• Aucun résultat trouvé

Sedimentology, biostratigraphy and diagenesis of Upper Triassic shallow–water carbonates from Japan and Russian Far East: New investigations on the Panthalassa Ocean

N/A
N/A
Protected

Academic year: 2022

Partager "Sedimentology, biostratigraphy and diagenesis of Upper Triassic shallow–water carbonates from Japan and Russian Far East: New investigations on the Panthalassa Ocean"

Copied!
304
0
0

Texte intégral

(1)

Thesis

Reference

Sedimentology, biostratigraphy and diagenesis of Upper Triassic shallow–water carbonates from Japan and Russian Far East: New

investigations on the Panthalassa Ocean

PEYROTTY, Giovan

Abstract

This thesis work has the overall objective of improving our knowledge of shallow-water carbonate systems in Panthalassa during the Late Triassic. For such purpose, this work focuses on the very first sedimentological, biostratigraphic, paleontological and diagenetic characterization of carbonates located in two distinct study areas: i) Hokkaido Island, in the northern part of Japan, and ii) the Dalnegorsk area in Russian Far East. The combination of all the sedimentological and biostratigraphic data made it possible to reconstruct precise, even speculative depositional models for each investigated system. The Dalnegorsk area was also the subject of an in–depth diagenetic study, supported by in–situ and high–precision geochemical analyzes, in order to characterize each event which impacted the carbonate system, from its deposit to its accretion. This new sedimentological, diagenetic, biostratigraphic and paleontological data permit to better constrain the environmental conditions within the vast Panthalassa ocean.

PEYROTTY, Giovan. Sedimentology, biostratigraphy and diagenesis of Upper Triassic shallow–water carbonates from Japan and Russian Far East: New investigations on the Panthalassa Ocean. Thèse de doctorat : Univ. Genève, 2020, no. Sc. 5461

URN : urn:nbn:ch:unige-1391517

DOI : 10.13097/archive-ouverte/unige:139151

Available at:

http://archive-ouverte.unige.ch/unige:139151

Disclaimer: layout of this document may differ from the published version.

1 / 1

(2)

Département des Sciences de la Terre Professeure R. Martini ___________________________________________________________________________

Sedimentology, biostratigraphy and diagenesis of Upper Triassic shallow–water carbonates from Japan and Russian

Far East: New investigations on the Panthalassa Ocean

THESE

présentée à la Faculté des Sciences de l’Université de Genève pour obtenir le grade de Docteur ès Sciences, mention Sciences de la Terre

par

Giovan Peyrotty de

Manosque (France)

Thèse N°: 5461

GENEVE 2020

(3)
(4)

Au–delà de leur intérêt scientifique majeur, les carbonates constituent les plus beaux paysages qu’il m’ait été donné d’admirer. D’un atoll foisonnant de vie à une blanche falaise façonnée par l’érosion, plongeant dans les eaux claires de la méditerranée, sans oublier les profondes grottes karstiques ponctuées d’innombrables stalactites croissant continuellement en se moquant du temps, ces roches particulières habillent notre planète avec une incroyable diversité. Il convient de les observer longuement afin d’entrevoir leur complexité émanant de la vie qui s’est inlassablement développée depuis des milliards d’années et figée dans le temps pour finalement nous offrir ces spectacles grandioses qui ne laissent de marbre ni l’artiste ni le scientifique en chacun de nous.

« Dans l'art et dans la science, aussi bien que dans l'action et la pratique, l'essentiel est de saisir nettement les objets, et de les traiter conformément à leur nature. »

Johann Wolfgang Von Goethe, Poète, 1749–1832

Débris de coquilles et squelettes de divers organismes carbonatés provenant d’une plage de l’île de Ko Pa Nak, Thaïlande. Photo de Giovan Peyrotty.

(5)
(6)

Remerciements – Acknowledgements ... 1

Abstract ... 4

Résumé ... 7

CHAPTER 1: Introduction ... 11

1 – The importance of carbonate rocks in the geological record ... 11

2 – Overview of the World and carbonate deposition during the Triassic ... 12

3 – Aims of the thesis project ... 14

4 – Mode of occurrence of the studied limestone and work approach ... 16

5 – Thesis organization ... 18

References: ... 20

Chapter 2: Sedimentology and biostratigraphy of Upper Triassic atoll–type carbonates from the Dalnegorsk area, Taukha Terrane, Russian Far East ... 24

Abstract ... 24

1 – Introduction ... 25

2 – Geological settings ... 26

3 – Studied area ... 27

4 – Mode of occurrence and work approach ... 29

5 – Field observations, microfacies and biotic content ... 30

5.1 – General observations ... 30

5.2 – Facies description ... 31

6 – Facies interpretation ... 39

6.1 – Lagoonal environment – F1 & F2... 39

6.1 – Lagoonal environment – F1 & F2... 41

6.2 – Back–reef/Open lagoon environment – F3 & F4 ... 43

6.3 – Reef/Bioherms – F5 ... 44

6.4 – Shoal/sandbar – F6 ... 45

6.5 – Slope environment – F7 ... 46

6.6 – Pelagic environment – F8 ... 46

7 – Biostratigraphy ... 47

7.1 – General interpretations ... 47

7.2 – Foraminiferal associations and previous studies ... 48

7.3 – The acme of Parvalamella friedli ... 50

8 – Depositional Setting ... 54

9 – On the importance of the Dalnegorsk limestone... 62

10 – Conclusion ... 63

References ... 63

(7)

ages to reconstruct the diagenesis of Upper Triassic atoll–type carbonates from the

