• Aucun résultat trouvé

Search for the Production of Narrow <em>tb</em> Resonances in 1.9  fb<sup>−1</sup> of <em>pp</em> Collisions at s√=1.96  TeV

N/A
N/A
Protected

Academic year: 2022

Partager "Search for the Production of Narrow <em>tb</em> Resonances in 1.9  fb<sup>−1</sup> of <em>pp</em> Collisions at s√=1.96  TeV"

Copied!
8
0
0

Texte intégral

(1)

Article

Reference

Search for the Production of Narrow tb Resonances in 1.9  fb

−1

of pp Collisions at s√=1.96  TeV

CDF Collaboration

CLARK, Allan Geoffrey (Collab.), et al.

Abstract

We present new limits on resonant tb production in pp collisions at s√=1.96  TeV, using 1.9   fb−1 of data recorded with the CDF II detector at the Fermilab Tevatron. We reconstruct a candidate tb mass in events with a lepton, neutrino candidate, and two or three jets, and search for anomalous tb production as modeled by W′→tb. We set a new limit on a right-handed W′ with standard model-like coupling, excluding any mass below 800  GeV/c2 at 95% C.L. The cross section for any narrow, resonant tb production between 750 and 950   GeV/c2 is found to be less than 0.28 pb at 95% C.L. We also present an exclusion of the W′

coupling strength versus W′ mass over the range 300–950  GeV/c2.

CDF Collaboration, CLARK, Allan Geoffrey (Collab.), et al . Search for the Production of Narrow tb Resonances in 1.9  fb

−1

of pp Collisions at s√=1.96  TeV. Physical Review Letters , 2009, vol. 103, no. 04, p. 041801

DOI : 10.1103/PhysRevLett.103.041801

Available at:

http://archive-ouverte.unige.ch/unige:38600

Disclaimer: layout of this document may differ from the published version.

1 / 1

(2)

Search for the Production of Narrow t b Resonances in 1:9 fb

1

of p p Collisions at ffiffiffi p s

¼ 1:96 TeV

T. Aaltonen,24J. Adelman,14T. Akimoto,55B. A´ lvarez Gonza´lez,12,uS. Amerio,43b,43aD. Amidei,34A. Anastassov,38 A. Annovi,20J. Antos,15G. Apollinari,18A. Apresyan,48T. Arisawa,57A. Artikov,16W. Ashmanskas,18A. Attal,4 A. Aurisano,53F. Azfar,42W. Badgett,18A. Barbaro-Galtieri,28V. E. Barnes,48B. A. Barnett,26P. Barria,46c,46aP. Bartos,15 V. Bartsch,30G. Bauer,32P.-H. Beauchemin,33F. Bedeschi,46aD. Beecher,30S. Behari,26G. Bellettini,46b,46aJ. Bellinger,59

D. Benjamin,17A. Beretvas,18J. Beringer,28A. Bhatti,50M. Binkley,18D. Bisello,43b,43aI. Bizjak,30,zR. E. Blair,2 C. Blocker,7B. Blumenfeld,26A. Bocci,17A. Bodek,49V. Boisvert,49G. Bolla,48D. Bortoletto,48J. Boudreau,47 A. Boveia,11B. Brau,11,bA. Bridgeman,25L. Brigliadori,6b,6aC. Bromberg,35E. Brubaker,14J. Budagov,16H. S. Budd,49

S. Budd,25S. Burke,18K. Burkett,18G. Busetto,43b,43aP. Bussey,22A. Buzatu,33K. L. Byrum,2S. Cabrera,17,w C. Calancha,31M. Campanelli,35M. Campbell,34F. Canelli,14,18 A. Canepa,45B. Carls,25D. Carlsmith,59R. Carosi,46a S. Carrillo,19,oS. Carron,33B. Casal,12M. Casarsa,18A. Castro,6b,6aP. Catastini,46c,46aD. Cauz,54b,54aV. Cavaliere,46c,46a M. Cavalli-Sforza,4A. Cerri,28L. Cerrito,30,qS. H. Chang,61Y. C. Chen,1M. Chertok,8G. Chiarelli,46aG. Chlachidze,18 F. Chlebana,18K. Cho,61D. Chokheli,16J. P. Chou,23G. Choudalakis,32S. H. Chuang,52K. Chung,18,pW. H. Chung,59

Y. S. Chung,49T. Chwalek,27C. I. Ciobanu,44M. A. Ciocci,46c,46aA. Clark,21D. Clark,7G. Compostella,43a M. E. Convery,18J. Conway,8M. Cordelli,20G. Cortiana,43b,43aC. A. Cox,8D. J. Cox,8F. Crescioli,46b,46a C. Cuenca Almenar,8,wJ. Cuevas,12,uR. Culbertson,18J. C. Cully,34D. Dagenhart,18M. Datta,18T. Davies,22 P. de Barbaro,49S. De Cecco,51aA. Deisher,28G. De Lorenzo,4M. Dell’Orso,46b,46aC. Deluca,4L. Demortier,50J. Deng,17

M. Deninno,6aP. F. Derwent,18A. Di Canto,46b,46aG. P. di Giovanni,44C. Dionisi,51b,51aB. Di Ruzza,54b,54a J. R. Dittmann,5M. D’Onofrio,4S. Donati,46b,46aP. Dong,9J. Donini,43aT. Dorigo,43aS. Dube,52J. Efron,39A. Elagin,53

