• Aucun résultat trouvé

On Gelfond’s conjecture about the sum of digits of prime numbers

N/A
N/A
Protected

Academic year: 2021

Partager "On Gelfond’s conjecture about the sum of digits of prime numbers"

Copied!
9
0
0

Texte intégral

(1)

Joël RIVAT

On Gelfond’s conjecture about the sum of digits of prime numbers Tome 21, no2 (2009), p. 415-422.

<http://jtnb.cedram.org/item?id=JTNB_2009__21_2_415_0>

© Université Bordeaux 1, 2009, tous droits réservés.

L’accès aux articles de la revue « Journal de Théorie des Nom-bres de Bordeaux » (http://jtnb.cedram.org/), implique l’accord avec les conditions générales d’utilisation (http://jtnb.cedram. org/legal/). Toute reproduction en tout ou partie cet article sous quelque forme que ce soit pour tout usage autre que l’utilisation à fin strictement personnelle du copiste est constitutive d’une infrac-tion pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

cedram

Article mis en ligne dans le cadre du

Centre de diffusion des revues académiques de mathématiques http://www.cedram.org/

(2)

de Bordeaux 21 (2009), 415-422

On Gelfond’s conjecture about

the sum of digits of prime numbers

par Joël RIVAT

Résumé. Dans cet article nous exposons les étapes importantes de la preuve de la conjecture de Gelfond [6] (1968) dans un travail récent en collaboration avec Christian Mauduit [11] concernant la somme des chiffres des nombres premiers, dans l’esprit de l’ex-posé donné à Edimbourg dans le cadre des Journées Arithmétiques 2007.

Abstract. The goal of this paper is to outline the proof of a conjecture of Gelfond [6] (1968) in a recent work in collaboration with Christian Mauduit [11] concerning the sum of digits of prime numbers, reflecting the lecture given in Edinburgh at the Journées Arithmétiques 2007.

1. The sum of digits function

Let q ∈ N with q > 2. All n ∈ N can be written uniquely in basis q: n =X

k>0

nkqk where nk∈ {0, . . . , q − 1}

and the sum of digits function is defined by: s(n) = X

k>0

nk.

The sum of digits function has many aspects that have been studied, for instance ergodicity, finite automata, dynamical systems, number theory.

Mahler introduced this function in the context of harmonic analysis:

Theorem A (Mahler [10], 1927). For q = 2, the sequence

1 N X n<N (−1)s(n)(−1)s(n+k) ! N >1

converges for all k ∈ N and its limit is different from zero for infinitely many k’s.

(3)

416 Joël Rivat

Theorem B (Gelfond [6], 1968). Let m > 2, (m, q − 1) = 1. Then there

exists λ < 1 such that for all d ∈ N, a, r ∈ Z,

X n<N n≡r mod d s(n)≡a mod m 1 = N md+ O(N λ).

In the same paper Gelfond pose the following problem:

Problem A (Gelfond [6], 1968).

Il serait aussi intéressant de trouver le nombre des nombres premiers p 6 x tels que s(p) ≡ a mod m.

(the letter p always denotes a prime number).

2. Prime numbers

The prime numbers constitute a fascinating sequence which poses many difficult questions. Let us mention some open problems:

• are there infinitely many primes of the form p + 2 (prime twins)? • are there infinitely many primes of the form n2+ 1?

• are there infinitely many primes of the form 2n − 1 (Mersenne

primes)?

• are there infinitely many primes of the form 22n

+1 (Fermat primes)? and some answers:

• primes of the form an + b (Dirichlet theorem),

• primes such that αp belongs to some prescribed interval I ⊂ [0, 1], for α ∈ R \ Q (Vinogradov theorem [15]),

• primes of the form bncc where 1 < c < c

0 ≈ 1.1 (Piatetski-Shapiro

theorem [12]),

• primes of the form a2+ b4 (Friedlander-Iwaniec theorem [4, 5]),

• primes of the form a3+ 2b3 (Heath-Brown theorem [9]),

• primes such that ap(E)/(2√p) belongs to some prescribed interval I ⊂ [0, 1] (Sato-Tate conjecture for a very large class of elliptic curves E over Q, recently proved by several authors).

