• Aucun résultat trouvé

Right Sided Ideals and Multilinear Polynomials with Derivation on Prime Rings

N/A
N/A
Protected

Academic year: 2022

Partager "Right Sided Ideals and Multilinear Polynomials with Derivation on Prime Rings"

Copied!
16
0
0

Texte intégral

(1)

Right Sided Ideals and Multilinear Polynomials with Derivations on Prime Rings

BASUDEBDHARA(*) - RAJENDRAK. SHARMA(**)

ABSTRACT- Le tRbean associativeprimering of charR6ˆ2with centerZ(R) and extended centroidC,f(x1;. . .;xn) a nonzero multilinear polynomial overCinn noncommuting variables,da nonzero derivation ofRandra nonzero right ideal of R. Weprovethat: (i) if [d2(f(x1;. . .;xn));f(x1;. . .;xn)]ˆ0for allx1;. . .;xn2r thenrCˆeRCfor some idempotent elementein thesocleofRCandf(x1;. . .;xn) is central-valued ineRCeunlessdis an inner derivation induced byb2Qsuch that b2ˆ0 and brˆ0; (ii) if [d2(f(x1;. . .;xn));f(x1;. . .;xn)]2Z(R) for all

x1;. . .;xn2rthenrCˆeRCfor some idempotent elementein thesocleofRC

and eitherf(x1;. . .;xn) is central ineRCeoreRCesatisfies the standard identity S4(x1;x2;x3;x4) unlessdis an inner derivation induced byb2Qsuch thatb2ˆ0 andbrˆ0.

Throughout this paper,Ralways denotes a prime ring with extended centroidCandQits two-sided Martindale ring of quotient. Bydwemean a nonzero derivation ofR. Forx;y2R, thecommutator ofx;yis denoted by [x;y] and defined by [x;y]ˆxy yx. Wedenote[x;y]2ˆ[[x;y];y]ˆ

ˆ[x;y]y y[x;y].

A well known result proved by Posner [17] states that R must be commutativeif [d(x);x]2Z(R) for all x2R. In [10] Lanski generalized the Posner's result to a Lie ideal. More precisely Lanski proved that ifL is a noncommutativeLieideal ofRsuch that [d(x);x]2Z(R) for allx2L,

(*) Indirizzo dell'A.: Department of Mathematics, Belda College, Belda, Paschim Medinipur-721424, India.

E-mail: basu dhara@yahoo.com

(**) Indirizzo dell'A.: Department of Mathematics, Indian Institute of Technol- ogy, Delhi, Hauz Khas, New Delhi-110016, India.

E-mail: rksharma@maths.iitd.ac.in

Mathematics Subject Classification: 16W25, 16R50, 16N60.

This work is supported by a grant from University Grants Commission, India.

(2)

then char Rˆ2 and R satisfies S4(x1;x2;x3;x4), thestandard identity.

Notethat a noncommutativeLieideal ofR contains all thecommutators [x1;x2] forx1;x2 in some nonzero ideal ofR( see [10, Lemma 2 (i), (ii)]).

So, it is natural to consider the situation when [d(x);x]2Z(R) for all commutators xˆ[x1;x2] or more general case xˆf(x1;. . .;xn) where

f(x1;. . .;xn) is a multilinear polynomial. In [11] Lee and Lee proved that

if [d(f(x1;. . .;xn));f(x1;. . .;xn)]2Z(R) for allx1;. . .;xn in somenonzero ideal of R, then f(x1;. . .;xn) is central-valued on R, except when char Rˆ2 and Rsatisfies S4(x1;x2;x3;x4). Recently, De Filippis and Di Vin- cenzo (see [7]) consider the situationd([d(f(x1;. . .;xn));f(x1;. . .;xn)])ˆ0 for all x1;. . .;xn2R, where d and d aretwo derivations of R. The statement of De Filippis and Di Vincenzo's theorem is the following:

THEOREMA ([7, Theorem 1]). Let K be a noncommutative ring with unity, R a prime K-algebra of characteristic different from 2, d and d nonzero derivations of R and f(x1;. . .;xn) a multilinear polynomial over K. If d([d(f(x1;. . .;xn));f(x1;. . .;xn)])ˆ0 for all x1;. . .;xn2R, then f(x1;. . .;xn) is central-valued on R.

In casedand d are two same derivations, the differential identity be- comes [d2(f(x1;. . .;xn));f(x1;. . .;xn)]ˆ0 for all x1;. . .;xn2R. So, it is natural to ask, what happen in cases[d2(f(x1;. . .;xn));f(x1;. . .;xn)]2Z(R) for all x1;. . .;xn2R and [d2(f(x1;. . .;xn));f(x1;. . .;xn)]2Z(R) for all

x1;. . .;xn 2r, whereris a non-zero right ideal of R. In the present paper our

object is to study these cases.

For the sake of completeness we recall some basic notations, de- finitions and some easy consequences of the result of Kharchenko [8]

about the differential identities on a prime ring R. First, wedenoteby Der(Q) theset of all derivations on Q. By a derivation word D of R we

mean Dˆd1d2d3. . .dm for somederivations di of R. For x2R, we

denote by xD theimageof xunder D, that isxDˆ( (xd1)d2 )dm. By a differential polynomial, we mean a generalized polynomial, with coefficients in Q, of the form F(xDij) involving noncommutativein- determinates xi on which thederivations words Dj act as unary op- erations. F(xDij)ˆ0 is said to be a differential identity on a subset Tof Q if it vanishes for any assignment of values from T to its in- determinates xi.