R. Erbacher,8D. Errede,25S. Errede,25R. Eusebi,18H. C. Fang,28S. Farrington,42W. T. Fedorko,14R. G. Feild,60 M. Feindt,27J. P. Fernandez,31C. Ferrazza,46d,46aR. Field,19G. Flanagan,48R. Forrest,8M. J. Frank,5M. Franklin,23 J. C. Freeman,18I. Furic,19M. Gallinaro,51aJ. Galyardt,13F. Garberson,11J. E. Garcia,21A. F. Garfinkel,48P. Garosi,46c,46a K. Genser,18H. Gerberich,25D. Gerdes,34A. Gessler,27S. Giagu,51b,51aV. Giakoumopoulou,3P. Giannetti,46aK. Gibson,47

J. L. Gimmell,49C. M. Ginsburg,18N. Giokaris,3M. Giordani,54b,54aP. Giromini,20M. Giunta,46aG. Giurgiu,26 V. Glagolev,16D. Glenzinski,18M. Gold,37N. Goldschmidt,19A. Golossanov,18G. Gomez,12G. Gomez-Ceballos,32

M. Goncharov,32O. Gonza´lez,31I. Gorelov,37A. T. Goshaw,17K. Goulianos,50A. Gresele,43b,43aS. Grinstein,23 C. Grosso-Pilcher,14R. C. Group,18U. Grundler,25J. Guimaraes da Costa,23Z. Gunay-Unalan,35C. Haber,28K. Hahn,32

S. R. Hahn,18E. Halkiadakis,52B.-Y. Han,49J. Y. Han,49F. Happacher,20K. Hara,55D. Hare,52M. Hare,56S. Harper,42 R. F. Harr,58R. M. Harris,18M. Hartz,47K. Hatakeyama,50C. Hays,42M. Heck,27A. Heijboer,45J. Heinrich,45 C. Henderson,32M. Herndon,59J. Heuser,27S. Hewamanage,5D. Hidas,17C. S. Hill,11,dD. Hirschbuehl,27A. Hocker,18

S. Hou,1M. Houlden,29S.-C. Hsu,28B. T. Huffman,42R. E. Hughes,39U. Husemann,60M. Hussein,35J. Huston,35 J. Incandela,11G. Introzzi,46aM. Iori,51b,51aA. Ivanov,8E. James,18D. Jang,13B. Jayatilaka,17E. J. Jeon,61M. K. Jha,6a

S. Jindariani,18W. Johnson,8M. Jones,48K. K. Joo,61S. Y. Jun,13J. E. Jung,61T. R. Junk,18T. Kamon,53D. Kar,19 P. E. Karchin,58Y. Kato,41,nR. Kephart,18W. Ketchum,14J. Keung,45V. Khotilovich,53B. Kilminster,18D. H. Kim,61

H. S. Kim,61H. W. Kim,61J. E. Kim,61M. J. Kim,20S. B. Kim,61S. H. Kim,55Y. K. Kim,14N. Kimura,55L. Kirsch,7 S. Klimenko,19B. Knuteson,32B. R. Ko,17K. Kondo,57D. J. Kong,61J. Konigsberg,19A. Korytov,19A. V. Kotwal,17 M. Kreps,27J. Kroll,45D. Krop,14N. Krumnack,5M. Kruse,17V. Krutelyov,11T. Kubo,55T. Kuhr,27N. P. Kulkarni,58

M. Kurata,55S. Kwang,14A. T. Laasanen,48S. Lami,46aS. Lammel,18M. Lancaster,30R. L. Lander,8K. Lannon,39,t A. Lath,52G. Latino,46c,46aI. Lazzizzera,43b,43aT. LeCompte,2E. Lee,53H. S. Lee,14S. W. Lee,53,vS. Leone,46a J. D. Lewis,18C.-S. Lin,28J. Linacre,42M. Lindgren,18E. Lipeles,45A. Lister,8D. O. Litvintsev,18C. Liu,47T. Liu,18

N. S. Lockyer,45A. Loginov,60M. Loreti,43b,43aL. Lovas,15D. Lucchesi,43b,43aC. Luci,51b,51aJ. Lueck,27P. Lujan,28 P. Lukens,18G. Lungu,50L. Lyons,42J. Lys,28R. Lysak,15D. MacQueen,33R. Madrak,18K. Maeshima,18K. Makhoul,32

T. Maki,24P. Maksimovic,26S. Malde,42S. Malik,30G. Manca,29,fA. Manousakis-Katsikakis,3F. Margaroli,48 C. Marino,27C. P. Marino,25A. Martin,60V. Martin,22,lM. Martı´nez,4R. Martı´nez-Balları´n,31T. Maruyama,55 P. Mastrandrea,51aT. Masubuchi,55M. Mathis,26M. E. Mattson,58P. Mazzanti,6aK. S. McFarland,49P. McIntyre,53 R. McNulty,29,kA. Mehta,29P. Mehtala,24A. Menzione,46aP. Merkel,48C. Mesropian,50T. Miao,18N. Miladinovic,7

R. Miller,35C. Mills,23M. Milnik,27A. Mitra,1G. Mitselmakher,19H. Miyake,55N. Moggi,6aM. N. Mondragon,18,o C. S. Moon,61R. Moore,18M. J. Morello,46aJ. Morlock,27P. Movilla Fernandez,18J. Mu¨lmensta¨dt,28A. Mukherjee,18

