par savoir où elle est cette poulette), à Julie (et à la Japan Expo), à Jean Charles et à nos innombrables soirées, à nos concours de cornichons et à tout le reste.

À Nico et Chloé (et à leur cave brunch !), Clem et Gaut' (alias Mon-chéri), Charlotte (Chacha !), Paul et Clem (Beuh) : à votre amitié indéfectible et votre soutien inconditionnel. Nos retrouvailles sont toujours de vrais moments de bonheur.

Aux amis de la secte des kinés : à Benito et Ludo, à Marylène et Guigui, Noémie et Massi, Josie et Benoit, Cindy et Quentin. Votre brin de folie rend nos rencontres toujours magiques !

… et tous ceux qui ne figurent pas ici et que j'ai pu côtoyer avec joie lors de ces longues années d'apprentissage.

À ma famille,

À mon Papa pour lequel cette thèse a une résonance toute particulière. A ces innombrables balades tous les deux, à nos grands bavardages, jardinage et bricolage ensemble qui m’ont appris plus que je n’aurais jamais pu espérer. Merci de m’avoir soutenu jour après jour. Et surtout merci d’avoir pris soins de ma « collection » année après année !

À ma Maman, à toutes ces heures de travail passées à nous aider et nous aimer. Tu as travaillé pour sept et tu continues de nous époustoufler par ton énergie et ta joie de vivre ! J’espère te rendre fière !

A mes oncles et tantes : tous ces moments passés parmi vous sont autant de souvenirs précieux qui m’ont permis, jours après jours, d’avancer et de grandir. Je ne vous remercierai jamais assez pour cela.

À mes grands-parents, à mon oncle Paul qui resteront pour toujours dans mon cœur et mes pensées.

À mes frères et sœurs, Benoit (et Anne Claire), Olivier (et Isabelle, Arthur, Agathe, Jeanne et Gabriel), Stéphanie (et Matthieu, et surtout mon petit monstre de filleul Augustin, et Zélie), Nicolas (et Marion, Jean-Lou et Colombe), Marie Cécile, Emilie (et Valentin): vous illuminez mon quotidien ! Vivre parmi vous est une chance rare.

À ma belle-famille, merci à Bob (Le Magnifique) et Marie-Thé pour votre accueil dans votre famille et pour tous ces bons moments que je passe en votre compagnie. Merci à Nicolas, Gillou, Dominique et Isabelle (et Jeanne, Lise), Julien et Emilie (sans oublier Théo et Manon !) pour ces moments chaleureux que j’ai toujours plaisir à passer en votre compagnie

À Mathilde, mon amour : Tu m’accompagnes dans ma vie, tu es mon soutien et ma joie, ma raison d’être. Je t’aime bien plus que mes mots ne pourront jamais l’exprimer.

(12)

LIST OF ABBREVIATIONS

AS Active surveillance

CSC Clinically-significant cancer DRE Digital rectal examination

ISUP International Society of Urological Pathology MRI-TRUS Magnetic resonance imaging/transrectal ultrasound mpMRI Multi-parametric magnetic resonance imaging PCa Prostate cancer

PI-RADS Prostate Imaging Reporting and Data System version 2 PSA Prostate Specific Antigen

RT Radical treatment RP Radical prostatectomy RCT Randomized control trials RTE Real-time elastography

SB Standard transrectal ultrasonography–guided biopsy TB Targeted-prostate biopsies

US Ultrasound

(13)

TABLE OF CONTENTS

ABSTRACT ... 2

INTRODUCTION ... 3

MATERIALS AND METHODS ... 6

RESULTS ... 9

DISCUSSION ... 11

REFERENCES ... 14

LIST OF TABLES ... 19

Table 1. Baseline characteristics and prostate biopsy indications ... 20

Table 2. Patient’s pathological results according to PIRADS-score ... 21

Table 3. ISUP-score according to TB and RP pathological analysis ... 22

TABLE OF CONTENTS ... 23

APPENDICES ... I

1. ISUP-Score ... I 2. PIRADS – Score ... II 2.1. PIRADS – Score assessment ... II 2.2. Probability of clinically significant cancer according to

PIRADS- Score ... IV 3. E-Poster Presentation - 11th International Symposium on Focal

Therapy and Imaging in Prostate & Kidney Cancer ... V 4. Certificate of attendance and presentation - CFU 2019 ... VII

(14)

1

The 3D Navigo

TM

System is efficient for performing magnetic resonance imaging/transrectal ultrasound fusion

targeted prostate biopsy

Alexandre Magnier1, Cosmina Nedelcu2, Samuel Chelly1, Marie-Christine Rousselet Chapeau3, Abdel Rahmene Azzouzi1, Souhil Lebdai1

1. Urology department, University Hospital of Angers, France 2. Radiology department, University Hospital of Angers, France 3. Pathology department, University Hospital of Angers, France

(15)

2

ABSTRACT

Purpose: The aim of this study was to evaluate the prostate cancer (PCa) detection rate of targeted-prostate biopsies (TB) using magnetic resonance imaging/transrectal ultrasound (MRI-TRUS) fusion with the 3D-NavigoTM system.

