• Aucun résultat trouvé

Search for High-Mass <em>e<sup>+</sup>e<sup>−</sup></em> Resonances in <em>pp</em> Collisions at s√=1.96  TeV

N/A
N/A
Protected

Academic year: 2022

Partager "Search for High-Mass <em>e<sup>+</sup>e<sup>−</sup></em> Resonances in <em>pp</em> Collisions at s√=1.96  TeV"

Copied!
9
0
0

Texte intégral

(1)

Article

Reference

Search for High-Mass e

+

e

Resonances in pp Collisions at s√=1.96   TeV

CDF Collaboration

GARCIA NAVARRO, Jose Enrique (Collab.), VALLECORSA, Sofia (Collab.), WU, Xin (Collab.)

Abstract

A search for high-mass resonances in the e+e− final state is presented based on 2.5  fb−1 of s√=1.96  TeV pp collision data from the CDF II detector at the Fermilab Tevatron. The largest excess over the standard model prediction is at an e+e− invariant mass of 240  GeV/c2. The probability of observing such an excess arising from fluctuations in the standard model anywhere in the mass range of 150–1000  GeV/c2 is 0.6% (equivalent to 2.5σ). We exclude the standard model coupling Z′ and the Randall-Sundrum graviton for k/MPl=0.1 with masses below 963 and 848  GeV/c2 at the 95% credibility level, respectively.

CDF Collaboration, GARCIA NAVARRO, Jose Enrique (Collab.), VALLECORSA, Sofia (Collab.), WU, Xin (Collab.). Search for High-Mass e

+

e

Resonances in pp Collisions at s√=1.96  TeV.

Physical Review Letters , 2009, vol. 102, no. 03, p. 031801

DOI : 10.1103/PhysRevLett.102.031801

Available at:

http://archive-ouverte.unige.ch/unige:38542

Disclaimer: layout of this document may differ from the published version.

1 / 1

(2)

Search for High-Mass e

þ

e

Resonances in p p Collisions at ffiffiffi p s

¼ 1:96 TeV

T. Aaltonen,24J. Adelman,14T. Akimoto,56M. G. Albrow,18B. A´ lvarez Gonza´lez,12S. Amerio,44a,44bD. Amidei,35 A. Anastassov,39A. Annovi,20J. Antos,15G. Apollinari,18A. Apresyan,49T. Arisawa,58A. Artikov,16W. Ashmanskas,18 A. Attal,4A. Aurisano,54F. Azfar,43P. Azzurri,47a,47dW. Badgett,18A. Barbaro-Galtieri,29V. E. Barnes,49B. A. Barnett,26 V. Bartsch,31G. Bauer,33P.-H. Beauchemin,34F. Bedeschi,47aD. Beecher,31S. Behari,26G. Bellettini,47a,47bJ. Bellinger,60

D. Benjamin,17A. Beretvas,18J. Beringer,29A. Bhatti,51M. Binkley,18D. Bisello,44a,44bI. Bizjak,31,wR. E. Blair,2 C. Blocker,7B. Blumenfeld,26A. Bocci,17A. Bodek,50V. Boisvert,50G. Bolla,49D. Bortoletto,49J. Boudreau,48 A. Boveia,11B. Brau,11,bA. Bridgeman,25L. Brigliadori,44aC. Bromberg,36E. Brubaker,14J. Budagov,16H. S. Budd,50

S. Budd,25S. Burke,18K. Burkett,18G. Busetto,44a,44bP. Bussey,22A. Buzatu,34K. L. Byrum,2S. Cabrera,17,u C. Calancha,32M. Campanelli,36M. Campbell,35F. Canelli,18A. Canepa,46B. Carls,25D. Carlsmith,60R. Carosi,47a S. Carrillo,19,mS. Carron,34B. Casal,12M. Casarsa,18A. Castro,6a,6bP. Catastini,47a,47cD. Cauz,55a,55bV. Cavaliere,47a,47c M. Cavalli-Sforza,4A. Cerri,29L. Cerrito,31,nS. H. Chang,28Y. C. Chen,1M. Chertok,8G. Chiarelli,47aG. Chlachidze,18 F. Chlebana,18K. Cho,28D. Chokheli,16J. P. Chou,23G. Choudalakis,33S. H. Chuang,53K. Chung,13W. H. Chung,60

Y. S. Chung,50T. Chwalek,50C. I. Ciobanu,27M. A. Ciocci,45A. Clark,47a,47cD. Clark,7G. Compostella,44a M. E. Convery,18J. Conway,8M. Cordelli,20G. Cortiana,44a,44bC. A. Cox,8D. J. Cox,8F. Crescioli,47a,47b C. Cuenca Almenar,8,uJ. Cuevas,12,rR. Culbertson,18J. C. Cully,35D. Dagenhart,18M. Datta,18T. Davies,22 P. de Barbaro,50S. De Cecco,52aA. Deisher,29G. De Lorenzo,4M. Dell’Orso,47a,47bC. Deluca,4L. Demortier,51J. Deng,17 M. Deninno,6aP. F. Derwent,18G. P. di Giovanni,45C. Dionisi,52a,52bB. Di Ruzza,55a,55bJ. R. Dittmann,5M. D’Onofrio,4