Th. Muller,27R. Mumford,26P. Murat,18M. Mussini,6b,6aJ. Nachtman,18,pY. Nagai,55A. Nagano,55J. Naganoma,55

(3)

K. Nakamura,55I. Nakano,40A. Napier,56V. Necula,17J. Nett,59C. Neu,45,xM. S. Neubauer,25S. Neubauer,27 J. Nielsen,28,hL. Nodulman,2M. Norman,10O. Norniella,25E. Nurse,30L. Oakes,42S. H. Oh,17Y. D. Oh,61I. Oksuzian,19

T. Okusawa,41R. Orava,24K. Osterberg,24S. Pagan Griso,43b,43aC. Pagliarone,54aE. Palencia,18V. Papadimitriou,18 A. Papaikonomou,27A. A. Paramonov,14B. Parks,39S. Pashapour,33J. Patrick,18G. Pauletta,54b,54aM. Paulini,13C. Paus,32 T. Peiffer,27D. E. Pellett,8A. Penzo,54aT. J. Phillips,17G. Piacentino,46aE. Pianori,45L. Pinera,19K. Pitts,25C. Plager,9 L. Pondrom,59O. Poukhov,16,aN. Pounder,42F. Prakoshyn,16A. Pronko,18J. Proudfoot,2F. Ptohos,18,jE. Pueschel,13 G. Punzi,46b,46aJ. Pursley,59J. Rademacker,42,dA. Rahaman,47V. Ramakrishnan,59N. Ranjan,48I. Redondo,31P. Renton,42

M. Renz,27M. Rescigno,51aS. Richter,27F. Rimondi,6b,6aL. Ristori,46aA. Robson,22T. Rodrigo,12T. Rodriguez,45 E. Rogers,25S. Rolli,56R. Roser,18M. Rossi,54aR. Rossin,11P. Roy,33A. Ruiz,12J. Russ,13V. Rusu,18B. Rutherford,18

H. Saarikko,24A. Safonov,53W. K. Sakumoto,49O. Salto´,4L. Santi,54b,54aS. Sarkar,51b,51aL. Sartori,46aK. Sato,18 A. Savoy-Navarro,44P. Schlabach,18A. Schmidt,27E. E. Schmidt,18M. A. Schmidt,14M. P. Schmidt,60,aM. Schmitt,38

T. Schwarz,8L. Scodellaro,12A. Scribano,46c,46aF. Scuri,46aA. Sedov,48S. Seidel,37Y. Seiya,41A. Semenov,16 L. Sexton-Kennedy,18F. Sforza,46b,46aA. Sfyrla,25S. Z. Shalhout,58T. Shears,29P. F. Shepard,47M. Shimojima,55,s S. Shiraishi,14M. Shochet,14Y. Shon,59I. Shreyber,36P. Sinervo,33A. Sisakyan,16A. J. Slaughter,18J. Slaunwhite,39

K. Sliwa,56J. R. Smith,8F. D. Snider,18R. Snihur,33A. Soha,8S. Somalwar,52V. Sorin,35T. Spreitzer,33 P. Squillacioti,46c,46aM. Stanitzki,60R. St. Denis,22B. Stelzer,33O. Stelzer-Chilton,33D. Stentz,38J. Strologas,37 G. L. Strycker,34J. S. Suh,61A. Sukhanov,19I. Suslov,16T. Suzuki,55A. Taffard,25,gR. Takashima,40Y. Takeuchi,55 R. Tanaka,40M. Tecchio,34P. K. Teng,1K. Terashi,50J. Thom,18,iA. S. Thompson,22G. A. Thompson,25E. Thomson,45

P. Tipton,60P. Ttito-Guzma´n,31S. Tkaczyk,18D. Toback,53S. Tokar,15K. Tollefson,35T. Tomura,55D. Tonelli,18 S. Torre,20D. Torretta,18P. Totaro,54b,54aS. Tourneur,44M. Trovato,46d,46aS.-Y. Tsai,1Y. Tu,45N. Turini,46c,46a F. Ukegawa,55S. Vallecorsa,21N. van Remortel,24,cA. Varganov,34E. Vataga,46d,46aF. Va´zquez,19,oG. Velev,18 C. Vellidis,3M. Vidal,31R. Vidal,18I. Vila,12R. Vilar,12T. Vine,30M. Vogel,37I. Volobouev,28,vG. Volpi,46b,46a P. Wagner,45R. G. Wagner,2R. L. Wagner,18W. Wagner,27,yJ. Wagner-Kuhr,27T. Wakisaka,41R. Wallny,9S. M. Wang,1

A. Warburton,33D. Waters,30M. Weinberger,53J. Weinelt,27W. C. Wester III,18B. Whitehouse,56D. Whiteson,45,g A. B. Wicklund,2E. Wicklund,18S. Wilbur,14G. Williams,33H. H. Williams,45P. Wilson,18B. L. Winer,39P. Wittich,18,i

S. Wolbers,18C. Wolfe,14T. Wright,34X. Wu,21F. Wu¨rthwein,10S. Xie,32A. Yagil,10K. Yamamoto,41J. Yamaoka,17 U. K. Yang,14,rY. C. Yang,61W. M. Yao,28G. P. Yeh,18K. Yi,18,pJ. Yoh,18K. Yorita,57T. Yoshida,41,mG. B. Yu,49I. Yu,61