Now letDint betheC-subspaceofDer(Q) consisting of all inner deri- vations onQ. By Kharchenko's theorem [8, Theorem 2], we have the fol- lowing result:

(3)

LetRbe a prime ring of characteristic different from 2. If two nonzero derivationsdanddareC-linearly independent moduloDintandF(xDij) is a differential identity onR, whereDjarederivations words of thefollowing formd;d;d2;dd;d2, thenF(yji) is a generalized polynomial identity onR, whereyjiare distinct indeterminates.

As a particular case, we have:

If d is a nonzero derivation on R and F(x1;. . .;xn;xd1;. . .;xdn; xd12;. . .;xdn2) is a differential identity onR, then one of the following holds:

(i) eitherd2Dint

or

(ii) R satisfies the generalized polynomial identity F(x1;. . .;xn; y1;. . .;yn;z1;. . .;zn)

Denote byQCCfX1;. . .;Xngthefreeproduct of theC-algebraQand

CfX1;. . .;Xng, thefreeC-algebra in noncommuting indeterminates

X1;. . .;Xn.

Sincef(x1;. . .;xn) is a multilinear polynomial, we can write f(x1;. . .;xn)ˆx1x2. . .xn‡ X

I6ˆs2Sn

asxs(1). . .xs(n)

where Sn is the permutation group over n elements and any as2C.

Wedenoteby fd(x1;. . .;xn) thepolynomial obtained from f(x1;. . .;xn) by replacing each coefficient as with d(as:1). In this way wehave

d(f(x1;. . .;xn))ˆfd(x1;. . .;xn)‡X

i

f(x1;. . .;d(xi);. . .;xn) and

d2(f(x1;. . .;xn))ˆd(fd(x1;. . .;xn))‡dX

i

f(x1;. . .;d(xi);. . .;xn)

ˆfd2(x1;. . .;xn)‡X

i

fd(x1;. . .;d(xi);. . .;xn)

‡X

i

fd(x1;. . .;d(xi);. . .;xn)‡X

i6ˆj

f(x1;. . .;d(xi);. . .;d(xj);. . .;xn)

‡X

i

f(x1;. . .;d2(xi);. . .;xn)

ˆfd2(x1;. . .;xn)‡2X

i

fd(x1;. . .;d(xi);. . .;xn)

‡2X

i5j

f(x1;. . .;d(xi);. . .;d(xj);. . .;xn)‡X

i

f(x1;. . .;d2(xi);. . .;xn):

(4)

1. The case forrˆR.

LEMMA1.1. Let RˆMk(F)be the ring of all kk matrices over a field F of characteristic 6ˆ2, b2R and f(x1;. . .;xn) is a multilinear poly- nomial over F. If k2and[[b;[b;f(x1;. . .;xn)]];f(x1;. . .;xn)]ˆ0for all x1;. . .;xn2R or if k3 and [[b;[b;f(x1;. . .;xn)]];f(x1;. . .;xn)]2Z(R) for all x1;. . .;xn2R, then either b2FIk or f(x1;. . .;xn)is central-va- lued on R.

PROOF. Le tbˆ(bij)kk. Le teijbetheusual matrix unit with 1 in (i;j) entry and zero else where. Now we proceed to show that b2Z(R) if 2f(x1;. . .;xn) is non central valued onR.

For simplicity, wewritef(x1;. . .;xn)ˆf(x), where xˆ(x1;. . .;xn) RnˆR R(ntimes). Then by assumption,

[[b;[b;f(x)]];f(x)]ˆ[b2f(x) 2bf(x)b‡f(x)b2;f(x)]2Z(R) for all x2Rn. Since f(x1;. . .;xn) is assumed to be noncentral on R, by [15, Lemma 2, Proof of Lemma 3] there exists a sequence of matrices

rˆ(r1;. . .;rn) in R such that f(r)ˆf(r1;. . .;rn)ˆaeij6ˆ0 where

06ˆa2F and i6ˆj. Thus

[b2aeij 2baeijb‡aeijb2;aeij]2Z(R):

Sincetherank of [b2aeij 2baeijb‡aeijb2;aeij] is 2, [b2aeij 2baeij

‡aeijb2;aeij]ˆ0. Left multiplying by eij, we get 0ˆeij( 2baeijbaeij

ˆ 2a2b2jieij. SincecharF6ˆ2,bjiˆ0. Fors6ˆt, le tsbea permutation in thesymmetric group Sm such that s(i)ˆs and s(j)ˆt. Le t c bethe automorphism of R defined by xcˆP

p;qjpqepqc

ˆP

p;qjpqes(p);s(q). Then

f(rc)ˆf(r1c;. . .;rnc)ˆf(r)c ˆaest6ˆ0 and wehaveas abovebtsˆ0 for

s6ˆt. Thusbis a diagonal matrix. For anyF-automorphismuofR,buenjoys thesameproperty as b does, namely, [[bu;[bu;f(x)]];f(x)]2Z(R) for all x2Rn. Hence,bumust bediagonal. WritebˆPk

iˆ1aiieii; then for eachj6ˆ1, wehave

(1‡e1j)b(1 e1j)ˆXk

iˆ1

aiieii‡(bjj b11)e1j

diagonal. Therefore,bjjˆb11and sobis a scalar matrix.