3. Historical background

Until recently, very little was known concerning the digits of prime num-bers. We can mention a result of Sierpiński [13] (1959), recently generalized by Wolke [16] (2005) and then by Harman [7] (2006), on prime numbers with some prescribed digits.

Concerning Gelfond’s question, no progress was made in its original form. Let us mention the two following variants:

(4)

Theorem C (Fouvry–Mauduit [2, 3], 1996). For m > 2 such that (m, q − 1) = 1, there exists C(q, m) > 0 such that for all a ∈ Z and x > 0,

X n6x n=p or n=p1p2 s(n)≡a mod m 1 > C(q, m) log log x X n6x n=p or n=p1p2 1.

Theorem D (Dartyge–Tenenbaum [1], 2005). For m> 2 with (m, q −1) =

1 and r > 2, there exists C(q, m, r) > 0 such that for all a ∈ Z and x > 0,

X

n6x n=p1...pr

s(n)≡a mod m

1 > C(q, m, r) log log x log log log x

X

n6x n=p1...pr

1.

4. Results

Theorem 1 (Mauduit-Rivat). For α ∈ R such that (q − 1)α ∈ R \ Z, there exists C(q, α) > 0 and σq(α) > 0, X p6x e(α s(p)) 6 C(q, α) x1−σq(α)

where e(t) = exp(2iπt).

Corollary 1. The sequence (α s(pn))n>1 is equidistributed modulo 1 if and only if α ∈ R \ Q (here (pn)n>1 denotes the sequence of prime numbers). Corollary 2. For m> 2 such that (m, q − 1) = 1 and a ∈ Z,

X p6x s(p)≡a mod m 1 ∼ 1 m X p6x 1 (x → +∞).

5. Sum over prime numbers

We want to estimate a sum of the form

X

p6x

g(p)

where the function g detects the property under consideration. A classical process (Vinogradov [15], Vaughan [14], Heath-Brown [8]) remains (using some more technical details), for some 0 < β1 < 1/3 and 1/2 < β2 < 1, to

estimate uniformly the sums SI := X m∼M X n∼N g(mn) for M 6 xβ1 (type I)

(5)

418 Joël Rivat

where M N = x (which implies that the “easy” sum over n is long) and for all complex numbers am, bn with |am| 6 1, |bn| 6 1 the sums

SII :=

X

m∼M

X

n∼N

ambng(mn) for xβ1 < M 6 xβ2 (type II),

(which implies that both sums have a significant length).

6. Sums of type I

For the sums of type I we might expect that the knowledge of the function g permits to get a satisfactory estimate of the sum

X

n∼N

g(mn).

Indeed in our case where g(n) = e(α s(n)) we were able to adapt success-fully arguments from Fouvry and Mauduit [2, 3] (1996).

7. Sums of type II 7.1. Smoothing the sums.

By Cauchy-Schwarz inequality: |SII|26 M X m∼M X n∼N bn e(α s(mn)) 2 .

Here, expanding the square and exchanging the summations, we would get a smooth sum over m, but also two free variables n1 and n2. However, we

can get a useful control by using van der Corput’s inequality:

Lemma 1. Let z1, . . . , zL∈ C. For all R ∈ Nwe have

X 16`6L z` 2 6 L + R − 1 R X |r|<R  1 −|r| R  X 16`6L 16`+r6L z`+rz`.

The interest of this inequality is that now we have n1= n + r and n2= n

so that the size of n1− n2= r is under control.

Now in fact we can take M = qµ, N = qν and R = qρ where µ, ν and ρ are integers such that ρ/(µ + ν) is “very small”. It remains for 1 6 |r| < qρ to prove the estimate

X qν−1<n6qν bn+rbn X qµ−1<m6qµ e(α s(m(n + r)) − α s(mn)) = O(qµ+ν−ρ).

(6)

7.2. Truncated sum of digits function.

We want to take advantage of the fact that in the difference s(m(n + r)) − s(mn), the product mr is much smaller that mn. In the example: mn = µ+ν z }| { 35116790780999806546523475473462336857643565, mr = 396576345354568797095646467570 | {z } µ+ρ ,

we see that in the sum mn + mr the digits after index µ + ρ may change only by carry propagation.