S. S. Yu,18J. C. Yun,18L. Zanello,51b,51aA. Zanetti,54aX. Zhang,25Y. Zheng,9,eand S. Zucchelli6b,6a (CDF Collaboration)

1Institute of Physics, Academia Sinica, Taipei, Taiwan 11529, Republic of China

2Argonne National Laboratory, Argonne, Illinois 60439, USA

3University of Athens, 157 71 Athens, Greece

4Institut de Fisica d’Altes Energies, Universitat Autonoma de Barcelona, E-08193, Bellaterra (Barcelona), Spain

5Baylor University, Waco, Texas 76798, USA

6aIstituto Nazionale di Fisica Nucleare Bologna, I-40127 Bologna, Italy

6bUniversity of Bologna, I-40127 Bologna, Italy

7Brandeis University, Waltham, Massachusetts 02254, USA

8University of California, Davis, Davis, California 95616, USA

9University of California, Los Angeles, Los Angeles, California 90024, USA

10University of California, San Diego, La Jolla, California 92093, USA

11University of California, Santa Barbara, Santa Barbara, California 93106, USA

12Instituto de Fisica de Cantabria, CSIC-University of Cantabria, 39005 Santander, Spain

13Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA

14Enrico Fermi Institute, University of Chicago, Chicago, Illinois 60637, USA

15Comenius University, 842 48 Bratislava, Slovakia; Institute of Experimental Physics, 040 01 Kosice, Slovakia

16Joint Institute for Nuclear Research, RU-141980 Dubna, Russia

17Duke University, Durham, North Carolina 27708, USA

18Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA

19University of Florida, Gainesville, Florida 32611, USA

20Laboratori Nazionali di Frascati, Istituto Nazionale di Fisica Nucleare, I-00044 Frascati, Italy

21University of Geneva, CH-1211 Geneva 4, Switzerland

22Glasgow University, Glasgow G12 8QQ, United Kingdom

23Harvard University, Cambridge, Massachusetts 02138, USA

041801-2

(4)

24Division of High Energy Physics, Department of Physics, University of Helsinki and Helsinki Institute of Physics, FIN-00014, Helsinki, Finland

25University of Illinois, Urbana, Illinois 61801, USA

26The Johns Hopkins University, Baltimore, Maryland 21218, USA

27Institut fu¨r Experimentelle Kernphysik, Universita¨t Karlsruhe, 76128 Karlsruhe, Germany

28Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

29University of Liverpool, Liverpool L69 7ZE, United Kingdom

30University College London, London WC1E 6BT, United Kingdom

31Centro de Investigaciones Energeticas Medioambientales y Tecnologicas, E-28040 Madrid, Spain

32Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

33Institute of Particle Physics: McGill University, Montre´al, Que´bec, Canada H3A 2T8;

Simon Fraser University, Burnaby, British Columbia, Canada V5A 1S6;

University of Toronto, Toronto, Ontario, Canada M5S 1A7;

and TRIUMF, Vancouver, British Columbia, Canada V6T 2A3

34University of Michigan, Ann Arbor, Michigan 48109, USA

35Michigan State University, East Lansing, Michigan 48824, USA

36Institution for Theoretical and Experimental Physics, ITEP, Moscow 117259, Russia

37University of New Mexico, Albuquerque, New Mexico 87131, USA

38Northwestern University, Evanston, Illinois 60208, USA

39The Ohio State University, Columbus, Ohio 43210, USA

40Okayama University, Okayama 700-8530, Japan

41Osaka City University, Osaka 588, Japan

42University of Oxford, Oxford OX1 3RH, United Kingdom

43aIstituto Nazionale di Fisica Nucleare, Sezione di Padova-Trento, I-35131 Padova, Italy

43bUniversity of Padova, I-35131 Padova, Italy

44LPNHE, Universite Pierre et Marie Curie/IN2P3-CNRS, UMR7585, Paris, F-75252 France

45University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA

46aIstituto Nazionale di Fisica Nucleare Pisa, I-56127 Pisa, Italy

46bUniversity of Pisa, I-56127 Pisa, Italy

46cUniversity of Siena, I-56127 Pisa, Italy

46dScuola Normale Superiore, I-56127 Pisa, Italy

47University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA

48Purdue University, West Lafayette, Indiana 47907, USA

49University of Rochester, Rochester, New York 14627, USA

50The Rockefeller University, New York, New York 10021, USA

51aIstituto Nazionale di Fisica Nucleare, Sezione di Roma 1, I-00185 Roma, Italy

51bSapienza Universita` di Roma, I-00185 Roma, Italy

52Rutgers University, Piscataway, New Jersey 08855, USA

53Texas A&M University, College Station, Texas 77843, USA

54aIstituto Nazionale di Fisica Nucleare Trieste/Udine, I-34100 Trieste, Italy

54bUniversity of Trieste/Udine, I-33100 Udine, Italy

55University of Tsukuba, Tsukuba, Ibaraki 305, Japan

56Tufts University, Medford, Massachusetts 02155, USA

57Waseda University, Tokyo 169, Japan

58Wayne State University, Detroit, Michigan 48201, USA

59University of Wisconsin, Madison, Wisconsin 53706, USA

60Yale University, New Haven, Connecticut 06520, USA

61Center for High Energy Physics: Kyungpook National University, Daegu 702-701, Korea;

Seoul National University, Seoul 151-742, Korea;

Sungkyunkwan University, Suwon 440-746, Korea;