(5)

LEMMA1.2. Let R be a prime ring of characteristic different from2 and f(x1;. . .;xn) a multilinear polynomial over C. If for any iˆ1;. . .;n,

[f(x1;. . .;zi;. . .;xn);f(x1;. . .;xn)]ˆ0

for all x1;. . .;xn;zi2R, then the polynomial f(x1;. . .;xn)is central-valued on R.

PROOF. Le t a be a noncentral element ofR. Then replacingzi with [a;xi] wehavethat for anyiˆ1;. . .;n

[f(x1;. . .;[a;xi];. . .;xn);f(x1;. . .;xn)]ˆ0 and so

"

Xn

iˆ0

f(x1;. . .;[a;xi];. . .;xn);f(x1;. . .;xn)

#

ˆ0

which implies, [a;f(x1;. . .;xn)]2ˆ0 for allx1;. . .;xn2R. By [11, Theorem], f(x1;. . .;xn) is central-valued onR.

THEOREM 1.3. Let R be a prime ring of characteristic different from 2, d a nonzero derivation of R, f(x1;. . .;xn) a multilinear polynomial over C. If

[d2(f(x1;. . .;xn));f(x1;. . .;xn)]2Z(R) for allx1;. . .;xn2R;

then either f(x1;. . .;xn)is central-valued on R or R satisfies the standard identity S4(x1;x2;x3;x4).

PROOF. Le t I be any nonzero two-sided ideal of R. If for every r1;. . .;rn 2I, [d2(f(r1;. . .;rn));f(r1;. . .;rn)]ˆ0, then by [14], this generalized differential identity is also satisfied by Q and hence by R as well. By Theorem A, f(r1;. . .;rn) is then central-valued on R and wearedone. Now weassumethat for somer1;. . .;rn 2I, 06ˆ[d2(f(r1;. . .;rn)); f(r1;. . .;rn)]2I\Z(R). Thus I\Z(R)6ˆ0. Let K be a nonzero two-sided ideal of RZ, the ring of central quotients of R.

Since K\R is a nonzero two-sided ideal of R, (K\R)\Z(R)6ˆ0.

Therefore, K contains an invertible element in RZ and so RZ is a simplering with identity 1.

(6)

By assumption,Rsatisfies the differential identity g(x1;. . .;xn;d(x1);. . .;d(xn);d2(x1);. . .;d2(xn))

ˆ[[fd2(x1;. . .;xn)‡2X

i

fd(x1;. . .;d(xi);. . .;xn)

‡2X

i5j

f(x1;. . .;d(xi);. . .;d(xj);. . .;xn)

‡X

i

f(x1;. . .;d2(xi);. . .;xn);f(x1;. . .;xn)];xn‡1]:

Ifdis notQ-inner, then by Kharchenko's theorem [8],

"

fd2(x1;. . .;xn)‡2X

i

fd(x1;. . .;yi;. . .;xn)

‡2X

i5j

f(x1;. . .;yi;. . .;yj;. . .;xn)

‡X

i

f(x1;. . .;zi;. . .;xn);f(x1;. . .;xn)

;xn‡1

#

ˆ0 (1)

for all xi;yi;zi;xn‡12R for iˆ1;2;. . .;n. In particular, for any i, as- sumingy1ˆ ˆyi 1ˆyi‡1ˆ ˆynˆ0;z1ˆ ˆznˆ0, wehave

[[fd2(x1;. . .;xn)‡2fd(x1;. . .;yi;. . .;xn);f(x1;. . .;xn)];xn‡1]ˆ0 and so

"

fd2(x1;. . .;xn)‡2X

i

fd(x1;. . .;yi;. . .;xn);f(x1;. . .;xn)

;xn‡1

#

ˆ0 for allxi;yi;xn‡12R,iˆ1;2;. . .;n. Thus from (1), weobtain

"

2X

i5j

f(x1;. . .;yi;. . .;yj;. . .;xn)

‡X

i

f(x1;. . .;zi;. . .;xn);f(x1;. . .;xn)

;xn‡1

#

ˆ0 (2)

for allxi;yi;zi;xn‡12Rforiˆ1;2;. . .;n.

By localizingRatZ(R), weobtain that (2) is also an identity ofRZ. Since RandRZsatisfy the same polynomial identities, in order to prove thatR satisfiesS4, wemay assumethatRis a simplering with 1. ThusRsatisfies theidentity (2). Now putting yiˆ[b;xi]ˆd(xi) and ziˆ[b;[b;xi]]ˆ

(7)

ˆd2(xi),iˆ1;2;. . .;n for someb2=Z(R), where d is an inner derivation induced by someb2R, weobtain thatRsatisfies

[[d2(f(x1;. . .;xn));f(x1;. . .;xn)];xn‡1]ˆ0:

Thus by Martindale's theorem [16], Ris a primitivering with a minimal right ideal, whose commuting ringDis a division ring which is finitedi- mensional overZ(R). However, sinceRis simplewith 1,Rmust beArti- nian. HenceRˆDk0, thering ofk0k0 matrices overD, for somek01.