S. Donati,47a,47bP. Dong,9J. Donini,44aT. Dorigo,44aS. Dube,53J. Efron,40A. Elagin,54R. Erbacher,8D. Errede,25 S. Errede,25R. Eusebi,18H. C. Fang,29S. Farrington,43W. T. Fedorko,14R. G. Feild,61M. Feindt,27J. P. Fernandez,32

C. Ferrazza,47a,47dR. Field,19G. Flanagan,49R. Forrest,8M. J. Frank,5M. Franklin,23J. C. Freeman,18I. Furic,19 M. Gallinaro,52aJ. Galyardt,13F. Garberson,11J. E. Garcia,21A. F. Garfinkel,49K. Genser,18H. Gerberich,25D. Gerdes,35

A. Gessler,27S. Giagu,52a,52bV. Giakoumopoulou,3P. Giannetti,47aK. Gibson,48J. L. Gimmell,50C. M. Ginsburg,18 N. Giokaris,3M. Giordani,55a,55bP. Giromini,20M. Giunta,47a,47bG. Giurgiu,26V. Glagolev,16D. Glenzinski,18M. Gold,38

N. Goldschmidt,19A. Golossanov,18G. Gomez,12G. Gomez-Ceballos,33M. Goncharov,54O. Gonza´lez,32I. Gorelov,38 A. T. Goshaw,17K. Goulianos,51A. Gresele,44a,44bS. Grinstein,23C. Grosso-Pilcher,14R. C. Group,18U. Grundler,25

J. Guimaraes da Costa,23Z. Gunay-Unalan,36C. Haber,29K. Hahn,33S. R. Hahn,18E. Halkiadakis,53B.-Y. Han,50 J. Y. Han,50F. Happacher,20K. Hara,56D. Hare,53M. Hare,57S. Harper,43R. F. Harr,59R. M. Harris,18M. Hartz,48 K. Hatakeyama,51C. Hays,43M. Heck,27A. Heijboer,46J. Heinrich,46C. Henderson,33M. Herndon,60J. Heuser,27 S. Hewamanage,5D. Hidas,17C. S. Hill,11,dD. Hirschbuehl,27A. Hocker,18S. Hou,1M. Houlden,30S.-C. Hsu,29 B. T. Huffman,43R. E. Hughes,40U. Husemann,61J. Huston,36J. Incandela,11G. Introzzi,47aM. Iori,52a,52bA. Ivanov,8 E. James,18B. Jayatilaka,17E. J. Jeon,28M. K. Jha,6aS. Jindariani,18W. Johnson,8M. Jones,49K. K. Joo,28S. Y. Jun,13 J. E. Jung,28T. R. Junk,18T. Kamon,54D. Kar,19P. E. Karchin,59Y. Kato,42R. Kephart,18J. Keung,46V. Khotilovich,54 B. Kilminster,18D. H. Kim,62H. S. Kim,28H. W. Kim,28J. E. Kim,28M. J. Kim,20S. B. Kim,28S. H. Kim,56Y. K. Kim,14

N. Kimura,56L. Kirsch,7S. Klimenko,19B. Knuteson,33B. R. Ko,17K. Kondo,58D. J. Kong,28J. Konigsberg,19 A. Korytov,19A. V. Kotwal,17M. Kreps,27J. Kroll,46D. Krop,14N. Krumnack,5M. Kruse,17V. Krutelyov,11T. Kubo,56

T. Kuhr,27N. P. Kulkarni,59M. Kurata,56Y. Kusakabe,58S. Kwang,14A. T. Laasanen,49S. Lami,47aS. Lammel,18 M. Lancaster,31R. L. Lander,8K. Lannon,40,qA. Lath,53G. Latino,47a,47cI. Lazzizzera,44a,44bT. LeCompte,2E. Lee,54 H. S. Lee,14S. W. Lee,54,tS. Leone,47aJ. D. Lewis,18C.-S. Lin,29J. Linacre,43M. Lindgren,18E. Lipeles,46A. Lister,8 D. O. Litvintsev,18C. Liu,48T. Liu,18N. S. Lockyer,46A. Loginov,61M. Loreti,44a,44bL. Lovas,15D. Lucchesi,44a,44b

C. Luci,52a,55bJ. Lueck,27P. Lujan,29P. Lukens,18G. Lungu,51L. Lyons,43J. Lys,29R. Lysak,15D. MacQueen,34 R. Madrak,18K. Maeshima,18K. Makhoul,33T. Maki,24P. Maksimovic,26S. Malde,43S. Malik,31G. Manca,30,f A. Manousakis-Katsikakis,3F. Margaroli,49C. Marino,27C. P. Marino,25A. Martin,61V. Martin,22,lM. Martı´nez,4 R. Martı´nez-Balları´n,32T. Maruyama,56P. Mastrandrea,52aT. Masubuchi,56M. Mathis,26M. E. Mattson,59P. Mazzanti,6a K. S. McFarland,50P. McIntyre,54R. McNulty,30,kA. Mehta,30P. Mehtala,24A. Menzione,47aP. Merkel,49C. Mesropian,51 T. Miao,18N. Miladinovic,7R. Miller,36C. Mills,23M. Milnik,27A. Mitra,1G. Mitselmakher,19H. Miyake,56N. Moggi,6a C. S. Moon,28R. Moore,18M. J. Morello,47a,47bJ. Morlok,27P. Movilla Fernandez,18J. Mu¨lmensta¨dt,29A. Mukherjee,18