Korea Institute of Science and Technology Information, Daejeon, 305-806, Korea;

Chonnam National University, Gwangju, 500-757, Korea (Received 16 February 2009; published 20 July 2009) We present new limits on resonanttbproduction inppcollisions atpffiffiffis

¼1:96 TeV, using1:9 fb1of data recorded with the CDF II detector at the Fermilab Tevatron. We reconstruct a candidatetbmass in events with a lepton, neutrino candidate, and two or three jets, and search for anomaloustbproduction as modeled byW0!tb. We set a new limit on a right-handed W0 with standard model-like coupling, excluding any mass below 800 GeV=c2 at 95% C.L. The cross section for any narrow, resonant tb production between 750 and950 GeV=c2is found to be less than 0.28 pb at 95% C.L. We also present an exclusion of theW0coupling strength versusW0 mass over the range300–950 GeV=c2.

(5)

DOI:10.1103/PhysRevLett.103.041801 PACS numbers: 14.70.Pw, 13.85.Rm

Many modifications of the standard model (SM) of particle physics include new, massive, short-lived particles with two-body decays to known fermion pairs. A classic search strategy for these states looks for resonant signals in the spectra of two-body mass distributions. Recent tech- niques developed to observe electroweak single-top-quark production are well suited to a search for unexpected tb resonances [1]. A tb resonance (inclusion of the charge conjugate is implied throughout the text) is predicted by a wide range of models containing a massive charged vector boson, generically referred to asW0. The classic model is a simple extension of the SM to the left-right symmetric group SUð2ÞLSUð2ÞRUð1Þ [2], which adds a right- handed charged boson WR with universal weak coupling strength and unknown mass. TheW0 may arise in models with other symmetry extensions: as the excitation of theW boson in Kaluza-Klein extra dimensions [3], as the techni-of technicolor theories [4], or as a bosonic partner in little Higgs scenarios [5].

The classic limits onW0are derived from searches in the W0 !‘ decay channel [6]. For large W0 masses, the sensitivity in this channel is diminished by the broad Jacobian line shapes for the lepton momentum and W0 transverse mass. Searches in thetb channel [7] avoid this difficulty and also probe models where the couplings are free parameters and the leptonic decay modes may be suppressed. Although we quantify our results using the model of a right-handed W0 with SM-like coupling [8], this analysis is sensitive to any narrow state decaying totb, including, e.g., a charged Higgs boson or bound states arising from new dynamics in the third generation.

Searches in thetbchannel complement searches for neu- tral states coupling tott[9].

In this Letter we present a new search for ans-channel W0 !tb resonance produced in pp collisions at ffiffiffi

ps 1:96 TeV at the Fermilab Tevatron. The data set of¼ 1:9 fb1was recorded with the CDF II detector; a standard coordinate system [10] is used. A detailed explanation of this analysis can be found in [11]. Our selection is based on the leptonic decay mode tb! ð‘bÞb, which has been well understood in the search for electroweak single-top- quark production [1]. Events are expected to have a high transverse momentum (pT) electron or muon candidate, missing transverse energy (E6 T) from a neutrino [12], and two or three jets, at least one of which is a b-quark candidate. The dominant background is fromWþjet pro- cesses and electroweak top-quark production. We recon- struct each event according to our signal hypothesis W0 !tb! ð‘bÞb, then search the mass spectrum for a narrow resonance. If no signal is detected, we set limits on theW0 !tbcross section and on theW0coupling strength gW0.

The CDF II detector [13] is a cylindrically symmetric general-purpose detector. Precision charged-particle track-

ing is accomplished by layers of silicon microstrip detec- tors surrounded by a large open-cell drift chamber within a 1.4 T solenoidal magnetic field. Outside the magnet are the electromagnetic and hadronic calorimeters, steel for had- ronic shielding, and an exterior layer of muon detectors.

The luminosity of thepp collisions is measured using gas Cherenkov detectors at small angles.

We select data using online selection criteria which require a high-pT lepton or large E6 T [14]. We identify tb!‘bb candidates as having an electron or muon with pT 20 GeV=c. We also require E6 T 25 GeV and two or three hadronic jets with pT 20 GeV=cand jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij 2:8. Jets are clustered in cones of fixed radiusR

ðÞ2þ ðÞ2

p 0:4, and at least one jet is required to be ‘‘b tagged,’’ i.e., the jet contains a secondary vertex consistent with the decay of a hadron containing abquark [15]. We reduceZdecays andttcontamination by exclud- ing events with a second charged lepton. Events consistent with cosmic ray or photon interactions are also excluded.

QCD multijet background, which does not involve a W boson, is rejected with a specific set of requirements [11].

The primary background process is the associated pro- duction of a W boson and jets with subsequent leptonic decay of theW boson (Wþjets). Approximately 70% of our sample are Wþjets events containing heavy flavor (Wbb, Wcc, Wcj) or incorrectly b-tagged light flavor (mistags). We establish the normalization of these pro- cesses from data, and estimate the fraction of the candidate events with bottom or charm flavor using the ALPGEN

Monte Carlo event generator [16]. The mistagging rate for light-flavor jets is estimated from inclusive generic jet data [17]. Additional backgrounds including tt pair pro- duction,s-channel andt-channel single-top-quark produc- tion, and diboson processes (WW, WZ,ZZ) are modeled using thePYTHIAMonte Carlo event generator [18] and are normalized to the next-to-leading-order cross sections pre- dicted by theory. A small multijet background without leptonicW decay (‘‘non-W’’) arises when a jet is misiden- tified as a lepton andE6 T results from jet energy mismea- surement; this background is modeled using data. The predicted SM background is detailed in Table I. The un- certainties are dominated by imprecise knowledge of the heavy-flavor fractions and pertain to background rate esti- mates only; other systematic uncertainties are discussed later. In data we observe 1362 events with two jets and 617 events with three jets.