Proving that the number of pairs (m, n) for which the carry propagation exceeds

λ := µ + 2ρ

is bounded by O(qµ+ν−ρ), we can ignore them and replace s(m(n + r)) − s(mn) by sλ(m(n + r)) − sλ(mn) where sλ is the truncated sum of digits

function

sλ(n) :=

X

k<λ

nk,

which is periodic of period qλ.

7.3. Fourier analysis.

The periodicity of sλ enables us to write

X qµ−1<m6qµ e(α sλ(m(n + r)) − α sλ(mn)) = X 06u<qλ X 06v<qλ e(α sλ(u) − α sλ(v)) X qµ−1<m6qµ m(n+r)≡u mod qλ mn≡v mod qλ 1.

The orthogonality formula 1 qλ X 06h<qλ e h` qλ  = ( 1 if ` ≡ 0 mod qλ, 0 if ` 6≡ 0 mod qλ,

leads us to introduce the discrete Fourier transform of u 7→ e(α sλ(u)):

Fλ(h) = q−λ X 06u<qλ e  α sλ(u) − hu qλ  ,

(7)

420 Joël Rivat

and summing over n and taking absolute values we must show that

X 06h<qλ X 06k<qλ Fλ(h) Fλ(−k) X qν−1<n6qν X qµ−1<m6qµ e hm(n + r) + kmn qλ  = O(qµ+ν−ρ). Here we observe that the summations over m (geometric sum !) and n can be handled by classical arguments from analytic number theory, while we hope that the digital structure hidden in Fλ will produce a huge saving. 7.4. Heuristic end of the proof.

On average, for fixed (h, k), the geometric sum over m is small so that the sum over n should be O(qν+ε). Hence after many technical steps to handle the exceptions, we will need to get the crucial upper bound

X

06h<qλ

|Fλ(h)| = Oqηλ with η < 1/2,

which means that we need an upper bound sharper than the square root of the trivial estimate.

Indeed suppose this has been done, then we get

X h X k X n X m · · · = O(q2ηλ+ν+ε),

and since λ = µ + 2ρ, we have

2ηλ + ν + ε 6 µ + ν − ρ for µ, ν large enough.

8. The discrete Fourier transform

Let us take q = 2 to simplify all formulas. It follows from the definition of Fλ that

F0(h) = 1,

and that for λ > 1,

Fλ(h) = 1 2λ X 06u<2λ e  α s(u) −uh 2λ  so that Fλ(h) = 1 2λ X 06u<2λ−1  e  α s(2u) −2uh 2λ  + e  α s(2u+1) − (2u+1)h 2λ  . We have

(8)

hence Fλ(h) = 1 2  1 + e  α − h 2λ  Fλ−1(h) thus |Fλ(h)| = λ Y i=1 cos π  α − h 2i  .

We recall that we want to prove that

X

06h<2λ

|Fλ(h)| = O(2ηλ) with η < 12.

9. Norm 1 of the discrete Fourier transform

Let the transfer operator Φ0(x) = 1 Φi(x) = cos π(α −x2) Φi−1(x2) + sin π(α − x2) Φi−1(x+12 ). We write X 06h<2λ |Fλ(h)| = X 06h<2λ−1  |Fλ(h)| + Fλ(h + 2 λ−1)  = X 06h<2λ−1 |Fλ−1(h)|  cos π(α − h 2λ) + sin π(α − h 2λ)  = X 06h<2λ−1 |Fλ−1(h)| Φ1  h 2λ−1  . We can repeat this process and get

X 06h<2λ |Fλ(h)| = X 06h<2λ−2 |Fλ−2(h)| Φ2  h 2λ−2  . Now Φ21(x) = cos π(α −x 2) + sin π(α − x 2) 2 = 1 + sin 2π(α −x 2) , and Φ22(x) 6 Φ21(x2) + Φ 2 1(x+12 ) = 2 + sin 2π(α − x4) + sin 2π(α − x+1 4 ) = 2 + sin 2π(α − x4) + cos 2π(α −x4) , 6 2 +√2. Hence X 06h<2λ |Fλ(h)| 6 (2 + √ 2)1/2 X 06h<2λ−2 |Fλ−2(h)| ,

(9)

422 Joël Rivat and finally X 06h<2λ |Fλ(h)| = O  (2 + √ 2)λ/4. Since (2 +√2)1/4< 41/4=√2, we indeed have X 06h<2λ |Fλ(h)| = O  2ηλ for some η < 1/2. References

[1] C. Dartyge and G. Tenenbaum, Sommes des chiffres de multiples d’entiers. Ann. Inst. Fourier (Grenoble) 55 (2005), 2423–2474.