Methods: All patients who underwent TB using the 3D-NavigoTM system in our center between June 2014 and May 2018 were included. A 3-Tesla multiparametric-MRI was performed before biopsies; findings were reported based on Prostate Imaging Reporting and Data System version 2 (PI-RADS). The definition of clinically-significant cancer (CSC) was: ISUP-score ≥2 and/or tumoral length >3mm and/or extraprostatic extension and/or ≥3 positives biopsies. CSC at radical prostatectomy (RP) was defined as ISUP-score ≥2, or stage ≥T3.

Results: 317 patients underwent TB. Median age was 67 years (51-84). Median PSA was 7.62 ng/ml (0.6-70.0). Median prostate volume was 44.2 ml (12.1-221.7). PCa and CSC were found in 227/317 (72%) and 201/317 (63%) patients, respectively. The proportion of patients diagnosed with CSC among those with PCa was 89% (201/227).

The PI-RADS-score was positively correlated with the risk of finding PCa and CSC (r=0.4, p<0.001, respectively). There was a significant risk of having CSC in case of PIRADS-score ≥4 and 5 (OR=10.2, 95%CI [4.3-24.3], p<0.001; OR=3.2, 95%CI [1.8- 5.6], p<0.001). There was no significant difference between pathological outcomes of TB and RP in paired analysis (p=0.546), and a high correlation in PCa detection between TB and RP specimens (r=0.608, p<0.001).

Conclusion: MRI-TRUS fusion TB using the 3D NavigoTM system was efficient in detecting CSC. We found a high correlation between TB and RP pathological results.

(16)

3

INTRODUCTION

Prostate cancer (PCa) is the most frequently diagnosed cancer among men, and the second-ranked cause of cancer mortality (1). Several major studies have shown the importance of multi-parametric magnetic resonance imaging (mpMRI) to improve the accuracy of clinically significant prostate cancer (CSC) detection through targeted prostate biopsies (TB) (2–6). TB can be performed either cognitively by visual registration, under direct in-bore MRI-guidance or using software registration by MRI/transrectal ultrasound fusion (MRI-TRUS) (7). Major randomized control trials (RCT) such as the PRECISION trial (5) and the PROMIS trial (3) have demonstrated that performing TB was superior to standard transrectal ultrasonography–guided biopsy (SB) in detecting CSC, with less detection of CSC. Other studies such as the MRI-FIRST trial (4) and the 4M trial (6) have at least demonstrated the added value of performing TB in addition to SB for the detection of CSC. Therefore it is now recommended (8) to perform mpMRI before prostate biopsy.

The optimal guiding method for TB has still not been defined (9). First, TB can be performed by direct in-bore MRI guided-biopsies with an identical detection rate of CSC, and fewer cases of non-CSC (6); however, the availability of this approach might be a major limitation. MRI-TRUS TB takes advantages of both TRUS and mpMRI approaches. Targeting can be either prospective or retrospective, and the method of image registration is either rigid (Virtual Navigator – Esaote, UroNav – In Vivo Corp./Philips, Aplio – Canon, GeoScan – BioJet/Jetsoft, BK Fusion – BK medical) or elastic (Artemis - Eigen , Urostation – Koelis, SmartTarget - Intuitive Fusion LLC) (10).

Rigid registration allows for translation and rotational variations between images, while elastic transformations account for the addition of local deformation, warping, or scale

(17)

4 changes caused by the TRUS probe as well. A recent meta-analysis showed no significant difference in the detection of CSC between these two methods (9).

Other techniques such as ultrasound-based elastography, including strain elastography and Shear-Wave Elastography have also been described, showing an enhanced detection rate when combined with standard biopsy (SB) (11) These techniques, based on the detection of the elastic difference between the tumor areas and the surrounding prostate tissue are limited in their evaluations of prostate cancers in the central, transitional zones and anterior prostate because of the increased heterogeneity and hardness in these regions.

Lately new innovative techniques have emerged. The use of a high frequency micro- ultrasound system operating at 29 MHz results in high resolution imaging that is paired with the Prostate Risk Identification Using Micro-Ultrasound (PRI-MUS) v2 protocol to characterize and target suspicious lesions. This approach showed a high sensitivity of 94 % and a specificity of 28 % (12). Contrast-enhanced ultrasound TB, based on tumor microvessel imaging via the intravenous administration of microbubble contrast agents, have also shown interesting results, with higher PCa detection rate than TB (28.7 % versus 25.3 %) and fewer CSC (13).