Again, by [9, Lemma 2], it follows that there exists a field F such that RMk(F), thering of all kkmatrices over the fieldF, andMk(F) sa- tisfies

[[d2(f(x1;. . .;xn));f(x1;. . .;xn)];xn‡1]ˆ0:

Ifk3, then by Lemma 1.1, we haveb2Z(R), a contradiction. Thuskˆ2, that is,RsatisfiesS4(x1;x2;x3;x4).

Similarly, thesameconclusion can bedrawn in cased is an Q-inner derivation induced by someb2Q.

2. The case for one-sided ideal.

We begin with the following lemmas

LEMMA2.1. Letrbe a nonzero right ideal of R and d a derivation of R.

Then the following conditions are equivalent:

(i) d is an inner derivation induced by some b2Q such that brˆ0;

(ii) d(r)rˆ0.

For its proof, we refer to [2, Lemma].

LEMMA 2.2. Let R be a prime ring, r a nonzero right ideal of R,

f(x1;. . .;xt)a multilinear polynomial over C, a2R and n a fixed positive

integer. If f(x1;. . .;xt)naˆ0 for all x1;. . .;xt2r, then either aˆ0 or f(r)rˆ0.

For its proof, we refer to [3, Lemma 2 (II)].

LEMMA2.3. Let R be a prime ring. If[d2(f(x1;. . .;xn));f(x1;. . .;xn)]2 Z(R) for all x1;. . .;xn2r, then R satisfies nontrivial generalized polynomial identity unless d is an inner derivation induced by b2Q such that b2ˆ0and brˆ0.

(8)

PROOF. Supposeon thecontrary thatRdoes not satisfy any nontrivial generalized polynomial identity (GPI). Thus we may assume that R is noncommutative, otherwiseRsatisfies trivially a nontrivial GPI. Now we consider the following two cases:

CASEI. Supposethatdis aQ-inner derivation induced by an element b2Qsuch thatb26ˆ0. Then for anyx02r

[[b;[b; f(x0X1;. . .;x0Xn)]]; f(x0X1;. . .;x0Xn)]2Z(R) that is

[[b2f(x0X1;. . .;x0Xn) 2bf(x0X1;. . .;x0Xn)b

‡f(x0X1;. . .;x0Xn)b2; f(x0X1;. . .;x0Xn)];x0Xn‡1] (3)

is a GPI for R, so it is the zero element in QCCfX1;. . .;Xn‡1g.

Denote lR(r) theleft annihilator of r inR. Supposefirst that f1;b;b2g arelinearly C-independent modulo lR(r), that is (ab2‡bb‡g)rˆ0 if and only if aˆbˆgˆ0. Since R is not a GPI-ring, a fortiori it can not be a PI-ring. Thus, by [13, Lemma 3] there exists x02r such that fb2x0;bx0;x0g arelinearly C-independent. Then we have that

[[b2f(x0X1;. . .;x0Xn) 2bf(x0X1;. . .;x0Xn)b

‡f(x0X1;. . .;x0Xn)b2;f(x0X1;. . .;x0Xn)];x0Xn‡1]ˆ0 is a nontrivial GPI forR, a contradiction.

Therefore, f1;b;b2g arelinearly C-dependent modulo lR(r), that is there exista;b;g2C, not all zero, such that (ab2‡bb‡g)rˆ0. Suppose that aˆ0. Then b6ˆ0, otherwise gˆ0. Thus by (bb‡g)rˆ0, wehave that (b‡b 1g)rˆ0. Sincebandb‡b 1ginduce the same inner derivation, wemay replaceb by b‡b 1g in the basic hypothesis. Therefore, in any casewemay supposebrˆ0 and then from (3), R satisfies

x0Xn‡1f2(x0X1;. . .;x0Xn)b2ˆ0. Since R does not satisfy any nontrivial

GPI, b2ˆ0, a contradiction.

Next suppose that a6ˆ0. In this casethereexist l;m2C such that b2x0ˆlbx0‡mx0 for all x02r. If bx0 and x0 arelinearly C- dependent for all x02r, then again we obtain brˆ0 and so b2ˆ0.

Therefore choose x02r such that bx0 and x0 arelinearly C-in- dependent. Then replacing b2x0 with lbx0‡mx0, weobtain from (3)

(9)

that R satisfies

h(lb‡m)f2(x0X1;. . .;x0Xn) 2bf(x0X1;. . .;x0Xn)bf(x0X1;. . .;x0Xn)

‡f(x0X1;. . .;x0Xn)(lb‡m)f(x0X1;. . .;x0Xn)g f(x0X1;. . .;x0Xn)(lb‡m)f(x0X1;. . .;x0Xn)

2f(x0X1;. . .;x0Xn)bf(x0X1;. . .;x0Xn)b‡f2(x0X1;. . .;x0Xn)b2 ;x0Xn‡1i : This is a nontrivial GPI forR, because the term

lbf2(x0X1;. . .;x0Xn) 2bf(x0X1;. . .;x0Xn)bf(x0X1;. . .;x0Xn) x0Xn‡1

appears nontrivially, a contradiction.