[2] E. Fouvry and C. Mauduit, Sommes des chiffres et nombres presques premiers. Mathe-matische Annalen 305 (1996), 571–599.

[3] E. Fouvry and C. Mauduit, Méthodes de crible et fonctions sommes des chiffres. Acta Arithmetica 77 (1996), 339–351.

[4] J. Friedlander and H. Iwaniec, The polynomial X2+ Y4 captures its primes. Ann. of

Math. (2) 148 (1998), 945–1040.

[5] J. Friedlander and H. Iwaniec, Asymptotic sieve for primes. Ann. of Math. (2) 148 (1998), 1041–1065.

[6] A. O. Gelfond, Sur les nombres qui ont des propriétés additives et multiplicatives données. Acta Arithmetica 13 (1968), 259–265.

[7] G. Harman, Primes with preassigned digits. Acta Arith. 125 (2006), 179–185.

[8] D. R. Heath-Brown, Prime numbers in short intervals and a generalized Vaughan identity. Can. J. Math. 34 (1982), 1365–1377.

[9] D. R. Heath-Brown, Primes represented by x3+ 2y3. Acta Math. 186 (2001), 1–84.

[10] K. Mahler, The Spectrum of an Array and Its Application to the Study of the Translation

Properties of a Simple Class of Arithmetical Functions. II: On the Translation Properties of a Simple Class of Arithmetical Functions. J. of Math. Phys. Mass. Inst. Techn. 6 (1927),

158–163.

[11] C. Mauduit, J. Rivat, Sur un problème de Gelfond: la somme des chiffres des nombres

premiers. Annals of Mathematics, à paraître.

[12] I. I. Piatetski-Shapiro, On the distribution of prime numbers in sequences of the form [f (n)]. Mat. Sbornik N.S. 33(75) (1953), 559–566.

[13] W. Sierpiński, Sur les nombres premiers ayant des chiffres initiaux et finals donnés. Acta Arith. 5 (1959), 265–266.

[14] R. C. Vaughan, An elementary method in prime number theory. Acta Arithmetica 37 (1980), 111–115.

[15] I. M. Vinogradov, The method of Trigonometrical Sums in the Theory of Numbers,

trans-lated from the Russian, revised and annotated by K.F. Roth and A. Davenport. Interscience,

London, 1954.

[16] D. Wolke, Primes with preassigned digits. Acta Arith. 119 (2005), 201–209. Joël Rivat

Institut de Mathématiques de Luminy CNRS-UMR 6206

163 avenue de Luminy Case 907

13288 Marseille Cedex 9, France.

Références

Documents relatifs

En mathématiques, la conjecture de Birch et Swinnerton-Dyer [16] prédit que pour toute courbe elliptique sur le corps des rationnels, l'ordre d'annulation en 1 de la fonction L

K´atai, Distribution of the values of q-additive functions on polynomial sequences, Acta Math. Chowla, Theorems in the additive theory of

Des signaux d’interaction entre l’endothélium vasculaire et les cellules leucocytaires ont été mis en évidence chez le patient apnéique : les monocytes provenant de

the behavior to adopt for each of them (passive monitoring, eclipsing, poisoning), the list of fake files and the list of all the Honeypeers (KADID,IP and port) in charge of the

Dorian Goldfeld [2] l'a qualifiée en 2006 de « problème non résolu le plus important en analyse diophantienne » car, si elle était vérifiée, la conjecture permettrait de

(Of course it would be possible to organize stage 2 in such a way to remove all odd numbers that have smaller neighbor that is composite. In that case what would be left are

There exists a non constant (and thus strictly increasing) natural function giving only prime numbers. Then one can extend Conjecture 2.1 to this larger class

The well-known Witten conjecture states that the intersection theory of the ψ classes on the moduli spaces of Riemann surfaces is equivalent to the “Hermitian matrix model”