The NAVIGOTM workstation (UC-CARE NavigoTM Workstation, Model: FPRMC0016A, Yokneam, Israel) is an easy-to-use MRI-TRUS elastic fusion device designed to assist the physician in performing TB. Using an external electromagnetic tracking system and a software-based registration algorithm, the device compensates for patient body and prostate motion at any time during the procedure and allows a real-time visualization of the prostate, needle and previous biopsy cores. Gayet et al. reported a retrospective study on an older version of the NavigoTM system, considering only the TRUS-guided capacity of the platform in performing prostate biopsies. No MRI/US fusion was used.

(18)

5 They reported no added value compared to conventional 2D TRUS regarding PCa detection in biopsy-naive men and men with prior negative biopsy (14). Nevertheless, there is no available published data that evaluated this device for performing real MRI- TRUS TB.

The aim of this study was to assess the efficiency of TB using the 3D NavigoTM system in the detection of CSC.

(19)

6

MATERIALS AND METHODS

Patients

We prospectively included all patients who underwent MRI-TRUS fusion TB using the 3D NavigoTM system in our center between June 2014 and May 2018.

During this period, TB using the 3D NavigoTM system were systematically performed in all patients with suspicious lesion reported by mpMRI (PI-RADS-score ≥3). No systematic biopsy was performed. Number and placement of cores were left to the surgeon's decision according to his personal experience.

There was no exclusion criterion. None of these patients have been included in previously published cohorts. CSC was defined as following: ISUP-score ≥2 and/or tumoral length >3mm and/or extraprostatic extension and/or at least 3 positives biopsies. CSC at radical prostatectomy was defined as ISUP-score ≥ 2, or tumor category ≥ T3 (15).

MRI protocol

All prostate MRIs were performed on a 3T Magnetum Skyra (Siemens) using a pelvic coil. The MRI protocol includes T2-weighted images, DWI and DCE sequences. T2- weighted images were acquired in axial, coronal and sagittal plane (the coronal plane passing through the seminal vesicles and the axial plane orthogonal to the coronal one). The axial plane had 3mm thick slices (true resolution : 0,7x0,7x3 mm, FOV 180, Matrix 250x250), the coronal and sagittal planes had also 3 mm thick slices (true resolution : 0,63x0,63x3 mm, FOV 200, Matrix 320 x 320). DWI comported the 0, 50, 500, 1000 and 2000 b-values. Contrast enhanced dynamic imaging was obtained after

(20)

7 intravenous injection of a bolus of gadolinium chelates at a dose of 0.1 mmol/kg of bodyweight. Both high b value image and ADC map were analyzed. No quantitative analysis was carried out. DCE sequence has a 7.5 seconds temporal resolution. The MRIs analysis was based on V2-PIRADS scoring system with diagrammatic report (16).

The PSA value and the rectal examination result were provided to the radiologist for every MRI performed. MRIs were performed by a highly trained radiologist with an expertise in prostate MRI imaging.

Biopsy protocol

Biopsies were performed by a single surgeon. The NAVIGOTM workstation (UC-CARE NavigoTM Workstation, Model: FPRMC0016A, Yokneam, Israel), coupled with the BK Medical PRO FOCUS ultrasound machine (BK Medical, Herlev, Denmark) was used to perform the prostate biopsy. The US probe was an endorectal biopsy probe (type 8818 – BK Medical, Herlev, Denmark), with an operating bandwidth of 12–4 MHz. At first, the images of the 3 Tesla mp-MRI were analyzed on the workstation in order to perform the contouring T2-weighted imaging in axial planes was used for software registration.

An electromagnetic tracking system including a transmitter, and two miniature sensors were used (one sensor attached to the ultrasound probe, another attached to the patient’s back over the L5 vertebra, and the transmitter was positioned 15 cm above the pelvis). Electromagnetic interference was limited during the procedure.

Then, a scan of the prostate was performed using the TRUS probe. After ultrasound measurement of prostate volume, elastic fusion of the mpMRI and the TRUS images was performed. A real time 3D-model was displayed during the biopsy procedure. A local anesthesia by transrectal periprostatic block was performed. Suspicious lesions and real-time location of the needle are displayed during the procedure. The location of

(21)

8 the biopsy cores was then highlighted and recorded by the system. An 18-gauge disposable core biopsy instrument (BARD® MAX-CORE, Tempe, Arizona - USA) was used. Samples were placed in a stretched form within a cassette placed in a formaldehyde solution before pathological analysis.

Collected data

The following data was collected : age, PSA, digital rectal examination (DRE) data, treatment by 5α-reductase inhibitor, past history of prostate biopsy, prostate volume, mpMRI PIRADS-score, total number of cores, number of positive biopsies, tumoral infiltration rate, extra prostatic extension, median maximum tumoral length for positive biopsy, ISUP-score, side effects, pathological prostatectomy outcomes.