Th. Muller,27R. Mumford,26P. Murat,18M. Mussini,6a,6bJ. Nachtman,18Y. Nagai,56A. Nagano,56J. Naganoma,56 K. Nakamura,56I. Nakano,41A. Napier,57V. Necula,17J. Nett,60C. Neu,46,vM. S. Neubauer,25S. Neubauer,27

(3)

J. Nielsen,29,hL. Nodulman,2M. Norman,10O. Norniella,25E. Nurse,31L. Oakes,43S. H. Oh,17Y. D. Oh,28I. Oksuzian,19 T. Okusawa,42R. Orava,24S. Pagan Griso,44a,44bE. Palencia,18V. Papadimitriou,18A. Papaikonomou,27 A. A. Paramonov,14B. Parks,40S. Pashapour,34J. Patrick,18G. Pauletta,55a,55bM. Paulini,13C. Paus,33T. Peiffer,27 D. E. Pellett,8A. Penzo,55aT. J. Phillips,17G. Piacentino,47aE. Pianori,46L. Pinera,19K. Pitts,25C. Plager,9L. Pondrom,60

O. Poukhov,16,aN. Pounder,43F. Prakoshyn,16A. Pronko,18J. Proudfoot,2F. Ptohos,18,jE. Pueschel,13G. Punzi,47a,47b J. Pursley,60J. Rademacker,43,dA. Rahaman,48V. Ramakrishnan,60N. Ranjan,49I. Redondo,32V. Rekovic,38P. Renton,43

M. Renz,27M. Rescigno,52aS. Richter,27F. Rimondi,6a,6bL. Ristori,47aA. Robson,22T. Rodrigo,12T. Rodriguez,46 E. Rogers,25S. Rolli,57R. Roser,18M. Rossi,55aR. Rossin,11P. Roy,34A. Ruiz,12J. Russ,13V. Rusu,18A. Safonov,54 W. K. Sakumoto,50O. Salto´,4L. Santi,55a,55bS. Sarkar,52a,52bL. Sartori,47aK. Sato,18A. Savoy-Navarro,45P. Schlabach,18

A. Schmidt,27E. E. Schmidt,18M. A. Schmidt,14M. P. Schmidt,61,aM. Schmitt,39T. Schwarz,8L. Scodellaro,12 A. Scribano,47a,47cF. Scuri,47aA. Sedov,49S. Seidel,38Y. Seiya,42A. Semenov,16L. Sexton-Kennedy,18F. Sforza,47a A. Sfyrla,25S. Z. Shalhout,59T. Shears,30P. F. Shepard,48M. Shimojima,56,pS. Shiraishi,14M. Shochet,14Y. Shon,60 I. Shreyber,37A. Sidoti,47aP. Sinervo,34A. Sisakyan,16A. J. Slaughter,18J. Slaunwhite,40K. Sliwa,57J. R. Smith,8 F. D. Snider,18R. Snihur,34A. Soha,8S. Somalwar,53V. Sorin,36J. Spalding,18T. Spreitzer,34P. Squillacioti,47a,47c M. Stanitzki,61R. St. Denis,22B. Stelzer,9,sO. Stelzer-Chilton,17D. Stentz,39J. Strologas,38G. L. Strycker,35D. Stuart,11

J. S. Suh,28A. Sukhanov,19I. Suslov,16T. Suzuki,56A. Taffard,25,gR. Takashima,41Y. Takeuchi,56R. Tanaka,41 M. Tecchio,35P. K. Teng,1K. Terashi,51J. Thom,18,iA. S. Thompson,22G. A. Thompson,25E. Thomson,46P. Tipton,61

P. Ttito-Guzma´n,32S. Tkaczyk,18D. Toback,54S. Tokar,15K. Tollefson,36T. Tomura,56D. Tonelli,18S. Torre,20 D. Torretta,18P. Totaro,55a,55bS. Tourneur,45M. Trovato,47aS.-Y. Tsai,1Y. Tu,46N. Turini,47a,47cF. Ukegawa,56 S. Vallecorsa,21N. van Remortel,24,cA. Varganov,35E. Vataga,47a,47dF. Va´zquez,19,mG. Velev,18C. Vellidis,3 V. Veszpremi,49M. Vidal,32R. Vidal,18I. Vila,12R. Vilar,12T. Vine,31M. Vogel,38I. Volobouev,29,tG. Volpi,47a,47b P. Wagner,46R. G. Wagner,2R. L. Wagner,18W. Wagner,27J. Wagner-Kuhr,27T. Wakisaka,42R. Wallny,9C. Wang,17

S. M. Wang,1A. Warburton,34D. Waters,31M. Weinberger,54J. Weinelt,27W. C. Wester III,18B. Whitehouse,57 D. Whiteson,46,gA. B. Wicklund,2E. Wicklund,18S. Wilbur,14G. Williams,34H. H. Williams,46P. Wilson,18B. L. Winer,40

P. Wittich,18,iS. Wolbers,18C. Wolfe,14T. Wright,35X. Wu,21F. Wu¨rthwein,10S. M. Wynne,30S. Xie,33A. Yagil,10 K. Yamamoto,42J. Yamaoka,53U. K. Yang,14,oY. C. Yang,28W. M. Yao,29G. P. Yeh,18J. Yoh,18K. Yorita,14T. Yoshida,42 G. B. Yu,50I. Yu,28S. S. Yu,18J. C. Yun,18L. Zanello,52a,52bA. Zanetti,55aX. Zhang,25Y. Zheng,9,eand S. Zucchelli6a,6b