Panthalassa Ocean ... 75

Abstract ... 75

1 – Introduction ... 76

2 – Study area and geological setting ... 78

3 – Sampling ... 80

4 – Methods ... 81

4.1 – Cathodoluminescence petrography ... 83

4.2 – Stable isotope measurements ... 83

4.3 – REEY, trace, and minor/major element analyses ... 84

4.4 – U–Pb Dating ... 85

5 – Results ... 86

5.1 – Micritisation and mosaic cement (MC) ... 86

5.2 – Mouldic dissolution ... 88

5.3 – Fibrous cement... 88

5.4 – Dogtooth cement ... 90

5.5 – Zoned dogtooth cement ... 90

5.6 – Early brecciation ... 92

5.7 – Shell neomorphism ... 93

5.8 – Blocky cement ... 94

5.9 – Late brecciation and breccia calcite ... 97

5.10 – Recrystallisation and fracturing ... 97

6 – Discussion ... 99

6.1 – Characterisation of diagenetic events ... 99

6.2 – Synthesis of the diagenetic history of Dalnegorsk limestone: from deposition to accretion ... 106

7 – Importance of multiproxy diagenetic studies ... 111

8 – Conclusion ... 111

References ... 112

Chapter 4: Upper Triassic shallow water carbonates from the Naizawa Accretionary Complex, Hokkaido (Japan): New insights from Panthalassa ... 122

Abstract ... 122

1 – Introduction ... 123

2 – Geological setting ... 124

3 – Studied areas and mode of occurrence ... 125

3.1 – Pippu area ... 125

3.2 – Esashi area ... 126

4 – Microfacies and biotic content ... 129

4.1 – Pippu limestone... 130

4.2 – Esashi limestone ... 132

5 – Facies interpretation ... 135

5.1 – Lagoonal environment: MF1 and MF2 ... 136

5.2 – Reef and peri–reef environments: MF3 ... 138

5.3 – Sandbar environment: MF4 ... 139

5.4 – Slope environment: MF5, MF6 and MF7 ... 140

(8)

6.2 – Foraminifer association of the Esashi limestone ... 143

7 – Discussion ... 146

7.1 – Pippu and Esashi carbonates originate from the same carbonate system ... 146

7.2 – Depositional model and comparison with similar carbonate systems ... 147

8 – Conclusion ... 148

References ... 149

Chapter 5: Birth and death of seamounts in the Panthalassa Ocean: Late Triassic to Early Jurassic sedimentary record at Mount Sambosan, Shikoku, Southwest Japan ... 156

Abstract ... 156

1 – Introduction ... 157

2 – Geological setting ... 158

3 – Mode of occurrence ... 158

4 – Studied area ... 161

5 – Material and methods ... 161

6 – Results ... 165

6.1 – Microfacies ... 165

6.2 – Diagenesis ... 172

6.3 – Biotic content ... 174

7 – Discussion ... 176

7.1 – Platform onset... 177

7.2 – Mid–Carnian transition ... 177

7.3 – Platform growth ... 180

7.4 – Platform demise ... 181

7.5 – Platform collapse and accretion ... 184

8 – Conclusion ... 185

References ... 185

Chapter 6: Upper Triassic calcareous algae from the Panthalassa Ocean ... 190

Abstract ... 190

1 – Introduction ... 191

2 – Geological framework ... 192

2.1 – North America ... 193

2.2 – Asia ... 197

3– Material and methods ... 198

4 – Calcareous algae assemblage ... 198

5 – Palaeontological description ... 199

6 – Palaeobiogeographic significance... 228

7 – The PANALESIS plate tectonic model ... 231

7.1 – The reconstruction at 220 Ma ... 231

8 – Conclusion ... 233

References ... 234

(9)

Chapter 7: Conclusions and outlooks ... 263

1 – Conclusions ... 263

1.1 – Sedimentology ... 264

1.2 – Paleontology ... 265

1.3 – Biostratigraphy ... 266

1.4 – Diagenesis ... 266

2 – Outlooks ... 268

2.1 – The study of other Triassic limestone from the northern part of Japan ... 268

2.2 – Breccias as key for the understanding of post–depositional and accretion processes... 274

2.3 – Applying the diagenetic approach used in this study on synchronous systems ... 276

2.4 – Essential data for the paleogeography of the Panthalassa Ocean ... 278

2.5 – Future areas to investigate for the continuation of the REEFCADE project ... 278

References: ... 279

APPENDIX ... 285

Appendix 1 ... 286

Appendix 2 ... 287

Appendix 3 ... 288

Appendix 4 ... 289

4.1 – Sea–water temperature calculation from marine cements ... 289

4.2 – Ages and environmental proxies for paleotemperature calculation ... 290

References ... 292

(10)

1

Remerciements – Acknowledgements

Tout au long de ces quatre années de thèse, de nombreuses personnes m’ont aidé, soutenu, encouragé et ont ainsi grandement contribué, d’un point de vue humain ou scientifique, à l’élaboration de ce travail. Je tiens à les remercier à travers ces quelques lignes.