According to the proposedW0hypothesis, theW0mass is given by reconstructingMtbfrom the four-momenta of the lepton, neutrino, and two jets. The unmeasured longitudi- nal neutrino momentumpz is quadratically constrained by assigning M¼MW ¼80:448 GeV=c2 [19]. We assign pz to the smallest real solution or to the real part of complex solutions [20]. We assume the two highest ET jets arise from thebquarks, even for the three-jet case in 041801-4

(6)

which the third jet has beenbtagged. The reconstructedW is then combined with these two leading jets, corrected to reproduce parton-level energies, to formMtb.

Our signal model is a W0 with purely right-handed decays and SM-like coupling, simulated using PYTHIA. The model assumes a top-quark mass of 175 GeV=c2. The left-handed case is not considered since the conse- quentWW0 interference has not been observed in any precisionWmeasurements. Figure1shows theMtbdistri- bution in data superimposed with the expected signal shape for a600 GeV=c2W0produced with a total cross section of 9 pb (4the prediction for aW0with SM-like coupling [8]). The reconstructed width of the signal is dominated by resolution effects, particularly the jet-energy resolution [21] and the incorrect assignment of jets from initial or final state radiation. Our test signal is therefore applicable for anyW0-like object whose width is small compared to the experimental resolution. The binning is chosen so that background models have a sufficient number of entries in each bin, including the overflow bin for all values above 700 GeV=c2.

Unlike single-top-quark production, W0 production is entirely an s-channel process; contributions from the t anduchannels are suppressed by the largeW0 mass. We simulate a narrow right-handedW0 with SM-like coupling and a mass between 300 and 950 GeV=c2 in steps of 100 GeV=c2 below600 GeV=c2 and steps of50 GeV=c2 above. This is the mass range to which our analysis is sensitive to changes in the signal distribution: above 950 GeV=c2 the signal events simply pile into the Mtb

overflow bin. Since there is very little high-mass back- ground, we are sensitive to excesses of just a few events in the tail. ForMW0 ¼800 GeV=c2, our selection efficiency in thetbchannel is approximately2:81:0%. An excess of ten events, for example, would correspond to a Tevatron cross section of 0.18 pb.

The branching ratios (BR) of a right-handedW0depend on whether decay to R is allowed; we consider both possibilities. If leptonic decay is forbidden, as for a lep-

tophobic W0 or when MW0< MR, the Mtb prediction simply has a slightly larger normalization. For example, ifMW0 ¼800 GeV=c2,BRðW0 !tbÞ is predicted to be 0.337 pb if leptonic decays are forbidden and 0.262 pb if they are allowed.

We set frequentist limits onW0!tbusing the measure CLs from [22], which is defined as the probability of background plus a specified signal fraction matching the data (PSþB) divided by the probability of a background-

2) (GeV/c

b

Mt

0 100 200 300 400 500 600 700

Events

0 50 100 150 200 250 300

CDF Run II: 1.9 fb-1

Data

Single top quark t

t

Mistags, Non-W , Wcj, WW c

Wc

, WZ, ZZ, Z+jets b

Wb

W (9 pb) 600 GeV/c2

FIG. 1. Mtbfor events with two jets and onebtag, comparing the shapes between background and signal. Backgrounds are stacked and grouped according to similar shape. A600 GeV=c2 W0 model is shown withBRðW0!tbÞ ¼9 pb(4the prediction for aW0with SM-like coupling).

TABLE I. Predicted SM background contribution with two jets and with three jets.

Background 2 jets 3 jets

Wbb 409:4123:4 125:637:9 WccþWcj 412:4127:2 109:333:6

Mistags 276:535:0 82:510:7

Non-W 53:221:3 17:36:9

tt 126:513:4 291:836:7 Single top quark (tchannel) 53:37:8 15:72:3 Single top quark (schannel) 35:45:0 11:61:6 WWþWZþZZ 54:44:2 18:41:5 Zþjets 22:63:3 9:31:4 Total BG prediction 1443:8254:6 681:683:0

Observed 1362 617

TABLE II. 95% C.L. limits onBRðW0!tbÞas function of MW0 for a right-handed W0 with SM-like coupling. The expected limit is quoted with the range of values into which our observation should fall 68% of the time assuming no signal is present.

MW0 (GeV=c2) Expected limit (pb) Observed limit (pb)

300 1:56þ00::6245 1.59

400 1:04þ00::4430 1.17

500 0:74þ00::3522 0.84

600 0:54þ00::2417 0.44

650 0:46þ00::2113 0.39

700 0:40þ00::1712 0.32

750 0:33þ00::1509 0.28

800 0:30þ00::1309 0.26

850 0:28þ00::1308 0.25

900 0:28þ00::1308 0.26

950 0:30þ00::1309 0.28

(7)

only model matching the data (PB). Sources of uncertainty are treated using a large series of trials (50103) for both cases. Each trial is produced by randomly varying all uncertain parameters in the model prediction within a Gaussian constraint about their nominal values. PSþB is determined from the fraction of the SþB trials with a minimized 2¼2ðdatajSþBÞ 2ðdatajBÞ larger than in data; PB is analogous. The 95% C.L. limit is set by adjusting the signal fraction assumed in the SþB model untilCLs¼0:05.