(CDF Collaboration)

1Institute of Physics, Academia Sinica, Taipei, Taiwan 11529, Republic of China

2Argonne National Laboratory, Argonne, Illinois 60439, USA

3University of Athens, 157 71 Athens, Greece

4Institut de Fisica d’Altes Energies, Universitat Autonoma de Barcelona, E-08193, Bellaterra (Barcelona), Spain

5Baylor University, Waco, Texas 76798, USA

6aIstituto Nazionale di Fisica Nucleare Bologna, I-40127 Bologna, Italy;

6bUniversity of Bologna, I-40127 Bologna, Italy

7Brandeis University, Waltham, Massachusetts 02254, USA

8University of California, Davis, Davis, California 95616, USA

9University of California, Los Angeles, Los Angeles, California 90024, USA

10University of California, San Diego, La Jolla, California 92093, USA

11University of California, Santa Barbara, Santa Barbara, California 93106, USA

12Instituto de Fisica de Cantabria, CSIC-University of Cantabria, 39005 Santander, Spain

13Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA

14Enrico Fermi Institute, University of Chicago, Chicago, Illinois 60637, USA

15Comenius University, 842 48 Bratislava, Slovakia; Institute of Experimental Physics, 040 01 Kosice, Slovakia

16Joint Institute for Nuclear Research, RU-141980 Dubna, Russia

17Duke University, Durham, North Carolina 27708, USA

18Fermi National Accelerator Laboratory, Batavia, Illinois 60510, USA

19University of Florida, Gainesville, Florida 32611, USA

20Laboratori Nazionali di Frascati, Istituto Nazionale di Fisica Nucleare, I-00044 Frascati, Italy

21University of Geneva, CH-1211 Geneva 4, Switzerland

22Glasgow University, Glasgow G12 8QQ, United Kingdom

23Harvard University, Cambridge, Massachusetts 02138, USA

031801-2

(4)

24Division of High Energy Physics, Department of Physics, University of Helsinki and Helsinki Institute of Physics, FIN-00014, Helsinki, Finland

25University of Illinois, Urbana, Illinois 61801, USA

26The Johns Hopkins University, Baltimore, Maryland 21218, USA

27Institut fu¨r Experimentelle Kernphysik, Universita¨t Karlsruhe, 76128 Karlsruhe, Germany

28Center for High Energy Physics: Kyungpook National University, Daegu 702-701, Korea;

Seoul National University, Seoul 151-742, Korea; Sungkyunkwan University, Suwon 440-746, Korea;

Korea Institute of Science and Technology Information, Daejeon, 305-806, Korea;

Chonnam National University, Gwangju, 500-757, Korea

29Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

30University of Liverpool, Liverpool L69 7ZE, United Kingdom

31University College London, London WC1E 6BT, United Kingdom

32Centro de Investigaciones Energeticas Medioambientales y Tecnologicas, E-28040 Madrid, Spain

33Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

34Institute of Particle Physics: McGill University, Montre´al, Canada H3A 2T8;

and University of Toronto, Toronto, Canada M5S 1A7

35University of Michigan, Ann Arbor, Michigan 48109, USA

36Michigan State University, East Lansing, Michigan 48824, USA

37Institution for Theoretical and Experimental Physics, ITEP, Moscow 117259, Russia

38University of New Mexico, Albuquerque, New Mexico 87131, USA

39Northwestern University, Evanston, Illinois 60208, USA

40The Ohio State University, Columbus, Ohio 43210, USA

41Okayama University, Okayama 700-8530, Japan

42Osaka City University, Osaka 588, Japan

43University of Oxford, Oxford OX1 3RH, United Kingdom

44aIstituto Nazionale di Fisica Nucleare, Sezione di Padova-Trento, I-35131 Padova, Italy;

44bUniversity of Padova, I-35131 Padova, Italy

45LPNHE, Universite Pierre et Marie Curie/IN2P3-CNRS, UMR7585, Paris, F-75252 France

46University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA

47aIstituto Nazionale di Fisica Nucleare Pisa, I-56127 Pisa, Italy;

47bUniversity of Pisa, I-56127 Pisa, Italy;

47cUniversity of Siena I-56127 Pisa, Italy;

47dScuola Normale Superiore, I-56127 Pisa, Italy

48University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA

49Purdue University, West Lafayette, Indiana 47907, USA

50University of Rochester, Rochester, New York 14627, USA

51The Rockefeller University, New York, New York 10021, USA

52aIstituto Nazionale di Fisica Nucleare, Sezione di Roma 1, I-00185 Roma, Italy;

52bSapienza Universita` di Roma, I-00185 Roma, Italy

53Rutgers University, Piscataway, New Jersey 08855, USA

54Texas A&M University, College Station, Texas 77843, USA

55aIstituto Nazionale di Fisica Nucleare Trieste/Udine, Italy;

55bUniversity of Trieste/Udine, Italy

56University of Tsukuba, Tsukuba, Ibaraki 305, Japan

57Tufts University, Medford, Massachusetts 02155, USA

58Waseda University, Tokyo 169, Japan

59Wayne State University, Detroit, Michigan 48201, USA

60University of Wisconsin, Madison, Wisconsin 53706, USA

61Yale University, New Haven, Connecticut 06520, USA

62Center for High Energy Physics: Kyungpook National University, Daegu 702-701, Korea;