Data analysis

Statistical analysis was performed with the SPSS15.0 Software® (IBM Corp., Armonk, NY, USA). Qualitative and quantitative variables were compared using chi-square and Wilcoxon tests. The Spearman rank correlation test was used to assess the correlation between the mpMRI and pathological findings. Statistical significance was defined as a p<0.05.

(22)

9

RESULTS

Between June 2014 and May 2018: 317 patients underwent TB. Baseline characteristics and biopsy indications are presented in table 1.

There were 227 (72%) patients who were diagnosed with PCa and 201 (63%) with CSC. The proportion of patients with CSC among all cancers was 89%.

The median number of targeted cores was 9 per patient. The median rate of positive cores per patient was 26% (0-100). The median rate of positive cores according to the PI-RADS-score was 29% (0-100%), 38% (0-100%) and 40% (0-100%) in case of PI- RADS-score ≥3, ≥4 and =5 respectively. The median maximum tumoral length for positive cores was 8 (0.5-21). The median tumoral infiltration rate for positive biopsies was 27% (1-100). The mean number of cores taken per diagnosis of clinically significant cancer was 15. Pathological outcomes according to PI-RADS-score, including PCa and CSC detection rates, are presented in table 2.

The PI-RADS-score was positively correlated with the risk of finding PCa and CSC (r=0.4, p<0.001, r=0.4, p<0.001 respectively).

There was a significant risk of having a CSC in case of PIRADS-score ≥4 and 5 (OR=10.207, 95%CI [4.297-24.246], p<0.001; OR=3.185, 95%CI [1.809-5.610], p<0.001).

According to the Clavien-Dindo Classification (17), there were 2 grade I complications (persistent hematuria one month after the procedure in patients without any previous anticoagulant treatment), 4 grade II complications (2 acute prostatitis, 1 acute orchiepididymitis, 1 unrelated lithiasis renal colic in the immediate aftermath of the procedure) and 1 unrelated grade IVa complication (1 Ischemic stroke, no previous treatment by anticoagulant).

(23)

10 Patient with positive biopsies underwent either AS or radical treatment (RT) in 24%

(79/317) and 47.3% (150/317) of the cases, respectively. When a RT was required, 83.3% (125/150) underwent a radical prostatectomy (RP), 13.3% (20/150) underwent radiotherapy, and 3.3% (5/150) underwent brachytherapy.

Patients under previous AS were reclassified as ISUP ≥ 2 in 42.9% (39/91). Among the 4 patients who underwent confirmatory TB after prior ISUP1 positive SB, 2 were reclassified as ISUP 2 and 1 as ISUP 5 respectively. They either continued AS or underwent a RT after TB in 49.5% (45/91) and 38.5% (35/91) of the cases respectively.

125 patients underwent RP; pathological outcomes were available for 113 patients. The ISUP-score was equivalent between TB and RP specimen in 46.9% (53/113) of the cases. The ISUP-score was underestimated in 30.1% (34/113) of the cases and overestimated in 23 % (26/113) of the cases. Results are presented in table 3. There was no statistically significant difference between the pathological analyses in paired Wilcoxon–Mann–Whitney test (p=0.546). Moreover, there was a high correlation between TB and RP specimen pathological analyses (r=0.608, p <0.001).

MpMRI correctly assessed all foci of CSC at RP in 68.1% of the cases (77/113). MpMRI missed at least one distinct focus of non-CSC in 15.0% of the cases.

(24)

11

DISCUSSION

TB using the 3D NavigoTM system was efficient in detecting CSC. The detection rate of PCa was 72%, and the detection rate of CSC was 63%. The proportion of patients with CSC among those with PCa was 89% and consequently, only 11% had a non-CSC.

In the last 5 years, prostate biopsy procedures have been in constant evolution with mpMRI increasing performances, especially in PCa early detection (2,4,18). TB can be performed either cognitively, under direct in-bore MRI guidance or by MRI-TRUS fusion (7). Cognitive fusion is at risk of human error, requiring expertise and rigorous technique (19). In-bore biopsies are technically challenging, time-consuming and expensive (20); it requires MRI-compatible equipment that is only available in very few centers. On the other hand, mpMRI/TRUS fusion allows taking advantages of both TRUS and mpMRI and seems to be an appealing method. Several mpMRI/TRUS fusions platforms have been studied (21). The 3D NavigoTM system allows TB by elastic MRI- TRUS fusion. Our study provides valuable data on the 3D NavigoTM System efficiency, with a fairly large population and prospectively collected data. Our study was compliant to the Standards of reporting for MRI-targeted biopsy studies (START) Working Group guidelines (22).