Ainsi, et avant tout, je souhaite remercier ma famille, en particulier ma mère, mon père, ma sœur et mon frère qui ont toujours été à mes côtés et qui m’ont permis d’arriver jusqu’ici. Un immense merci à eux pour le soutien indéfectible qu’ils m’ont apporté depuis toujours, malgré un chemin qui n’a pas toujours été facile.

Je suis également profondément reconnaissant envers Rossana Martini, qui m’a accordé sa confiance et qui a su m’accompagner et me conseiller pour mener à bien ce projet. Travailler à ses côtés a été un grand plaisir, du fait de sa constante disponibilité, de son soutien, de ses encouragements incessants et de sa bienveillance, qui m’ont permis de réaliser ce travail dans, je le crois, les meilleures conditions possibles. Un très grand merci à toi Rossana pour tous ces bons moments sur le terrain, au bureau, en congrès, ou encore en 4x4 avec Sergei le trappeur à Dalnegorsk… un bel exemple parmi beaucoup d’autres souvenirs impérissables !

Merci également à Camille Peybernes, qui a étroitement contribué à cette thèse avec un engouement permanent et une incroyable bonne humeur, tant sur le terrain qu’au bureau.

Je remercie aussi particulièrement Hayato Ueda de l’Université de Niigata, au Japon, qui m’a accompagné durant de nombreux jours sur le terrain à Hokkaido, et sans qui les deux missions de travail au Japon n’auraient pas été possibles. Je le remercie également de m’avoir accueilli au Japon dans les meilleures conditions, et d’avoir partagé son immense connaissance de la géologie d’Hokkaido mais aussi ses nombreux trucs et astuces pour rendre le travail de terrain encore plus efficace (et sans danger, malgré les ours bien cachés derrière chaque buisson…).

{I sincerely thank Hayato Ueda of the University of Niigata, Japan, who guided me for many days in the Hokkaido forests, and without whom the two missions in Japan would not have been possible. I also thank him for having welcomed me in Japan in the best conditions, and for sharing his immense knowledge of the geology of Hokkaido but also his many tips and tricks to make the fieldwork more effective (and safe, despite the bears well hidden behind each bush…).}

Je tiens aussi à exprimer ma gratitude envers Tetsuji Onoue de l’Université de Kumamoto, au Japon, qui a également activement participé à l’organisation des missions de terrain et avec qui j’ai passé de très bons moments à Hokkaido et Honshu.

(11)

2 {I would also like to express my gratitude to Tetsuji Onoue of the University of Kumamoto, Japan, who actively participated in the organization of the field missions and with whom I spent great moments in Hokkaido and Honshu.}

Je remercie Valery Vuks de l’Université de Saint Petersburg, en Russie, qui a organisé la mission Russie, et sans qui nous n’aurions pas pu accéder aux affleurements qui se sont révélés être d’une importance capitale pour ce travail de thèse.

{I thank Valery Vuks of the University of Saint Petersburg, Russia, who organized the mission in Russia, and without whom we would not have been able to access the outcrops which finally were of crucial importance for this thesis work.}

Ma reconnaissance va également à Igor’ Kemkin et Tatiana Punina de l’Université Fédérale du Grand Est, Vladivostok, en Russie, qui nous ont guidé sur le terrain à Dalnegorsk avec enthousiasme, et qui ont partagé leur savoir sur la géologie des complexes d’accrétion Russes.

{My gratitude also goes to Igor 'Kemkin and Tatiana Punina of the Far Eastern Federal University, Vladivostok, Russia, who guided us on the field in Dalnegorsk with enthusiasm, and who shared their knowledge about the geology of the Russian accretionary complexes.}

Je remercie également grandement Benjamin Brigaud de l’Université Paris–Saclay, en France, pour sa collaboration active à ce projet en apportant son expertise, ses méthodes et un appui considérable qui ont nous ont permis d’explorer de nouveaux aspects scientifiques importants pour ce travail de thèse. Je le remercie de m’avoir accueilli dans son laboratoire à Orsay et pour son aide durant les analyses géochimiques.

Je tiens également à remercier Sylvain Rigaud de l’Université de Nanyang, à Singapour, ainsi que Roberto Rettori de l’Université de Pérouse, en Italie, pour leur aide précieuse pour la détermination des foraminifères et leur collaboration fructueuse à cette thèse.

Un grand merci à Ioan Bucur de l’Université de Babeș–Bolyai, en Roumanie, pour son travail considérable concernant les algues calcaires, qui a conduit à une synthèse paléontologique inédite qui est partie intégrante de ce travail de thèse.

Je remercie également vivement Elias Samankassou et Christian Verard de l’Université de Genève, en Suisse, pour les toutes discussions scientifiques très intéressantes et constructives que nous avons pu tenir, et qui m’ont aidé à avancer durant ces quatre années de travail.

Pour les moments inoubliables passés en Corse dans une bonne humeur incroyable, je remercie particulièrement Mario Sartori de l’Université de Genève, Suisse et toute la team Corse, composée des meilleurs : Anna, Louis et Joël.

(12)

3 Également, et malgré l’afflux considérable et incessant d’échantillons, François Gischig a su confectionner des lames minces d’une qualité irréprochable, toujours dans des délais très court.

Je lui en suis grandement reconnaissant.

Jean–Marie Boccard est également remercié pour la modification des lames minces pour les analyses géochimiques.