Seoul National University, Seoul 151-742, Korea;

Sungkyunkwan University, Suwon 440-746, Korea;

Korea Institute of Science and Technology Information, Daejeon, 305-806, Korea;

Chonnam National University, Gwangju, 500-757, Korea

(Received 11 October 2008; published 23 January 2009; publisher error corrected 29 January 2009) A search for high-mass resonances in the eþe final state is presented based on 2:5 fb1 of ffiffiffi

ps

¼ 1:96 TeVppcollision data from the CDF II detector at the Fermilab Tevatron. The largest excess over the standard model prediction is at aneþeinvariant mass of240 GeV=c2. The probability of observing such an excess arising from fluctuations in the standard model anywhere in the mass range of 150–1000 GeV=c2 is 0.6% (equivalent to 2:5). We exclude the standard model coupling Z0 and the

(5)

Randall-Sundrum graviton for k=MPl¼0:1 with masses below 963 and 848 GeV=c2 at the 95%

credibility level, respectively.

DOI:10.1103/PhysRevLett.102.031801 PACS numbers: 13.85.Rm, 12.60.Cn, 13.85.Qk, 14.70.Pw

The charged lepton-antilepton pair signature, in particu- lareþeandþ, has been a leading discovery channel for new particles such as theJ=c andmesons and theZ boson since they have cleaner experimental signatures and lower backgrounds than hadronic signatures.

Many models beyond the standard model (SM) predict the existence of new particles decaying to lepton- antilepton pairs. TheE6 Z0s [1] and the Randall-Sundrum (RS) graviton [2] are examples of specific new particles decaying to a lepton-antilepton final state. TheZ0c,Z0,Z0, Z0I, Z0sec, and Z0N are chosen for testing the E6 model.

Assuming one extra dimension, we test the RS model in thek=MPl range between 0.01 and 0.1 [3], wherekis the curvature of the extra dimension and MPl is the reduced effective Planck scale.

In recent publications, the CDF [4] and D0 [5]

Collaborations set limits on these models with 1.3 and 1:0 fb1 of integrated luminosity and limits on Z0 with SM coupling and RS graviton fork=MPl ¼0:1are 923 and 900 GeV=c2, respectively. Using a data set twice as large (2:5 fb1), this Letter describes a search for eþe reso- nances in the invariant-mass range of150–1000 GeV=c2, and we set upper limits on ðpp !XÞBðX!eþeÞ at the 95% credibility level (C.L.) whereXis a spin 1 or spin 2 particle. We also set lower mass bounds on theZ0 with SM coupling, theZ0s in theE6model, and the RS graviton.

This analysis is based on data collected with the CDF II detector [6]. The relevant components of the detector for this analysis are the tracking system and the calorimeters.

The tracking system consists of a 96 layer drift chamber called the central outer tracker (COT), surrounding an eight-layer silicon tracker. Both are inside a 1.4 T solenoi- dal magnet. The COT covers the range of pseudorapidity jj<1:1[7], and the silicon tracker coversjjup to 2.0.

The electromagnetic (EM) and hadronic calorimeters, which are sandwiches of lead (EM) or iron (hadronic) absorber and plastic scintillator. They are outside the mag- net, and are divided into a central calorimeter (jj<1:1) and two plug calorimeters (1:1<jj<3:6). Both the central and the plug EM calorimeters have fine-grained shower profile detectors at EM shower maximum.

We use the same on-line event selection criteria (trig- gers) used in our previous report [4]. Off-line events are required to have two isolated electrons [8], one in the central EM calorimeter and the other one in either the central (CC) or the plug (CP) EM calorimeters. Only electrons with ET [7] greater than 25 GeV and jj<2 are used in order to ensure 100% trigger efficiency and coverage by the the silicon tracker. Electrons in the central EM calorimeter are required to have a well-measured track

in the COT system pointing at an energy deposit in the calorimeter. For electrons in the plug EM calorimeter, the track association uses a calorimeter-seeded silicon- tracking algorithm [9]. An opposite-charge requirement is applied to electron-objects pairs detected in the central EM calorimeter. No such requirement is applied when one electron is detected in the plug, where-dependent charge misidentification occurs. Events with both electrons in the plug EM calorimeter are not considered in this Letter since adding them gains little sensitivity.

The PYTHIA[10] Tune A [11] Monte Carlo event gen- erator is used to model the expected signals and back- grounds unless otherwise stated. For spin 1 Z0, SM-like couplings are assumed, and for spin 2 resonances, the RS graviton model withk=MPl¼0:1is used. The total selec- tion efficiencies of spin 1 particles vary from 27% to 38%

and those of spin 2 particles vary from 28% to 32% as functions of the particle mass in the search range.

There are three sources of background. One is Drell-Yan production of eþe pairs (DY), which is the dominant source of background and is irreducible. Another is dijets and Wþjets production (referred to as ‘‘QCD’’ back- ground) where one or more jets is misidentified as electron.

Other contributions includeZ= !þ,tt, and diboson (W,WW,WZ,ZZ,) production that collectively are referred to as ‘‘other SM’’ backgrounds.