CASEII. Supposethatdis an inner derivation induced by an elementb2Q such that b2ˆ0. Thus wehavethat [ 2bf(X1;. . .;Xn)b;f(X1;. . .;Xn)]2 Z(R) is satisfied by r. In casethereexists x02r such that fbx0;x0g arelinearly C-independent, we have that [[ 2bf(x0X1;. . .;x0Xn)b;

f(x0X1;. . .;x0Xn)];x0Xn‡1] is a non trivial GPI forR, a contradiction. Hence fbx0;x0garelinearlyC-dependent for allx02r, that is there existsa2C such that (b a)rˆ0. Thus wehavethat [af2(X1;. . .;Xn)(a b);Xn‡1] is satisfied byr, in particularRsatisfies:

[af2(x0X1;. . .;x0Xn)(a b);f(x0X1;. . .;x0Xn)]ˆaf3(X1;. . .;Xn)(a b) for anyx02r. SinceRis not GPI, it follows that eitherbˆa2C, which is a contradiction, oraˆ0 which meansbrˆ0, as required.

CASEIII. Supposethatdis an inner derivation induced by an element b2Q such that brˆ0. Thus wehavethat [ f2(X1;. . .;Xn)b2;Xn‡1] is satisfied byr, in particularRsatisfies:

[ f2(x0X1;. . .;x0Xn)b2;f(x0X1;. . .;x0Xn)]ˆf3(x0X1;. . .;x0Xn)b2 for anyx02r. Again sinceRis not GPI weconcludethatb2ˆ0.

CASE IV. Next suppose that d is not Q-inner derivation. By our as- sumption wehavethatRsatisfies

0ˆh

fd2(xX1;. . .;xXn)‡2P

i fd(xX1;. . .;d(x)Xi‡xd(Xi);. . .;xXn)

‡2P

i5j f(xX1;. . .;d(x)Xi‡xd(Xi);. . .;d(x)Xj‡xd(Xj);. . .;xXn)

‡P

i f(xX1;. . .;d2(x)Xi‡2d(x)d(Xi)‡xd2(Xi);. . .;xXn);f(xX1;. . .;xXn)

;Xn‡1

i:

(10)

By Kharchenko's theorem [8], hfd2(xX1;. . .;xXn)‡2P

i fd(xX1;. . .;d(x)Xi‡xri;. . .;xXn)

‡2P

i5j f(xX1;. . .;d(x)Xi‡xri;. . .;d(x)Xj‡xrj;. . .;xXn)

‡P

i f(xX1;. . .;d2(x)Xi‡2d(x)ri‡xsi;. . .;xXn);f(xX1;. . .;xXn)

;Xn‡1i

ˆ0 for all X1;. . .;Xn;r1;. . .;rn;s1;. . .;sn2R. In particular, for r1ˆ

ˆr2ˆ ˆrnˆ0, wehave hfd2(xX1;. . .;xXn)‡2P

i fd(xX1;. . .;d(x)Xi;. . .;xXn) 2P

i5jf(xX1;. . .;d(x)Xi;. . .;d(x)Xj;. . .;xXn)‡P

i f(xX1;. . .;d2(x)Xi;. . .;xXn

‡P

i f(xX1;. . .;xsi;. . .;xXn);f(xX1;. . .;xXn)

;Xn‡1

iˆ0:

HenceRsatisfies the blended component

[[f(xs1;. . .;xXn);f(xX1;. . .;xXn)];Xn‡1]ˆ0 which is a nontrivial GPI forR, a contradiction.

THEOREM2.4. Let R be an associative prime ring of char R6ˆ2with center Z(R)and extended centroid C, f(x1;. . .;xn)a nonzero multilinear polynomial over C in n noncommuting variables, d a nonzero derivation of R andra nonzero right ideal of R. If[d2(f(x1;. . .;xn));f(x1;. . .;xn)]ˆ0 for all x1;. . .;xn 2rthenrCˆeRC for some idempotent e in the socle of RC and f(x1;. . .;xn)is central-valued on eRCe unless d is an inner deri- vation induced by b2Q such that b2ˆ0and brˆ0.

PROOF. Supposedis not aQ-inner derivation induced by an element b2Qsuch thatb2ˆ0 andbrˆ0.

Now assumefirst that f(r)rˆ0, that is f(x1;. . .;xn)xn‡1ˆ0 for all

x1;x2;. . .;xn‡12r. Then by [12, Proposition], rCˆeRC for someidem-

potent e2soc(RC). Since f(r)rˆ0, wehavef(rR)rRˆ0 and hence f(rQ)rQˆ0 by [4, Theorem 2]. In particular,f(rC)rCˆ0, or equivalently, f(eRC)eˆ0. Thenf(eRCe)ˆ0, that is,f(x1;. . .;xn) is a PI foreRCeand, a fortiori, central valued oneRCe.