Je remercie Agathe Martignier pour son aide précieuse avec l’utilisation de la cathodoluminescence.

Merci aussi à Nino et Fred pour leur aide technique au quotidien et leurs encouragements.

Sur un registre différent, mais que je tenais à souligner, je tiens particulièrement à exprimer toute ma gratitude à Christine Lovis pour son aide administrative, qui s’est toujours avérée redoutablement efficace, ainsi que pour son infinie gentillesse et son support constants, qui m’ont apporté un confort et un appui inestimable durant ces quatre années.

Un immense merci à tous mes amis de Manosque et Marseille et en particulier Elisa–May pour m’avoir aidé, supporté, épaulé, encouragé et pour tous les moments de partage qui ont grandement contribué à ma motivation et ma persévérance depuis le début de mes études. Merci à Abdallah, Lucas, Nick, Anna, Louis, Emma, Marine, Raphael, Gabriel, Nicolò, Aurélia, Tamara, Christophe, Andrea, Inès, Simon(s), Antoine, Yasin, et tous les autres amis et collègues de l’Université de Genève pour les nombreux bons moments passés ensembles, l’entraide, le soutien… et la bonne humeur au quotidien.

Pour finir, je souhaite naturellement remercier les membres du jury, Christophe Durlet de l’Université de Bourgogne, en France, Hayato Ueda de l’Université de Niigata, au Japon et Elias Samankassou de l’Université de Genève, en Suisse, pour la lecture de ce manuscrit et leurs commentaires précieux et constructifs.

{Finally, I would like to thank the jury members, Christophe Durlet from the University of Burgundy, in France, Hayato Ueda from the University of Niigata, in Japan and Elias Samankassou from the University of Geneva, in Switzerland, to have read this manuscript and gave precious and constructive comments.}

(13)

4

Abstract

Over the geological times, shallow–water carbonate environments have always been important ecosystems where marine life abounds, constantly developing and evolving.

Carbonate rocks, best witnesses of this marine life, are consequently precious relics to better understand the evolution of life through time and many other environmental aspects directly related. Limestones are therefore essential to characterize with precision and the collection of all its hidden information, whether biological, environmental, climatic or even geographic, is essential. This thesis work thus focuses on the investigation of marine shallow–water Upper Triassic carbonates, some never been studied before. The Triassic is a particular geological period, ranging between two major biological crises, including the great Permian/Triassic one, where almost 95% of marine species disappear. During the Triassic, life therefore strove to rebuild and spread across the oceans, with the rise of many new species, especially within benthic communities. From the end of the Middle Triassic (Ladinian), we witness an extensive development of the reef’s ecosystems, leading to the formation of numerous carbonate platforms, together within the Tethyan domain, partially landlocked in Pangea, and in the gigantic Panthalassa Ocean surrounding the unique continent. The Tethyan carbonates today crop mostly from Europe to Asia while the Panthalassic carbonates occur on the Circum–Pacific region, within accretionary complexes or terranes. Until the late 2000s, the Triassic shallow carbonates developed in Panthalassa were still very little known and studied, unlike the large Tethyan platforms accurately characterized for decades. Faced with this difference in information, the REEFCADE project was therefore developed by Rossana Martini in the 2000s, with the aim of improving our knowledge of these Panthalassic systems and more generally of the evolution of shallow–water carbonates during the Triassic. This thesis work has therefore been conducted as a part of this project and constitutes the logical continuation of various studies initiated by other doctoral students in the frame of REEFCADE. Thus, the study presented in this manuscript has the overall objective of improving our knowledge of carbonate systems in Panthalassa, especially during the Upper Triassic. For such purpose, this work focuses on the very first sedimentological, biostratigraphic, paleontological and diagenetic characterization of carbonates located in two distinct study areas: i) Hokkaido Island, in the northern part of Japan, and ii) the Dalnegorsk area in Russian Far East. These two localities are defined as a west–east succession of Mesozoic accretionary complexes, extending north–south, among which the Taukha terrane (Russian Far East) and the Naizawa Accretionary Complex

(14)

5 (Hokkaido, Japan), characterized as Early Cretaceous in age. Mentioned only in very rare scientific publications, numerous outcrops of Triassic carbonates, never precisely studied before, have been reported within these two tectonic elements. During three field missions, the two areas, in Russia and Japan, were therefore extensively explored, and each carbonate outcrop was widely sampled. A total of ten localities, represented by dozens of limestone blocks, were thus investigated during this study. The thesis work mainly focuses on three localities where remarkably well–preserved carbonates were sampled: the Pippu and Esashi districts in Hokkaido (Japan) and the Dalnegorsk area in Russian Far East. Thanks to the thin sections made from each sample, a detailed microfacies analysis was performed to precisely characterize the fossil and abiotic contents for each outcrop. The biological assemblage could thus be compared with similar and synchronous systems, whether of Tethyan or Panthalassic affinity, in order to identify the potential similarities or differences between these two oceans in the scope of paleoecological analysis. In addition, each identified microfacies has been interpreted in term of depositional environment within the carbonate system, on the basis of organism’s type, sedimentary structures, nature of the lithoclasts or the content in carbonate mud. Within the framework of a biostratigraphic approach, a particular attention was addressed to the identification of benthic foraminifers in order to define or specify the stratigraphic extension of the studied carbonates. The combination of all the sedimentological and biostratigraphic data made it possible to reconstruct precise, even speculative depositional models for each investigated system. The Dalnegorsk limestone (Russian Far East), was thus characterized as an atoll–type carbonate system, developed during the Norian on a basaltic seamount in the Panthalassa Ocean, and typified by a great abundance of lagoonal deposits. On the other hand, the outcrops of Pippu and Esashi (Hokkaido Island, Japan) show very strong similarities in age and bioclastic content, and have therefore been interpreted as belonging to the same carbonate system. This last was defined as developed on the flanks of a partially emerged volcanic seamount during the Carnian. The Dalnegorsk limestone was also the subject of an in–depth diagenetic study, supported by in–situ and high–precision geochemical analyzes, in order to characterize each event which impacted the carbonate system, from its deposit to its accretion.