The simulated DY prediction is normalized to the data after subtracting other SM and QCD backgrounds in an invariant-mass window from 76 to 106 GeV=c2 for CC events and from 81 to 101 GeV=c2 for CP events to estimate the DY background. Different mass windows are used because the QCD background rate in CP events is higher than in CC events. We assign a 3.6% systematic uncertainty in the DY prediction to take into account the invariant-mass dependence of the k-factor [12] that is the difference between the leading and the next-to-next-to- leading order DY cross sections. The uncertainty in the DY prediction due to the choice of the parton distribution function set CTEQ6M [13] using the Hessian method [14]

is 3.7%–6.4%–13% (200–600–1000 GeV=c2) depending on the invariant mass.

The QCD background estimation is determined from the experimental data. The estimate is obtained using the probability for a jet to be misidentified as an electron [15]. We measure this probability with a jet-triggered data sample. We then apply the misidentification probabil- ity to each jet in events with one good electron candidate and one or more jets. To estimate the dijet background contribution, events withW orZcandidates are removed from the sample before applying the jet misidentification 031801-4

(6)

probability (MP). Events withW candidates are identified with one good electron and a large missing transverse energyE6 T[16] and events withZcandidates are identified with two ‘‘loose electrons’’. To estimate the Wþjets background, events with Z candidates are removed and events with W candidates are retained. The dominant systematic uncertainty in the predicted QCD background is due to the 20% uncertainty in the jet MP, which is obtained from the variation in the MP measured in the different jet data samples.

Other SM contributions to the background are estimated with simulation samples [17]. These simulated samples are normalized to the product of the theoretical cross sections and the integrated luminosity. Figure1shows the observed eþe invariant-mass spectrum from 2:5 fb1 of data to- gether with the expected backgrounds.

The systematic uncertainty for other SM backgrounds is dominated by the 6% uncertainty in the integrated lumi- nosity measurement [18] and 8% uncertainty in the theo- retical cross sections [19]. Other systematic sources are the uncertainty on the scale factor of electron identification efficiency that comes from the difference between data and simulated events (1.3% for CC and 2.3% for CP events), the energy scale (1.0%), and the energy resolution (0.6%

for CC and 0.3% for CP events), which affects the shape of the eþe invariant-mass distribution. The uncertainty on the acceptance due to parton-distribution-function uncer- tainties is evaluated using the same method that was used for the DY prediction, and found to be 1.9% for CC and 0.6% for CP events.

The search foreþeresonances in the high-mass range of 150–1000 GeV=c2 uses an unbinned likelihood ratio statistic,, defined in Eqs. (1)–(3) [20]:

¼ max

nb0Lb

nbmax0;ns0Lsþb; 01; 0 2ln 1; (1) Lsþb¼ðnsþnbÞNeðnsþnbÞ

N!

YN

i

nsSðxijÞ þnbBðxiÞ nsþnb ;

(2) Lb¼nNbenb

N!

YN

i BðxiÞ; (3) where Lb is the likelihood for a null hypothesis that is described by the SM only,Lsþbis the likelihood for a test hypothesis that is described by physics beyond the SM together with the SM. The quantities ns and nb are the number of signal and background candidates which are determined by the fit and N is the number of candidates observed in data, each represented by a vector fxig of observables. The signal probability density function (PDF),SðxjÞ, is a Gaussian with a floating meanand a fixed width, andBðxÞis a background PDF obtained from the total background template. The widths of the signal PDF are determined from simulation (Mee ¼ 0:8565 GeV=c2þ0:0192Mee for Mee>150 GeV=c2) with the assumption that the decay widths of resonances are much less than the experimental resolution. The quan- titiesLsþb and theLb are maximized separately without external background constraints. The function 2 ln is calculated over the search range of150–1000 GeV=c2and the most prominent local maxima are listed in TableI. The most significant deviation between data and the SM pre- diction occurs at an invariant mass of241:3 GeV=c2where 2 ln is 14.4. The ðdatabackgroundÞ=B [21] corre- sponding to the region of maximum 2 lnis calculated by counting the number of observed events and estimated backgrounds within2Meeof the maximum, and it is 3.8.

To estimate the probability of observing an excess equal to or greater than the maximum observed excess anywhere in the search range of 150–1000 GeV=c2, we simulated 100 000 experiments assuming background only. The dis- tribution of maximum 2 ln on these simulated experi- ments is shown in Fig.2. Assuming only SM physics, the probability of observing a number of events equal to or

2) ) (GeV/c e-

M(e+

100 200 300 400 500 600 700 800 900 1000 )2Events/(10 GeV/c)2Events/(10 GeV/c

10-4 10-3 10-2 10-1 1 10 102 103 104 105

M(e+e-) (GeV/c2)

160 180 200 220 240 260 280 300 320 340

Events/(10 GeV/c2)

20 40 60 80 100 120 140

FIG. 1 (color online). Invariant-mass distribution of eþe events compared to the expected backgrounds. Dots with error bars are data. The dark shaded region represents ‘‘other SM’’

background, the light shaded region shows QCD background, and the white region corresponds toZ=!eþebackground.

The inset shows the same for the 240 GeV=c2 region. The hatched histogram shows the shape of the expected signal from a240 GeV=c2spin 1 particle (of negligible intrinsic width) on top of the total background. The hatched region is normalized to the number of excess events seen in the data.

TABLE I. The prominent local maxima in the search range of 150–1000 GeV=c2.