Next assume thatf(r)r6ˆ0, that isf(x1;. . .;xn)xn‡1is not an identity forrand then we derive a contradiction. By Lemma 2.3,Ris a GPI-ring

(11)

and so is also Q (see [1] and [4]). By [16], Q is a primitivering with Hˆsoc(Q)6ˆ0. Moreover, we may assumef(rH)rH6ˆ0, otherwise by [1]

and [4], f(rQ)rQˆ0, which is a contradiction. Choosea0;a1;. . .;an2rH such thatf(a1;. . .;an)a06ˆ0. Leta2rH. SinceHis a regular ring, there existse2ˆe2Hsuch that

eHˆaH‡a0H‡a1H‡ ‡anH:

Then e2rH and aˆea;aiˆeai for iˆ0;1;. . .;n. Thus wehave

f(eHe)ˆf(eH)e6ˆ0. By our assumption and by [14, Theorem 2], we also assumethat

[d2(f(x1;. . .;xn));f(x1;. . .;xn)]

is an identity for rQ. In particular [d2(f(x1;. . .;xn));f(x1;. . .;xn)] is an identity forrHand so foreH. It follows that, for allr1;. . .;rn2H,

0ˆ[d2(f(er1;. . .;ern));f(er1;. . .;ern)]:

Wemay writef(x1;. . .;xn)ˆt(x1;. . .;xn 1)xn‡h(x1;. . .;xn), where xn never appears as last variable in any monomials ofh. Le tr2H. Then re- placingrnwithr(1 e), wehave

0ˆ[d2(t(er1;. . .;ern 1)er(1 e));t(er1;. . .;ern 1)er(1 e)]:

(4)

Now, weknow thefact thatd(x(1 e))eˆ x(1 e)d(e) and (1 e)d(ex)ˆ

ˆ(1 e)d(e)exand so

(1 e)d2(ex(1 e))eˆ(1 e)d

d(e)ex(1 e)‡ed(ex(1 e)) e

ˆ(1 e)d(e)d(ex(1 e))e‡(1 e)d(e)d(ex(1 e))e

ˆ 2(1 e)d(e)ex(1 e)d(e):

Thus using this facts, wehavefrom (4),

0ˆ(1 e)[d2(t(er1;. . .;ern 1)er(1 e));t(er1;. . .;ern 1)er(1 e)]

ˆ(1 e)d2(t(er1;. . .;ern 1)er(1 e))t(er1;. . .;ern 1)er(1 e)

ˆ 2(1 e)d(e)t(er1;. . .;ern 1)er(1 e)d(e)t(er1;. . .;ern 1)er(1 e)

ˆ 2((1 e)d(e)t(er1;. . .;ern 1)er)2(1 e):

This implies

0ˆ 2

(1 e)d(e)t(er1;. . .;ern 1)er 3 that is

0ˆ 2

(1 e)d(e)t(er1;. . .;ern 1)eH 3:

(12)

By [6], (1 e)d(e)t(er1;. . .;ern 1)eHˆ0 which implies (1 e)d(e)t(er1e;. . .;ern 1e)ˆ0:

SinceeHeis a simpleArtinian ring and t(eHe)6ˆ0 is invariant under the action of all inner automorphisms ofeHe, by [5, Lemma 2],(1 e)d(e)ˆ0 and so d(e)ˆed(e)2eH. Thus d(eH)d(e)H‡ed(H)eHrH and d(a)ˆd(ea)2d(eH)rH. Therefore,d(rH)rH. Denote the left anni- hilator ofrHinHbylH(rH). ThenrHˆ rH

rH\lH(rH), a primeC-algebra with thederivationdsuch thatd(x)ˆd(x), for allx2rH. By assumption, wehavethat

[d2(f(x1;. . .;xn));f(x1;. . .;xn)]ˆ0

for allx1;. . .;xn2rH. By TheoremA, eitherdˆ0 orf(x1;. . .;xn) is cen- tral-valued onrH.

Ifdˆ0, then d(rH)rHˆ0 and so d(r)rˆ0. By Lemma 2.1,d is an inner derivation induced by an elementb2Qsuch thatbrˆ0. Then for all

x1;. . .;xn2r, wehaveby assumption that

0ˆ[[b;[b;f(x1;. . .;xn)]];f(x1;. . .;xn)]ˆ f2(x1;. . .;xn)b2: By [3, Lemma 4], either b2ˆ0 orf(r)rˆ0. In both cases we have con- tradiction.

Iff(x1;. . .;xn) is central-valued onrH, thenrH, as well asr, satisfies

[f(x1;. . .;xn);xn‡1]xn‡2ˆ0. ThenrCˆeRCfor some idempotent element

e2soc(RC) by [12, Proposition] andf(x1;. . .;xn) is central-valued oneRCe and wearedone.

THEOREM2.5. Let R be an associative prime ring of char R6ˆ2with center Z(R)and extended centroid C, f(x1;. . .;xn)a nonzero multilinear polynomial over C in n noncommuting variables, d a nonzero derivation of R andra nonzero right ideal of R. If[d2(f(x1;. . .;xn));f(x1;. . .;xn)]2Z(R) for all x1;. . .;xn2rthenrCˆeRC for some idempotent e in the socle of RC and either f(x1;. . .;xn) is central-valued on eRCe or eRCe satisfies S4(x1;x2;x3;x4)unless d is an inner derivation induced by b2Q such that b2ˆ0and brˆ0.

PROOF. Supposedis not aQ-inner derivation induced by an element b2Qsuch thatb2ˆ0 andbrˆ0.