Such study, never performed before on Panthalassic carbonates, has indeed made it possible to highlight important diagenetic episodes linked to major environmental changes during the history of the carbonate depositional system and to establish a precise model of evolution of the Dalnegorsk limestone. Analyzes of stable isotopes on various carbonate cements, coupled with trace elements measurements have especially highlighted an emersion of the atoll at the Norian/Rhaetian transition, followed by a dismantling of the flanks of the system during the

(15)

6 Lower Jurassic as well as the neomorphism of calcitic shells at the onset of calcitic seas in Toarcian–Bajocian. In total, ten diagenetic events were identified and precisely placed in time thanks to a new method of U–Pb dating applied directly on carbonate cements. Numerous monogenic carbonate breccias have been observed in the field or on thin sections. The geochemical analyzes highlighted two types of breccias, hitherto impossible to differentiate, linked to distinct sedimentary processes and occurring at different stages of the evolution of the carbonate system. This thesis has also been the subject of many scientific collaborations within the REEFCADE project. The compilation of different data from similar past or ongoing studies has indeed led to two major paleontological and sedimentary syntheses. The very first paleontological study of calcareous algae in Panthalassa was thus carried out, leading to results of capital importance both for our understanding of paleoecology and paleogeography of the Triassic oceans but also to better apprehend how the benthic communities were able to spread within the huge Panthalassa Ocean. This study also resulted in the description of six new species of algae. Triassic carbonates from the Sambosan Accretionary Complex (SAC), located in the southern part of Japan have been the subject of numerous studies within the REEFCADE project. During this thesis work, a new sampling campaign, at the Mont Sambosan type locality outcrop (Shikoku Island, Japan), associated with a precise diagenetic study, made it possible to document for the first time the complete history of a carbonate system developed in Panthalassa, since its establishment during the ?Ladinian–Carnian until its dismantling at the Triassic/Jurassic boundary. To conclude, this thesis work constitutes a new major progression for our understanding of the Triassic carbonate systems from the Panthalassa Ocean. This new sedimentological, diagenetic, biostratigraphic and paleontological data complete a rich panel of information obtained within the framework of the REEFCADE project and permit to better constrain the environmental conditions within this vast ocean. The pioneer diagenetic characterization and the fundamental resulting outcomes, open the way to a similar and systematic exploration of synchronous systems to better define the different major environmental events which occur during the Late Triassic and the Jurassic. The combination of all these new data is also of paramount importance for paleogeographic and paleoecological studies, still poorly focused on the Panthalassa Ocean.

(16)

7

Résumé

Les environnements carbonatés peu profonds ont constitué au cours des temps géologiques, et encore aujourd’hui, des espaces où la vie marine foisonne, se développant et évoluant sans cesse. Les roches carbonatées, témoins de ce vivant figé dans le temps, sont donc de précieuses reliques pour mieux entrevoir l’évolution de la vie au cours du temps mais également bien d’autres aspects directement liés. Il est donc primordial de les caractériser avec précision et d’en extraire toutes les informations cachées, à la fois sur le plan biologique, environnemental, climatique ou encore géographique. Cette étude se focalise sur l’investigation de carbonates peu profonds d’âge Triasique supérieur, qui pour certains n’avaient jamais été étudiés auparavant. Le Trias est une période géologique particulière, située entre deux crises biologiques majeures, dont celle à la limite entre le Permien et le Trias, qui a vu près de 95%

des espèces marines disparaître. Durant le Trias, la vie s’est donc évertuée à se reconstruire et se propager à travers les océans, avec l’essor de nombreuses nouvelles espèces, notamment au sein des communautés benthiques. Dès la fin du Trias Moyen (Ladinien), on assiste à un développement majeur des environnements récifaux conduisant à la formation d’une multitude de plateformes carbonatées, à la fois au sein du domaine Téthysien, partiellement enclavé dans la Pangée, et dans l’immense océan Panthalassa entourant le continent unique. Les carbonates Téthysiens affleurent aujourd’hui majoritairement de l’Europe jusqu’en Asie tandis que les carbonates d’affinité Panthalassique se situent sur la ceinture de feu Pacifique, au sein de complexes d’accrétion ou terranes. Jusqu’à la fin des années 2000, les carbonates peu profonds du Trias développés en Panthalassa n’étaient encore que très peu connus et étudiés, à l’inverse des grandes plateformes Téthysiennes précisément caractérisées depuis des décennies. Devant cette différence d’information, le projet REEFCADE a donc été développé par Rossana Martini dans les années 2000, avec pour but d’améliorer notre connaissance de ces systèmes Panthalassiques et plus généralement de l’évolution des carbonates durant le Trias. Ce travail de thèse fait donc partie intégrante de ce projet et constitue la suite logique de divers travaux initiés par d’autres doctorants dans le cadre de REEFCADE. Ainsi, l’étude présentée dans ce manuscrit a pour objectif général d’améliorer notre connaissance des systèmes carbonatés en Panthalassa, notamment durant le Trias supérieur. Pour ce faire, le travail de thèse se focalise sur la toute première caractérisation sedimentologique, biostratigraphique, paléontologique et diagenétique de carbonates situés sur deux zones d’études distinctes : l’Ile d’Hokkaido, au nord du Japon, et la région de Dalnegorsk, dans l’extrême orient de la Russie. Ces deux localités sont