MX(GeV=c2) 241.3 272.7 478.9 725.2

2 ln 14.4 3.7 2.6 4.1

(7)

greater than the observed excess is defined as the fraction of simulated experiments with maximum2 lnequal to or greater than 14.4, and is 0.6% which corresponds to the 2:5level of excess over the background.

Upper limits on ðpp !XÞBðX!eþeÞat the 95%

C.L. are calculated as a function of mass using a Bayesian binned likelihood method with a full consideration of uncertainties on the total signal efficiency and the back- ground estimation [22]. Figure 3(a) shows the observed upper limits from data and the expected limits from background-only simulated events for spin 1 particles as a function of the eþe invariant mass, together with the expected cross sections forZ0s [23]. Figure3(b)shows the same but for spin 2 particles, together with the expected cross sections for RS gravitons. The cross sections forZ0s and RS gravitons are calculated at leading order with

PYTHIA and then multiplied by a factor of 1.3 in order to approximate a next-to-leading-order prediction as done in reports of earlier results. Table II shows the lower mass limits of the SM coupling andE6Z0s and Fig.4shows the excluded RS graviton mass region with respect tok=MPl.

To conclude, we have searched for eþe resonances with 2:5 fb1 of data collected by the CDF II detector.

The largest excess over the standard model prediction is at aneþeinvariant mass of240 GeV=c2. The probability of observing such an excess arising from fluctuation in the standard model anywhere in the mass range of 150–1000 GeV=c2 is 0.6%. We also set upper limits on ðpp !XÞBðX!eþeÞat the 95% C.L. for spin 1 and spin 2 particles. The SM coupling Z0 with mass below 963 GeV=c2 and theE6 Z0s with masses below735=877 (lightest/heaviest) GeV=c2 are excluded at the 95% C.L.

RS gravitons with masses below848 GeV=c2are excluded at the 95% C.L. fork=MPl¼0:1.

TABLE II. Expected and observed 95% C.L. lower limits on Z0s masses.

Z0Model Z0SM Z0c Z0 Z0 Z0I Z0sec Z0N Expected Limit (GeV=c2) 961 846 857 873 755 788 831 Observed Limit (GeV=c2) 963 851 862 877 735 792 837

2) (GeV/c MG

PlMk/

200 300 400 500 600 700 800 900

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Excluded region (95% C.L.)

FIG. 4 (color online). k=MPl as a function of RS graviton mass. The shading indicates the region excluded at the 95%

credibility level.

2) (GeV/c MX

) (fb)-e+ eB(X×X)p(pσ

Z’I

E6

Z’sec

E6

Z’N

E6

Z’ψ

E6

SM Z’

Z’η

E6

Z’χ

E6

(a)

95% C.L. limit Expected limit

200 300 400 500 600 700 800 900 1000 10-1

1 10

2) (GeV/c MX

200 300 400 500 600 700 800 900 1000 ) (fb)-e+ eB(X×X)p(pσ

10-1 1 10

=0.01

Pl

k/M

0.025 0.05 0.07 0.1

(b)

95% C.L. limit Expected limit

FIG. 3 (color online). The upper limits onðpp!XÞBðX! eþeÞas function of the mass of anXparticle at the 95% C.L.

whereXis a spin 1 particle (a) or a spin 2 particle (b) together with model predictions.

Maximum -2lnλ

0 5 10 15 20 25 30

Number of Simulated Experiment 1 10 102 103

Max.-2lnλ=14.4

FIG. 2. Distribution of maximum2 lnin simulated experi- ments that assume only background. The arrow indicates the value observed in data:2 ln¼14:4.

031801-6

(8)

We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions.

This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Founda- tion; the A. P. Sloan Foundation; the Bundesministerium fu¨r Bildung und Forschung, Germany; the Korean Science and Engineering Foundation and the Korean Research Foundation; the Science and Technology Facilities Council and the Royal Society, UK; the Institut National de Physique Nucleaire et Physique des Particules/CNRS;

the Russian Foundation for Basic Research; the Ministerio de Ciencia e Innovacio´n, and Programa Consolider- Ingenio 2010, Spain; the Slovak R&D Agency; and the Academy of Finland.

aDeceased.

bVisitor from University of Massachusetts, Amherst, Amherst, MA 01003, USA.

cVisitor from Universiteit Antwerpen, B-2610 Antwerp, Belgium.

dVisitor from University of Bristol, Bristol BS8 1TL, United Kingdom.

eVisitor from Chinese Academy of Sciences, Beijing 100864, China.

fVisitor from Istituto Nazionale di Fisica Nucleare, Sezione di Cagliari, 09042 Monserrato (Cagliari), Italy.

gVisitor from University of California Irvine, Irvine, CA 92697, USA.

hVisitor from University of California Santa Cruz, Santa Cruz, CA 95064, USA.

iVisitor from Cornell University, Ithaca, NY 14853, USA.

jVisitor from University of Cyprus, Nicosia CY-1678, Cyprus.

kVisitor from University College Dublin, Dublin 4, Ireland.

lVisitor from University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom.

mVisitor from Universidad Iberoamericana, Mexico D.F., Mexico.

nVisitor from Queen Mary, University of London, London, E1 4NS, United Kingdom.

oVisitor from University of Manchester, Manchester M13 9PL, United Kingdom.

pVisitor from Nagasaki Institute of Applied Science, Nagasaki, Japan.

qVisitor from University of Notre Dame, Notre Dame, IN 46556, USA.

rVisitor from University de Oviedo, E-33007 Oviedo, Spain.

sVisitor from Simon Fraser University, Vancouver, British Columbia, Canada V6B 5K3.

tVisitor from Texas Tech University, Lubbock, TX 79409, USA.

uVisitor from IFIC(CSIC-Universitat de Valencia), 46071 Valencia, Spain.

vVisitor from University of Virginia, Charlottesville, VA 22904, USA.

wOn leave from J. Stefan Institute, Ljubljana, Slovenia.