If [f(r);r]rˆ0, that is [f(x1;. . .;xn);xn‡1]xn‡2ˆ0 for all

(13)

x1;x2;. . .;xn‡22r, then by [12, Proposition], rCˆeRC for someidem- potente2soc(RC) andf(x1;. . .;xn) is central-valued oneRCe.

So, assumethat [f(r);r]r6ˆ0, that is [f(x1;. . .;xn);xn‡1]xn‡2is not an identity forrand then we derive thateRCesatisfiesS4. By Lemma 2.3,Ris a GPI-ring and so is alsoQ(see [1] and [4]). By [16],Qis a primitivering with Hˆsoc(Q)6ˆ0. Moreover, we may assume [f(rH);rH]rH6ˆ0, otherwise by [1] and [4], [f(rQ);rQ]rQˆ0, which is a contradiction.

Choosea1;. . .;an‡2;b1;. . .;b52rHsuch that [f(a1;. . .;an);an‡1]an‡26ˆ0 and S4(b1;b2;b3;b4)b56ˆ0. Let a2rH. Since H is a regular ring, there existse2ˆe2Hsuch that

eHˆaH‡a1H‡ ‡an‡2H‡b1H‡ ‡b5H:

Then e2rH and aˆea;aiˆeai for iˆ1;. . .;n‡2, biˆebi for

iˆ1;. . .;5. Thus wehavef(eHe)ˆf(eH)e6ˆ0. Moreover, by [14, Theo-

rem 2], we may also assume that

[[d2(f(x1;. . .;xn));f(x1;. . .;xn)];xn‡1]

is an identity forrQ. In particular, [[d2(f(x1;. . .;xn));f(x1;. . .;xn)];xn‡1] is an identity forrHand so foreH. It follows that, for allr1;. . .;rn‡12H,

0ˆ[[d2(f(er1;. . .;ern));f(er1;. . .;ern)];ern‡1]:

Wemay writef(x1;. . .;xn)ˆt(x1;. . .;xn 1)xn‡h(x1;. . .;xn), where xn

never appears as last variable in any monomials ofh. Le tr2H. Then re- placingrnwithr(1 e) andrn‡1withrn‡1(1 e), wehave

(5) 0ˆ[[d2(t(er1;. . .;ern 1)er(1 e));t(er1;. . .;ern 1)er(1 e)];ern‡1(1 e)]:

Now, weknow thefact that d(x(1 e))eˆ x(1 e)d(e), (1 e)d(ex)ˆ

ˆ(1 e)d(e)exand (1 e)d2(ex(1 e))eˆ 2(1 e)d(e)ex(1 e)d(e). Thus using these facts, we have from (5),

0ˆ[[d2(t(er1;. . .;ern 1)er(1 e));t(er1;. . .;ern 1)er(1 e)];ern‡1(1 e)]

ˆ[d2(t(er1;. . .;ern 1)er(1 e));t(er1;. . .;ern 1)er(1 e)]ern‡1(1 e) ern‡1(1 e)[d2(t(er1;. . .;ern 1)er(1 e));t(er1;. . .;ern 1)er(1 e)]

ˆ t(er1;. . .;ern 1)er(1 e)d2(t(er1;. . .;ern 1)er(1 e))ern‡1(1 e) ern‡1(1 e)d2(t(er1;. . .;ern 1)er(1 e))t(er1;. . .;ern 1)er(1 e)

ˆt(er1;. . .;ern 1)er(1 e)d(e)t(er1;. . .;ern 1)er(1 e)d(e)rn‡1(1 e)

‡ern‡1(1 e)d(e)t(er1;. . .;ern 1)er(1 e)d(e)t(er1;. . .;ern 1)er(1 e):

(14)

Replacingrn‡1witht(er1;. . .;ern 1)erin theaboverelation, weget 2t(er1;. . .;ern 1)er((1 e)d(e)t(er1;. . .;ern 1)er)2(1 e)ˆ0:

This implies

2((1 e)d(e)t(er1;. . .;ern 1)er)4ˆ0 that is

2

(1 e)d(e)t(er1;. . .;ern 1)eH 4ˆ0:

By [6], (1 e)d(e)t(er1;. . .;ern 1)eHˆ0 which implies (1 e)d(e)t(er1e;. . .;ern 1e)ˆ0:

SinceeHeis a simpleArtinian ring and t(eHe)6ˆ0 is invariant under the action of all inner automorphisms ofeHe, by [5, Lemma 2],(1 e)d(e)ˆ0 and so d(e)ˆed(e)2eH. Thus d(eH)d(e)H‡ed(H)eHrH and d(a)ˆd(ea)2d(eH)rH. Therefore,d(rH)rH. Denote the left anni- hilator ofrHinHbylH(rH). ThenrHˆ rH

rH\lH(rH), a primeC-algebra with thederivationdsuch thatd(x)ˆd(x), for allx2rH. By assumption, wehavethat

[[d2f(x1;. . .;xn);f(x1;. . .;xn)];xn‡1]]ˆ0

for all x1;. . .;xn2rH. By Theorem 1.3, either dˆ0 or f(x1;. . .;xn) is central-valued onrHorrHsatisfies the standard identityS4(x1;. . .;x4).