(17)

8 définies comme une succession ouest–est de complexes d’accrétion Mésozoïques, orientés nord–sud parmi lesquels le Taukha terrane (Russie Orientale) et le Complexe d’Accrétion de Naizawa (Hokkaido, Japon), les deux considérés d’âge Crétacé inferieur. Mentionnés dans de très rares publications scientifiques, de nombreux affleurements de carbonates Triasiques, jamais précisément étudiés auparavant, ont été reportés au sein de ces deux éléments tectoniques. Au cours de trois missions de terrain les deux zones, en Russie et au Japon, ont donc été amplement explorées, et chaque affleurement de carbonate a été largement échantillonné. Ainsi, un total de dix localités, représentées par des dizaines de blocs de calcaire, ont été investiguées au cours de cette étude, et la thèse s’est concentrée principalement sur trois zones de travail où des carbonates remarquablement bien préservés ont été échantillonnés : les districts de Pippu et d’Esashi sur l’Ile d’Hokkaido (Japon) et la région de Dalnegorsk dans l’extrême orient de la Russie. Grâce aux lames minces de chaque échantillon, une analyse détaillée des microfaciès a permis de caractériser avec précision les contenus fossile et abiotique pour chaque affleurement. Ainsi, les assemblages biologiques ont pu être comparés avec des systèmes similaires et synchrones, qu’ils soient d’affinité Téthysienne ou Panthalassique, afin d’identifier les potentielles similitudes ou différences entre ces deux océans dans un but d’analyse paléoécologique. De plus, chaque microfaciès identifié a été interprété en termes d’environnement de dépôt au sein du système carbonaté, sur la base des organismes en présence, des structures sédimentaires, de la nature des lithoclastes ou encore du contenu en boue carbonatée. Dans le cadre d’une approche biostratigraphique, une attention particulière a été portée à l’identification des foraminifères benthiques afin de définir ou préciser l’extension stratigraphique des carbonates étudiés. La synthèse de toutes les données sedimentologiques et biostratigraphiques a permis de reconstruire des modèles de dépôt précis, bien que théoriques, pour chaque système de dépôt étudié. Ainsi, le calcaire de la région de Dalnegorsk (extrême orient de la Russie), a été caractérisé comme étant un système carbonaté de type atoll, développé durant le Norien sur un mont sous–marin basaltique dans l’océan Panthalassa, et caractérisé par une très grande abondance de dépôts lagunaires. D’autre part, les affleurements de Pippu et d’Esashi (Ile d’Hokkaido, Japon) présentent de très fortes similitudes de contenu bioclastique et d’âge et ont donc été interprétés comme appartenant au même système carbonaté. Ce dernier a été défini comme s’étant développé sur les flancs d’un volcan océanique partiellement émergé, durant le Carnien. Les calcaires de Dalnegorsk ont également fait l’objet d’une étude diagénétique poussée, étayée par des analyses géochimiques in–situ et de haute précision, afin de préciser chaque évènement qui a impacté le système carbonaté, depuis le dépôt, jusqu’à l’accrétion. Une telle étude, jamais réalisée auparavant sur des carbonates Panthalassiques, a en

(18)