Other elastic MRI-TRUS fusion platforms such as the Koelis UrostationTM system have already been studied: in the study of Oderda et al. (23) the cancer detection rate was 64%, which was better than cognitive fusion biopsies (40%). Gayet et al. reported a PCa and CSC detection rates of 79.5%, 71.8%, respectively for the Virtual Navigator and 75.6% and 70.7%, respectively for the UroNav platform (21). Rastinehad et al.

reported a PCa detection rate of 50.5% and a CSC detection rate of 44.8 % for the UroNav platform (24).

(25)

12 The number of cores we performed per patient is consistent with other studies (21,23), with a high percentage of positive cores (26%). Wysock et al. reported in the PROFUS Trial a percentage of positive cores of 5.7% for SB, 13.1% for cognitive fusion biopsies and 16.0% for TB, using the Artemis platform (25).

The reliability of mpMRI data and the precision of targeting are critical to the accuracy of fusion biopsies. For instance, fusion biopsies may be accurate in targeting a region which was falsely positive at mpMRI. To reduce this confounding factor, RP specimens have been used as gold standard to determine all suspicious lesion localization before TB (26–28). In our study mpMRI correctly assessed all foci of CSC at RP in 68% of the cases. Lee et al. reported that mpMRI missed 20% of CSC foci, which tend to be confirmed by our study although our definitions of CSC differ slightly (29).

Our results and experience suggest that the NavigoTM system was both reliable and easy to use, with a high detection rate of CSC, and a low complication rate.

However, this study has several limitations. The first one is its monocentric design that may not fully reflect all technical variations from one center to another. The second is the absence of standard biopsy control group. However, TB pathological findings were compared to radical prostatectomy pathological findings, which can be considered as a gold-standard, even without clear definition of CSC in previous studies. Importantly, there was not any follow-up data collected in the study, which may limit the clinical significance of negative biopsy findings.

Finally, we would like to remind that even if there are strong recommendations for using TB systems, it remains important not to delay diagnostic and therapeutic management in patients with high clinical suspicion of PCa just because access to TB systems might be limited.

(26)

13 In the future, it would be interesting to assess the 3D NavigoTM system in a prospective, randomized controlled study comparing it to other targeting systems. Our results suggest that fewer biopsy core are necessary with this system, compared to SB.

Multiple studies have suggested that a higher number of cores correlates with increased risk of sepsis (30). It would therefore be interesting to know the minimum number of biopsies required.

In conclusion, MRI-TRUS fusion TB using the 3D NavigoTM system was efficient and safe in detecting CSC. There was a high correlation between TB and radical RP pathological outcomes.

(27)

14

REFERENCES

1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019 Jan;69(1):7–34.

2. Richenberg J, Løgager V, Panebianco V, Rouviere O, Villeirs G, Schoots IG. The primacy of multiparametric MRI in men with suspected prostate cancer. Eur Radiol.

2019 Dec;29(12):6940–52.

3. Ahmed HU, El-Shater Bosaily A, Brown LC, Gabe R, Kaplan R, Parmar MK, et al.

Diagnostic accuracy of multi-parametric MRI and TRUS biopsy in prostate cancer (PROMIS): a paired validating confirmatory study. Lancet Lond Engl. 2017 25;389(10071):815–22.

4. Rouvière O, Puech P, Renard-Penna R, Claudon M, Roy C, Mège-Lechevallier F, et al. Use of prostate systematic and targeted biopsy on the basis of multiparametric MRI in biopsy-naive patients (MRI-FIRST): a prospective, multicentre, paired diagnostic study. Lancet Oncol. 2019 Jan;20(1):100–9.

5. Kasivisvanathan V, Rannikko AS, Borghi M, Panebianco V, Mynderse LA, Vaarala MH, et al. MRI-Targeted or Standard Biopsy for Prostate-Cancer Diagnosis. N Engl J Med. 2018 May 10;378(19):1767–77.

6. van der Leest M, Cornel E, Israël B, Hendriks R, Padhani AR, Hoogenboom M, et al. Head-to-head Comparison of Transrectal Ultrasound-guided Prostate Biopsy Versus Multiparametric Prostate Resonance Imaging with Subsequent Magnetic Resonance- guided Biopsy in Biopsy-naïve Men with Elevated Prostate-specific Antigen: A Large Prospective Multicenter Clinical Study. Eur Urol. 2019 Apr;75(4):570–8.

7. Wegelin O, van Melick HHE, Hooft L, Bosch JLHR, Reitsma HB, Barentsz JO, et al.

Comparing Three Different Techniques for Magnetic Resonance Imaging-targeted

(28)

15 Prostate Biopsies: A Systematic Review of In-bore versus Magnetic Resonance Imaging- transrectal Ultrasound fusion versus Cognitive Registration. Is There a Preferred Technique? Eur Urol. 2017;71(4):517–31.