Ifdˆ0, then as in the proof of Theorem 2.4, we have d(r)rˆ0 and hence by Lemma 2.1,dis an inner derivation induced by an elementb2Q such thatbrˆ0. Thus for allr1;. . .;rn2rH,

[d2(f(r1;. . .;rn));f(r1;. . .;rn)]ˆ f(r1;. . .;rn)2b22C:

Commuting both sides withf(r1;. . .;rn), weobtainf(r1;. . .;rn)3b2ˆ0. In this caseby Lemma 2.2, sinceb26ˆ0,f(rH)rHˆ0. If f(rH)rHˆ0, then [f(rH);rH]rHˆ0, a contradiction.

Iff(x1;. . .;xn) is central-valued onrH, then we obtain that

[f(x1;. . .;xn);xn‡1]xn‡2 is an identity forr, a contradiction.

Finally, if S4(x1;. . .;x4) is an identity for rH, S4(x1;. . .;x4)x5 is an identity forrHand so forrCand this contradicts the choices of the ele- mentsb1;. . .;b5 2rH. Therefore, we conclude that in any caserCsatisfies a polynomial identity, hence by [12, Proposition], there exists an idempo- tente2Soc(RC) such thatrCˆeRC, as desired.

(15)

Acknowledgments. The authors would like to thank the referee for his/

her valuable comments and suggestions to modify some arguments of this paper.

REFERENCES

[1] K. I. BEIDAR,Rings with generalized identities, Moscow Univ. Math. Bull.,33 (4) (1978), pp. 53-58.

[2] M. BRESÏAR, One-sided ideals and derivations of prime rings, Proc. Amer.

Math. Soc.,122(4) (1994), pp. 979-983.

[3] C. M. CHANG, Power central values of derivations on multilinear polyno- mials, Taiwanese J. Math.,7(2) (2003), pp. 329-338.

[4] C. L. CHUANG,GPIs having coefficients in Utumi quotient rings, Proc. Amer.

Math. Soc.,103(3) (1988), pp. 723-728.

[5] C. L. CHUANG- T. K. LEE,Rings with annihilator conditions on multilinear polynomials, Chinese J. Math.,24(2) (1996), pp. 177-185.

[6] B. FELZENSZWALB,On a result of Levitzki, Canad. Math. Bull.,21(1978), pp.

241-242.

[7] V. DEFILIPPIS- O. M. DIVINCENZO,Posner's second theorem, multilinear polynomials and vanishing derivations, J. Aust. Math. Soc.,76 (2004), pp.

357-368.

[8] V. K. KHARCHENKO,Differential identity of prime rings, Algebra and Logic., 17(1978), pp. 155-168.

[9] C. LANSKI,An Engel condition with derivation, Proc. Amer. Math. Soc., 118 (3) (1993), pp. 731-734.

[10] C. LANSKI,Differential identities, Lie ideals, and Posner's theorems, Pacific J. Math.,134(2) (1988), pp. 275-297.

[11] P. H. LEE- T. K. LEE, Derivations with engel conditions on multilinear polynomials, Proc. Amer. Math. Soc.,124(9) (1996), pp. 2625-2629.

[12] T. K. LEE,Power reduction property for generalized identities of one sided ideals, Algebra Colloquium,3(1996), pp. 19-24.

[13] T. K. LEE,Left annihilators characterized by GPIs, Trans. Amer. Math. Soc., 347(1995), pp. 3159-3165.

[14] T. K. LEE, Semiprime rings with differential identities, Bull. Inst. Math.

Acad. Sinica,20(1) (1992), pp. 27-38.

[15] U. LERON,Nil and power central valued polynomials in rings, Trans. Amer.

Math. Soc.,202(1975), pp. 97-103.

[16] W. S. MARTINDALE III, Prime rings satisfying a generalized polynomial identity, J. Algebra,12(1969), pp. 576-584.

[17] E. C. POSNER,Derivation in prime rings, Proc. Amer. Math. Soc.,8(1957), pp.

1093-1100.

Manoscritto pervenuto in redazione il 16 marzo 2008.

(16)

Références

Documents relatifs

In this section we show how to apply Theorem 1.2 to obtain non-trivial, stably free right ideals over enveloping algebras of finite dimensional Lie.. algebras

hand (in short: r.h.) ideals, possesses accoording to E. In the present note it is shown that the maximum condition can be omitted without affecting the1. results

POMERANCE, Estimates for certain sums involving the largest prime factor of an integer. KRAUSE, Abschätzungen für die Funktion 03A8 K (x, y) in algebraischen

We were using Forest Inventory and Analysis (FIA) data to validate the diameter engine of the Forest Vegetation Simulator (FVS) by species. We’d love to have used the paired

the quotient functor Q of the torsion theory ^ is right exact, which for any holds for every right Noetherian right hereditary ring R by Theorem U.6 of 0.. Goldman (3) Even if R is

Motivated by the Theorem 1.1, in the present section, it is shown that on a 2-torsion free semiprime ring R every Jordan triple derivation on Lie ideal L is a derivation on L..

Let us relate these tropical open Hurwitz numbers to the open Hurwitz numbers we defined in section 1. Let C be a tropical curve as in defini- tion 2.6 with the data introduced at

[r]