Our event selection introduces various sources of sys- tematic uncertainty. These are manifest as errors in both the rates and shapes of the mass distributions for our signal and background models. They include jet-energy scale (JES),b-tagging efficiencies, lepton identification and trig- ger efficiencies, recorded luminosity, quantity of initial and final state radiation, parton distribution functions, factori- zation and renormalization scale, and MC modeling. Our limit procedure evaluates their impact by making reason- able variations in the model parameters and resimulating the analysis [11].

The systematic uncertainties are dominated by JES and theb-tagging rate uncertainties for the signal. JES uncer- tainty is modeled by calculating 1 shifts in each jet- energy correction and adding the results in quadrature.

The uncertainty in b-tagging efficiency is determined by binning the b-tagging rate as a function of energy for multijet data. The uncertainty is found to be proportional to the jet energy, allowing extrapolation to the higher energies common for our W0 signal. This jet-energy weighted uncertainty on theb-tagging rate leads to accep- tance errors as large as 40% for a 950 GeV=c2 W0.

Including all such sources of uncertainty in our model results in the expected upper limit on the cross section increasing by 30%–40%.

Applying the full limit procedure, we set 95% C.L.

upper limits on BRðW0!tbÞ as listed in Table II for a right-handed W0 with SM-like coupling. Predicted cross sections for such aW0[8] are shown in Fig.2: we set new 95% C.L. limits of MW0>800 GeV=c2 including leptonic decays, and MW0>825 GeV=c2 if leptonic de- cays are forbidden. The best prior result used0:9 fb1and found MW0 768 GeV=c2 if leptonic decays are forbid- den [7]. These results are quoted for a top-quark mass of 175 GeV=c2 and thus are slightly conservative: using the smaller world average would increase the tb branching fraction.

For a simple s-channel model with effective coupling gW0, the cross section is proportional tog4W0. Relaxing the assumption of the universal weak coupling, our cross section limits can be rewritten as upper limits ongW0 as a function of MW0. The excluded region of the gW0MW0

plane is shown in Fig.3, withgW0in units ofgW. AtMW0 ¼ 300 GeV=c2, we limit (95% C.L.) the effective coupling to be less than 0.40 of the W boson coupling. In this more general case, the effective cross section for any narrow, resonant tb production between 750 and 950 GeV=c2 is found to be less than 0.28 pb at 95% C.L.

We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions.

This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of

2) W Mass (GeV/c

300 400 500 600 700 800 900

) (pb)b t BR(W×σ

0 0.2 0.4 0.6 0.8 1 1.2 1.4

1.6 Expected Limit

Expected Limit σ

± 1

Observed Limit Allowed ν

Theory: W′

Forbidden ν

Theory: W′

CDF Run II: 1.9 fb

FIG. 2 (color online). Expected and observed 95% C.L. limits on BRðW0!tbÞ as function of MW0 for 1:9 fb1, along with theoretical predictions. A right-handed W0 with SM-like couplings is excluded forW0masses below800 GeV=c2.

2) W Mass (GeV

300 400 500 600 700 800 900

W / gWg

0 0.2 0.4 0.6 0.8 1 1.2

Excluded Region

Forbidden ν

Obs Limit: W′

Allowed ν

Obs Limit: W′

CDF Run II: 1.9 fb

FIG. 3 (color online). Observed 95% C.L. limits on the cou- pling strength of a right-handed W0 compared to the SM W boson coupling, gW0=gW, as function ofMW0 for1:9 fb1. The shaded region above each dashed line is excluded.

041801-6

(8)

Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Founda- tion; the A. P. Sloan Foundation; the Bundesministerium fu¨r Bildung und Forschung, Germany; the Korean Science and Engineering Foundation and the Korean Research Foundation; the Science and Technology Facilities Council and the Royal Society, UK; the Institut National de Physique Nucleaire et Physique des Particules/CNRS;

the Russian Foundation for Basic Research; the Ministerio de Ciencia e Innovacio´n, and Programa Consolider- Ingenio 2010, Spain; the Slovak R&D Agency; and the Academy of Finland.

aDeceased.

bVisitor from University of Massachusetts Amherst, Amherst, MA 01003, USA.

cVisitor from Universiteit Antwerpen, B-2610 Antwerp, Belgium.

dVisitor from University of Bristol, Bristol BS8 1TL, United Kingdom.

eVisitor from Chinese Academy of Sciences, Beijing 100864, China.

fVisitor from Istituto Nazionale di Fisica Nucleare, Sezione di Cagliari, 09042 Monserrato (Cagliari), Italy.

gVisitor from University of California Irvine, Irvine, CA 92697, USA.

hVisitor from University of California Santa Cruz, Santa Cruz, CA 95064, USA.

iVisitor from Cornell University, Ithaca, NY 14853, USA.

jVisitor from University of Cyprus, Nicosia CY-1678, Cyprus.

kVisitor from University College Dublin, Dublin 4, Ireland.

lVisitor from University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom.

mVisitor from University of Fukui, Fukui City, Fukui Prefecture, Japan 910-0017.