8. Professionals S-O. Prostate Cancer [Internet]. Uroweb. [cited 2019 Apr 9].

Available from: https://uroweb.org/guideline/prostate-cancer/

9. Venderink W, Rooij M de, Sedelaar JPM, Huisman HJ, Fütterer JJ. Elastic Versus Rigid Image Registration in Magnetic Resonance Imaging–transrectal Ultrasound Fusion Prostate Biopsy: A Systematic Review and Meta-analysis. Eur Urol Focus. 2018 Mar 1;4(2):219–27.

10. Noureldin M, Eldred-Evans D, Khoo CC, Winkler M, Sokhi H, Tam H, et al. Review article: MRI-targeted biopsies for prostate cancer diagnosis and management. World J Urol [Internet]. 2020 Apr 6 [cited 2020 Apr 9]; Available from:

http://link.springer.com/10.1007/s00345-020-03182-3

11. Tu X, Qiu S, Chang T, Jin K, Bao Y, Yang L, et al. The role of real-time elastography-targeted biopsy in the detection and diagnosis of prostate cancer: A systematic review and meta-analysis. Medicine (Baltimore). 2018 Mar;97(12):e0220.

12. Lughezzani G, Saita A, Lazzeri M, Paciotti M, Maffei D, Lista G, et al. Comparison of the Diagnostic Accuracy of Micro-ultrasound and Magnetic Resonance Imaging/Ultrasound Fusion Targeted Biopsies for the Diagnosis of Clinically Significant Prostate Cancer. Eur Urol Oncol. 2019 May;2(3):329–32.

13. Yunkai Z, Yaqing C, Jun J, Tingyue Q, Weiyong L, Yuehong Q, et al. Comparison of contrast-enhanced ultrasound targeted biopsy versus standard systematic biopsy for clinically significant prostate cancer detection: results of a prospective cohort study with 1024 patients. World J Urol. 2019 May;37(5):805–11.

(29)

16 14. Gayet M, van der Aa A, Schmitz P, Beerlage HP, Schrier BPh, Mulders PFA, et al.

3D NavigoTM versus TRUS-guided prostate biopsy in prostate cancer detection. World J Urol. 2016 Sep;34(9):1255–60.

15. Matoso A, Epstein JI. Defining clinically significant prostate cancer on the basis of pathological findings. Histopathology. 2019;74(1):135–45.

16. Weinreb JC, Barentsz JO, Choyke PL, Cornud F, Haider MA, Macura KJ, et al. PI- RADS Prostate Imaging – Reporting and Data System: 2015, Version 2. Eur Urol. 2016 Jan;69(1):16–40.

17. Dindo D, Demartines N, Clavien P-A. Classification of Surgical Complications.

Ann Surg. 2004 Aug;240(2):205–13.

18. Brown LC, Ahmed HU, Faria R, El-Shater Bosaily A, Gabe R, Kaplan RS, et al.

Multiparametric MRI to improve detection of prostate cancer compared with transrectal ultrasound-guided prostate biopsy alone: the PROMIS study. Health Technol Assess.

2018 Jul;22(39):1–176.

19. Shoji S. Magnetic resonance imaging-transrectal ultrasound fusion image-guided prostate biopsy: Current status of the cancer detection and the prospects of tailor- made medicine of the prostate cancer. Investig Clin Urol. 2019 Jan 1;60(1):4–13.

20. Venderink W, Govers TM, de Rooij M, Fütterer JJ, Sedelaar JPM. Cost- Effectiveness Comparison of Imaging-Guided Prostate Biopsy Techniques: Systematic Transrectal Ultrasound, Direct In-Bore MRI, and Image Fusion. Am J Roentgenol. 2017 May;208(5):1058–63.

21. Gayet M, van der Aa A, Beerlage HP, Schrier BPh, Mulders PFA, Wijkstra H. The value of magnetic resonance imaging and ultrasonography (MRI/US)-fusion biopsy platforms in prostate cancer detection: a systematic review. BJU Int. 2016 Mar;117(3):392–400.

(30)

17 22. Moore CM, Kasivisvanathan V, Eggener S, Emberton M, Fütterer JJ, Gill IS, et al.

Standards of Reporting for MRI-targeted Biopsy Studies (START) of the Prostate:

Recommendations from an International Working Group. Eur Urol. 2013 Oct;64(4):544–52.

23. Oderda M, Faletti R, Battisti G, Dalmasso E, Falcone M, Marra G, et al. Prostate Cancer Detection Rate with Koelis Fusion Biopsies versus Cognitive Biopsies: A Comparative Study. Urol Int. 2016;97(2):230–7.