[1] D. London and J. L. Rosner, Phys. Rev. D34, 1530 (1986);

F. del Aguila, M. Quiros, and F. Zwirner, Nucl. Phys. B B287, 419 (1987); J. L. Rosner, Phys. Rev. D 35, 2244 (1987); J. L. Hewett and T. G. Rizzo, Phys. Rep.183, 193 (1989); J. Erler, P. Langacker, and T. Li, Phys. Rev. D66, 015002 (2002); T. Han, P. Langacker, and B. McElrath, Phys. Rev. D 70, 115006 (2004); J. Kang and P.

Langacker, Phys. Rev. D71, 035014 (2005).

[2] L. Randall and R. Sundrum, Phys. Rev. Lett. 83, 3370 (1999).

[3] H. Davoudiasl, J. L. Hewett, and T. G. Rizzo, Phys. Rev.

Lett. 84, 2080 (2000); B. C. Allanach et al., J. High Energy Phys. 12 (2002) 039.

[4] T. Aaltonenet al.(CDF Collaboration), Phys. Rev. Lett.

99, 171802 (2007).

[5] V. Abazovet al.(D0 Collaboration), Phys. Rev. Lett.100, 091802 (2008).

[6] A. Abulenciaet al. (CDF Collaboration), J. Phys. G34, 2457 (2007).

[7] We use a cylindrical coordinate system where is the polar angle with respect to the proton beam axis (positivez direction) and is the azimuthal angle. The pseudorapid- ity is¼ ln½tanð=2Þ. We define transverse energy as ET¼Esinand transverse momentum as pT¼psin, whereEis the energy measured in the calorimeter andpis the magnitude of the momentum measured by the spec- trometer.

[8] Throughout this Letter the charge conjugate state is im- plied.

[9] C. Issever, AIP Conf. Proc.670, 371 (2003).

[10] T. Sjo¨strand et al., Comput. Phys. Commun. 135, 238 (2001).

[11] R. Field and R. C. Group, arXiv:hep-ph/0510198.

[12] R. Hamberg, W. L. van Neerven, and T. Matsuura, Nucl.

Phys.B359, 343 (1991).

[13] H. L. Laiet al., Phys. Rev. D51, 4763 (1995); J. Pumplin et al., J. High Energy Phys. 07 (2002) 012.

[14] J. Pumplinet al., Phys. Rev. D65, 014013 (2001).

[15] A. Abulenciaet al.(CDF Collaboration), Phys. Rev. D77, 052002 (2008).

[16] Missing transverse energy (E6 T¼ j6E~Tj) is defined as6E~T¼ P

iEiTn^i, wheren^iis a unit vector in the transverse plane that points from the beam line to theithcalorimeter tower.

[17] TheWþprocess is generated with the matrix element generator (U. Baur and E. L. Berger, Phys. Rev. D 41, 1476 (1990)).

[18] D. Acostaet al., Nucl. Instrum. Methods Phys. Res., Sect.

A494, 57 (2002).

[19] U. Baur, T. Han, and J. Ohnemus, Phys. Rev. D48, 5140 (1993); J. M. Campbell and R. K. Ellis, Phys. Rev. D60, 113006 (1999).

(9)

[20] L. Demortier, CERN Yellow Report No. CERN-2008-001, 2008; Y. Gao, L. Lu, and X. Wang, Eur. Phys. J. C45, 659 (2006).

[21] Bis ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi NBþ2NB q

, whereNB is the number of expected backgrounds andNBis the systematic uncertainty of the NB.

[22] J. Heinrichet al., arXiv:physics/0409129.

[23] C. Ciobanuet al., Fermilab, Report No. FERMILAB-FN- 0773-E, 2008. We note that the 2005 version of this report had a typo in theZ0uucoupling that affected our previous publication [4].

031801-8

Références

Documents relatifs

We estimate the total acceptance times efficiency as total trig reco final , where is the geometric and kinematic acceptance of the trigger, trig is the trigger efficiency

Using the dilepton decay channel W+W−→ℓ+νℓ−ν¯, where the charged leptons can be either electrons or muons, we find 17 candidate events compared to an expected background

For the detector charge asymmetry measurement, we compare the numbers of reconstructed positive and negative tracks as a function of track p T in a high statistics data sample

The likelihood ratio distribution for signal (dashed line) from PYTHIA MC samples and background (solid line) from data sidebands in the U-U channel. Distributions of the

Here, S F is the ac- cepted fraction of signal events, in this case taken from a Monte Carlo sample, and the background B av is the number of selected B c candidates within the

To identify the Z′→e+e− signal, both the dielectron invariant mass distribution and the angular distribution of the electron pair are used.. No evidence of a signal is found, and

Within the limits of our experimental resolution the data are consistent with a single state, and having no evidence for two states we set upper limits on the mass difference

Department of En- ergy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Culture, Sports, Science and Technology of