nVisitor from Kinki University, Higashi-Osaka City, Japan 577-8502.

oVisitor from Universidad Iberoamericana, Mexico D.F., Mexico.

pVisitor from University of Iowa, Iowa City, IA 52242, USA.

qVisitor from Queen Mary, University of London, London, E1 4NS, England.

rVisitor from University of Manchester, Manchester M13 9PL, England.

sVisitor from Nagasaki Institute of Applied Science, Nagasaki, Japan.

tVisitor from University of Notre Dame, Notre Dame, IN 46556, USA.

uVisitor from University de Oviedo, E-33007 Oviedo, Spain.

vVisitor from Texas Tech University, Lubbock, TX 79609, USA.

wVisitor from IFIC(CSIC–Universitat de Valencia), 46071 Valencia, Spain.

xVisitor from University of Virginia, Charlottesville, VA 22904, USA.

yVisitor from Bergische Universita¨t Wuppertal, 42097 Wuppertal, Germany.

zOn leave from J. Stefan Institute, Ljubljana, Slovenia.

[1] T. Aaltonenet al.(CDF Collaboration), Phys. Rev. Lett.

101, 252001 (2008).

[2] J. C. Pati and A. Salam, Phys. Rev. D10, 275 (1974);11, 703 (1975); R. N. Mohapatra and J. C. Pati, Phys. Rev. D 11, 566 (1975); G. Senjanovic and R. N. Mohapatra, Phys.

Rev. D12, 1502 (1975).

[3] Y. Mimura and S. Nandi, Phys. Lett. B538, 406 (2002); G.

Burdman, B. A. Dobrescu, and E. Ponton, Phys. Rev. D 74, 075008 (2006).

[4] E. Malkawi, T. Tait, and C. P. Yuan, Phys. Lett. B385, 304 (1996); H. Georgi, E. E. Jenkins, and E. H. Simmons, Nucl. Phys.B331, 541 (1990).

[5] M. Perelstein, Prog. Part. Nucl. Phys.58, 247 (2007).

[6] V. M. Abazovet al.(D0 Collaboration), Phys. Rev. Lett.

100, 031804 (2008); A. Abulencia et al. (CDF Collaboration), Phys. Rev. D75, 091101 (2007).

[7] V. M. Abazovet al.(D0 Collaboration), Phys. Rev. Lett.

100, 211803 (2008); D. Acostaet al.(CDF Collaboration), Phys. Rev. Lett.90, 081802 (2003).

[8] Z. Sullivan, Phys. Rev. D66, 075011 (2002).

[9] T. Aaltonenet al.(CDF Collaboration), Phys. Rev. Lett.

100, 231801 (2008); T. Aaltonen et al. (CDF Collaboration), Phys. Rev. D77, 051102 (2008).

[10] We use coordinates whereis the azimuthal angle,is the polar angle with respect to the proton beam axis, transverse energy isET¼EsinðÞ, and the pseudorapidity is¼ ln½tanð=2Þ.

[11] J. C. Cully, Ph.D. thesis, University of Michigan (Fermilab Report No. FERMILAB-THESIS-2008-55, 2008).

[12] Missing transverse energy,E6 T, is defined as the magnitude of the vector P

iEiT~ni whereEiT are the magnitudes of transverse energy contained in each calorimeter tower i and ~niis the unit vector from the interaction vertex to the tower in the transverse (x; y) plane.

[13] D. Acosta et al.(CDF Collaboration), Phys. Rev. D71, 032001 (2005).

[14] A. Abulenciaet al.(CDF Collaboration), Phys. Rev. D74, 072006 (2006); T. Aaltonen et al. (CDF Collaboration), Phys. Rev. Lett.100, 211801 (2008).

[15] We use theSECVTXalgorithm described in D. Acostaet al.

(CDF Collaboration), Phys. Rev. D71, 052003 (2005).

[16] M. L. Manganoet al., J. High Energy Phys. 07 (2003) 001.

[17] D. Acostaet al., Phys. Rev. D71, 052003 (2005).

[18] T. Sjostrand et al., Comput. Phys. Commun. 135, 238 (2001).

[19] D. E. Groomet al.(Particle Data Group), Eur. Phys. J. C 15, 1 (2000).

[20] D. Acosta et al.(CDF Collaboration), Phys. Rev. D71, 012005 (2005).

[21] A. Bhattiet al., Nucl. Instrum. Methods Phys. Res., Sect.

A566, 375 (2006).

[22] T. Junk, Nucl. Instrum. Methods Phys. Res., Sect. A434, 435 (1999); A. L. Read, J. Phys. G28, 2693 (2002).

Références

Documents relatifs

The likelihood ratio distribution for signal (dashed line) from PYTHIA MC samples and background (solid line) from data sidebands in the U-U channel. Distributions of the

6 The p T distributions of the B and J= mesons in the data are slightly softer than those of the simulation; this difference is not relevant for the result of the study because the B

In the subsections below we describe the real-time (‘‘on- line’’) event selection criteria by the trigger system, and the subsequent event selection ‘‘offline,’’ including

Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan;

We begin the signal reconstruction by requiring the candidate muon, pion, and kaon tracks to satisfy COT fiducial and quality selection criteria, which include re- quirements on

Geometric and kinematic acceptance The acceptance of t t events in this analysis is measured in PYTHIA and then corrected, using measurements from the data, for effects that are

Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan;

Department of En- ergy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of