24. Rastinehad AR, Turkbey B, Salami SS, Yaskiv O, George AK, Fakhoury M, et al.

Improving detection of clinically significant prostate cancer: magnetic resonance imaging/transrectal ultrasound fusion guided prostate biopsy. J Urol. 2014 Jun;191(6):1749–54.

25. Wysock JS, Rosenkrantz AB, Huang WC, Stifelman MD, Lepor H, Deng F-M, et al.

A Prospective, Blinded Comparison of Magnetic Resonance (MR) Imaging–Ultrasound Fusion and Visual Estimation in the Performance of MR-targeted Prostate Biopsy: The PROFUS Trial. Eur Urol. 2014 Aug;66(2):343–51.

26. Ploussard G, Salomon LJ, Xylinas E, Allory Y, Vordos D, Hoznek A, et al.

Pathological findings and prostate specific antigen outcomes after radical prostatectomy in men eligible for active surveillance–does the risk of misclassification vary according to biopsy criteria? J Urol. 2010 Feb;183(2):539–44.

27. Robertson NL, Hu Y, Ahmed HU, Freeman A, Barratt D, Emberton M. Prostate Cancer Risk Inflation as a Consequence of Image-targeted Biopsy of the Prostate: A Computer Simulation Study. Eur Urol. 2014 Mar;65(3):628–34.

28. Goel S, Shoag JE, Gross MD, Awamlh BAHA, Robinson B, Khani F, et al.

Concordance Between Biopsy and Radical Prostatectomy Pathology in the Era of Targeted Biopsy: A Systematic Review and Meta-analysis. Eur Urol Oncol [Internet].

(31)

18 2019 Sep 4 [cited 2019 Dec 10];0(0). Available from:

https://euoncology.europeanurology.com/article/S2588-9311(19)30121-X/abstract 29. Lee CH, Ku JY, Park WY, Lee NK, Ha HK. Comparison of the accuracy of multiparametric magnetic resonance imaging (mpMRI) results with the final pathology findings for radical prostatectomy specimens in the detection of prostate cancer. Asia Pac J Clin Oncol. 2019;15(2):e20–7.

30. Pepe P, Aragona F. Morbidity After Transperineal Prostate Biopsy in 3000 Patients Undergoing 12 vs 18 vs More Than 24 Needle Cores. Urology. 2013 Jun;81(6):1142–6.

(32)

19

LIST OF TABLES

Table 1. Baseline characteristics and prostate biopsy indications ... 20 Table 2. Patient’s pathological results according to PIRADS-score. ... 21 Table 3. ISUP-score according to TB and RP pathological analysis. ... 22

(33)

20 Table 1. Baseline characteristics and prostate biopsy indications.

Characteristics All patients (n = 317)

Median age [range] in years 67 [51-84]

Median PSA [range] in ng/ml 7.62 [0.6-70.0]

Abnormal DRE, n (%) 97 (31%)

Median prostate volume [range] in ml 44.2 [12.1-221.7]

5α-reductase inhibitor treatment, n (%) 22 (7%) Patients without prior biopsy, n (%)

Patients with prior biopsy negative for cancer, n (%) Patients with prior biopsy positive for cancer, n (%)

- ISUP score : 1 - ISUP score : 2 - ISUP score : 3 - ISUP score : 4 - ISUP score : 5

190 (60%) 20 (6%) 107 (34%) 100 (31%) 6 (1.8%) 0

1 (0.2%) 0

Prostate biopsy indications, n (%) Screening

- Abnormal DRE - PSA > 4 ng/ml - Confirmatory biopsies AS protocol

Post-treatment biopsies - Post VTP therapy - Post brachytherapy

- Post external beam radiation

213 (67.2%) 78 (24.6%)

196 (61.8%) 4 (1.3%) 91 (28.7%) 13 (4 .1%) 11 (3.5%) 1 (0.3%) 1 (0.3%)

PSA : prostate specific antigen ; DRE : digital rectal examination ; ISUP : International Society of Urological Pathology ; AS : active surveillance ; VTP : Vascular-targeted photodynamic therapy.

(34)

21 Table 2. Patient’s pathological results according to PIRADS-score.

PIRADS : Prostate Imaging-Reporting and Data System ; CSC : clinically significant cancer ; ISUP : International Society of Urological Pathology

PIRADS- score

Percentage of patients (n)

Prostate cancer detection rate, % (n)

CSC detection rate, % (n)

Percentage of patients according to ISUP-Score (n)

ISUP 1 ISUP 2 ISUP 3 ISUP 4 ISUP 5

= 3

11.7 % (37)

27.0%

(10/37)

18.9%

(7/37)

16.2 % (6/37)

5.4 % (2/37)

2.7 % (1/37)

0.0 % (0/37)

2.7 % (1/37)

= 4 49.5 % (157)