9 effet permis de mettre en lumière d’importants épisodes diagénétiques liés à des changements environnementaux majeurs aux cours de l’histoire du système et d’établir un modèle d’évolution post–depositionnel précis et corrélable à tout système similaire, quel que soit son âge. Des analyses d’isotopes stables sur divers ciments carbonatés, couplées à des mesures d’éléments traces ont notamment mis en avant une émersion de l’atoll à la transition Norien/Rhaetien, suivie par un démantèlement des flancs du système au Jurassique inférieur ainsi que le néomorphisme de certaines coquilles calcitiques au changement d’une mer aragonitique vers une mer calcitique au Toarcian–Bajocian. Au total, dix évènements diagénétiques ont pu être identifiés et précisément replacés dans le temps grâce à une méthode inédite de datation absolue U–Pb appliquée directement sur les ciments carbonatés. De nombreuses brèches monogéniques carbonatées ont été observées sur le terrain ou en lame mince. Les analyses géochimiques ont permis de mettre en exergue deux types de brèches, jusque–là impossible à différencier, liés à des processus sédimentaires distincts et très espacés dans le temps. Cette thèse a également été l’objet de nombreuses collaborations au sein du projet REEFCADE. En effet, la compilation de différentes données provenant d’études similaires, passées ou en cours, a conduit à la réalisation de deux synthèses paléontologique et sédimentaire majeures. La première étude paléontologique des algues calcaires du Trias supérieur en Panthalassa a ainsi été réalisée, conduisant à des résultats d’une importance capitale à la fois pour notre compréhension de la paléoécologie et de la paléogéographie des océans du Trias, mais également pour mieux percevoir comment les communautés benthiques ont pu se propager dans l’immense océan Panthalassa. Cette étude a également permis de décrire six nouvelles espèces d’algues. Les carbonates Triasiques du Complexe d’Accrétion du Sambosan, au sud du Japon, ont fait l’objet de nombreuses études au sein du projet REEFCADE. Durant cette thèse, une nouvelle campagne d’échantillonnage à l’affleurement de la localité type du Mont Sambosan, associé à une étude diagénétique précise, ont permis de documenter pour la première fois l’histoire complète d’un système carbonaté développé en Panthalassa, depuis sa mise en place au ?Ladinien–Carnien jusqu'à son démantèlement à la transition Trias/Jurassique. Pour conclure, ce travail de thèse constitue une nouvelle progression majeure pour notre compréhension des systèmes carbonatés Triasiques originaires de l’océan Panthalassa. Les données nouvelles sedimentologiques, diagenétiques, biostratigraphiques et paléontologiques viennent compléter un riche panel d’informations obtenues dans le cadre du projet REEFCADE et permettent de mieux contraindre les conditions environnementales au sein de cet immense océan. La caractérisation diagénétique inédite, et les résultats fondamentaux qui en découlent, ouvrent la voie à une exploration similaire et systématique de

(19)

10 systèmes synchrones pour mieux définir les différents évènements environnementaux majeurs durant le Trias supérieur et le Jurassique. L’association de toutes ces nouvelles données est également d’une importance capitale pour les études paléogéographiques et paléoécologiques encore trop peu axées sur l’océan Panthalassa.

(20)

11

CHAPTER 1: Introduction

1 – The importance of carbonate rocks in the geological record

More than any other type of rock, carbonates represent the best archive of marine life conditions through time. The formation of most limestone (i.e., marine shallow–water limestone) is indeed the result of the accumulation of various organisms’ shells and skeletons, which species, as well as their size, shape, abundance, lifestyle, etc., vary trough time depending on the geological period. Consequently, carbonates are ruled by various biological processes and their evolution is greatly dependent of environmental factors that have a direct impact on the living conditions of organisms, then preserved in the fossil record. Moreover, carbonate systems and especially reefal environments are known as places where life flourish. The related wide diversity of organisms make them of high importance for our comprehension of life evolution and development as well as of paleoclimatic and/or paleogeographic conditions.

Shallow–marine carbonates also record various post–depositional events linked to environmental variations over millions of years. Sea–level changes, water geochemistry variations, climatic events, etc. can indeed be recorded by numerous diagenetic features, established after the deposit, and mostly represented by carbonate cements. As shallow–water limestone is governed and formed by the accumulation of organisms, the final microscopic texture of the rock results from the random distribution of particles, creating numerus intergranular pores of various sizes and shapes (Murray, 1960; Regnet et al., 2019). During the lithification, the porosity is filled and sealed by different cements whose shape, mineralogy, chemistry and timing of appearance are directly linked to environmental conditions of precipitation. The precise characterization of those cements as well as other diagenetic features (i.e., dissolution, recrystallization, pressure–dissolution, fracturation, etc.) can therefore highlight all the external events which impacted the carbonate system from it deposits to its exhumation. The presented work focuses on the fundamental characterization of Upper Triassic shallow–water limestone, from different point of views, including sedimentology, biostratigraphy and diagenesis. It is part of the REEFCADE (Reef and CAbornate buildups DEvelopment) project, created and lead by Prof. R. Martini (see section 3 for details).

(21)

12

Fig. 1 – Paleogeographic map of the Late Triassic (Norian). Modified after Scotese, 2014.

2 – Overview of the World and carbonate deposition during the Triassic

The Permian–Triassic boundary is defined by the most important biologic crisis in the Earth history, with the extinction of 95% of the marine life, including the majority of reef–

building organisms (Pruss & Bottjer 2005). The Triassic, ranging from 251.9 to 201.3 Ma (ICC, v2019/05; Cohen et al., 2013), is characterized as a period when life is recovering and expanding after such catastrophic annihilation and is notably marked by the appearance of dinosaurs, mammals, scleractinian corals and calcareous nanofossils (see Peybernes, 2016 and references therein). Consequently, the Triassic is an essential period to characterize for the understanding of life revival and evolution. The Triassic world is defined by a unique continent (i.e., Pangea) and two connected oceans, namely the Tethys and Panthalassa Oceans (Fig. 1) and governed by a general arid climate in a ?polar ice–free condition (Preto et al., 2010). Not that major punctual climatic changes have also been reported (Trotter et al., 2015; Preto et al., 2010; Sun et al., 2020), the main one being the Carnian Pluvial Event which probably had a major effect on life development (Corso et al., 2018; Jin et al., 2020; Shi et al., 2019; Simms et al., 2018). In the Early/Middle Triassic, the fossil record shows a slow and continuous recovery of shallow–marine communities with carbonate systems, mostly characterized by poorly diversified microbial–dominated formations (Adachi et al., 2017; Brayard et al., 2011;

(22)

13 Galfetti et al., 2008; Grosjean et al., 2018; Hofmann et al., 2014a,b; Olivier et al., 2018; Sano et al., 2012; Vennin et al., 2015). On the other hand, the Late Triassic is marked by the remarkable bloom of reef ecosystems (Flügel, 2002) leading, in the Tethys Ocean, to the devel–

Fig. 2 – Occurrence of the main Upper Triassic shallow–water carbonates and reefs, from Tethys (yellow dots) and Panthalassa (red dots). Colored squares correspond to the localities studied within the REEFCADE project (see section 3 for details about the project). Map modified after Chablais, 2010.