75.2%

(118/157)

64.3%

(101/157)

12.3 % (39/157)

24.2%

(38/157)

16.6 % (26/157)

6.4 % (10/157)

3.2 % (5/157)

= 5 31.5 % (100)

84.0%

(84/100)

80.0%

(80/100)

24.0 % (24/100)

21.0 % (21/100)

21.0 % (21/100)

8.0 % (8/100)

10.0 % (10/100)

≥ 3 92.7 % (294)

72.1%

(212/294)

63.9%

(188/294)

23.5%

(69/294)

20.7 % (61/294)

16.3%

(48/294)

6.1 % (18/294)

5.4 % (16/294)

≥ 4 81.1 % (257)

78.6%

(202/257)

70.4%

(181/257)

24.5 % (63/257)

23.0 % (59/257)

18.3 % (47/257)

7.0 % (18/257)

5.8%

(15/257)

(35)

22 Table 3. ISUP-score according to TB and RP pathological analysis.

TB: targeted prostate biopsy, RP: radical prostatectomy, ISUP: International Society of Urological Pathology

TB (n) RP (n)

ISUP-score: 1 14 5

ISUP-score: 2 38 58

ISUP-score: 3 35 31

ISUP-score: 4 14 5

ISUP-score: 5 12 14

Total 113 113

(36)

23

TABLE OF CONTENTS

ABSTRACT ... 2

INTRODUCTION ... 3

MATERIALS AND METHODS ... 6

RESULTS ... 9

DISCUSSION ... 11

REFERENCES ... 14

LIST OF TABLES ... 19

Table 1. Baseline characteristics and prostate biopsy indications ... 20

Table 2. Patient’s pathological results according to PIRADS-score ... 21

Table 3. ISUP-score according to TB and RP pathological analysis ... 22

TABLE OF CONTENTS ... 23

APPENDICES ... I

1. ISUP-Score ... I 2. PIRADS – Score ... II 2.1. PIRADS – Score assessment ... II 2.2. Probability of clinically significant cancer according to

PIRADS- Score ... IV 3. E-Poster Presentation - 11th International Symposium on Focal

Therapy and Imaging in Prostate & Kidney Cancer ... V 4. Certificate of attendance and presentation - CFU 2019 ... VII

(37)

I

APPENDICES

1. ISUP-Score

Grade group Gleason score Gleason pattern

1 ≤ 6 ≤ 3+3

2 7 3+4

3 7 4+3

4 8 4+4, 3+5, 5+3

5 9 or 10 4+5, 5+4, or 5+5

(38)

II

2. PIRADS – Score

2.1. PIRADS – Score assessment

PI-RADS V2 assessment for the peripheral zone. ADC = Apparent diffusion coefficient; DWI = Diffusion weighted imaging.

(39)

III

PI-RADS V2 assessment for the transition zone. BPH = Benign prostatic hyperplasia; DWI = Diffusion weighted imaging; T2W = T2-weighted imaging.

(40)

IV

2.2. Probability of clinically significant cancer according to PIRADS- Score

Probability of clinically significant cancer according to PIRADS- Score PI-RADS 1 Very low (clinically significant cancer highly unlikely)

PI-RADS 2 Low (clinically significant cancer unlikely)

PI-RADS 3 Intermediate (clinically significant cancer equivocal) PI-RADS 4 High (clinically significant cancer likely)

PI-RADS 5 Very high (clinically significant cancer highly likely)

(41)

V

3. E-Poster Presentation - 11th International Symposium on Focal Therapy and Imaging in Prostate & Kidney Cancer

Kyoto, Japan, 9-11 February 2019, Paper number: 53.

Références

Documents relatifs

Prostate segmentation in trans rectal ultrasound (TRUS) and magnetic resonance images (MRI) facilitates volume estimation, multi-modal image registration, surgical planing and

The results reveal that the head-loss coefficient for angled racks with streamwise bars does not depend on the rack angle and can be calculated with equations for racks perpendicular

Dieser Bezug zur Wissenschaft hat eine Anzahl frankophoner Didaktiker/-innen, die an der Entwicklung des soziokonstruktivistischen Paradigmas mitgewirkt haben, dazu veranlasst,

Eocene ultra high temperature (UHT) metamor- phism in the Gruf complex (Central Alps): constraints by LA-ICPMS zircon and monazite dating in petrographic context.... Eocene ultra

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

A combination of methods revealed several highly differentiated regions between wine and flor yeasts, and analyses using codon-substitution models for detecting molecular adaptation

STEP 2 Find an optimal solution using the two-commodity subtour elimination constraints [3]. If integer valued STOP, if not go to

Les préoccupations officielles soulignent donc l'échec de la démocratisation de l'enseignement, dans le domaine de la langue. Il est question de classes sociales de façon