–opment of numerous wide carbonate platforms distributed today from Europe to Asia (see Chablais, 2010; Peybernes, 2016 and references therein) (Fig. 2). In the gigantic Panthalassa Ocean, the conditions for the development of large carbonate platforms (i.e., extensive warm and shallow continental shelfs in relatively protected setting characterized by specific salinity and nutrients) were rarely reunited. Consequently, Upper Triassic carbonate systems from Panthalassa are defined by smaller formations associated to oceanic islands, basaltic seamounts or volcanic arcs (Chablais et al., 2010a,b,c; Heerwagen & Martini, 2018, 2020; Khalil et al., 2018; Onoue et al., 2009; Peybernes et al., 2015, 2016a,b; Rigaud, 2016; Senowbari–Daryan et al., 2010; this work), and are therefore less represented in the geological record than their Tethyan counterparts (Fig. 2). In addition, Upper Triassic Panthalassic limestone is today accreted in the Circum–Pacific region (Fig. 2) and it is very likely that a considerable part of these carbonates has been subducted and/or destroyed by the accretion process. Despite the great distance between the carbonates systems of the Tethys and those from Panthalassa, the

(23)

14 biotic assemblage is strongly similar in the two oceans (Bucur et al., 2020; Chablais, 2010;

Peybernes, 2016). The stepping stone hypothesis (Grigg & Hey, 1992; Martini & Rigaud, 2014;

Rigaud, 2012; Stanley, 1994) may explain this similarity, although floating substrates, neritic animals or marine currents could also be efficient mechanisms for long–distance dispersal of marine communities (see chapter 6).

3 – Aims of the thesis project

This work is part of the REEFCADE project, created and lead by Prof. R. Martini for 14 years at the University of Geneva (project funded by the Swiss National Science Foundation). The idea of this project arose from an observation made 15 years ago on Triassic carbonates: Upper Triassic shallow–water limestone of the Tethys were very well studied and characterized from various points of views (microfacies, sedimentology, biostratigraphy, etc.) whereas carbonates from the Panthalassa were very little studied and largely unknown to the scientific community. However, carbonates from Panthalassa represent a unique opportunity to improve our knowledge about this huge ocean (i.e., environmental conditions, paleoecology, paleogeography, paleoclimate, etc.) and to compare the observations and results with the well–

known Tethys Ocean. Furthermore, as detailed in the section 2, the Triassic is a pivotal period for the evolution of life and carbonates are a key archive to understand how life recovered and spread after the major P/T crisis. Over the last decade, various thesis projects, carried out within the REEFCADE, have focused on the exploration and characterization of Upper Triassic carbonates from the Panthalassa Ocean. These studies have resulted in numerous scientific publications (Chablais et al., 2010a,b,c; Heerwagen & Martini, 2018, 2020; Khalil et al., 2018;

Onoue et al., 2009; Peybernes et al., 2015, 2016a; Rigaud et al., 2010, 2012, 2013a,b, 2015a,b, 2016; Rigaud & Martini, 2016; Senowbari–Daryan et al., 2010). The southern and central Japan (Sambosan Accretionary Complex), Western part of Mexico (Antimonio and Vizcaino terranes in Sonora and Baja California, respectively) and Oregon (Wallowa terrane, USA) were thus explored and Upper Triassic carbonates from those regions were precisely characterized (Fig.

2) in terms of microfacies, sedimentology and biostratigraphy (see references above). In addition, two ongoing Doctoral theses are currently focusing on carbonates from Canada (Yukon and British Columbia), and USA (California and Nevada) (Fig. 2).

The thesis project, which is the subject of this manuscript, is the logical continuation of previous works and to do so, the northern part of Japan (i.e., Hokkaido Island) and Russian Far

(24)

15 East (Dalnegorsk area) were chosen as study areas. Upper Triassic limestone, never studied before (i.e., from the point of view of microfacies, sedimentology and diagenesis), is indeed relatively abundant in both areas and constitute key formations for understanding the evolution of carbonates in the Panthalassa Ocean. The aim of the PhD project was to investigate both areas and perform an extensive sampling of all Triassic carbonates to precisely study those last for the very time. Note that the type locality of the Sambosan Accretion Complex (SAC) on Shikoku Island was also sampled. The SAC is a narrow belt in the outer southwestern part of Japan that can be followed from the Ryukyu Islands to the Kanto Mountains (Honshu). This part of the study, carried out in collaboration with former REEFCADE PhD students (see chapter 5), leads to a synthesis of the Upper Triassic carbonates of the SAC throughout Japan.

In order to be able to compare the results of this study with those already in our possession and to build a coherent database, a workflow similar to the one followed in the previous theses of REEFACDE project was used. It includes the description of microfacies, the definition of all macro and micro–organisms, the characterization of foraminifers assemblages for biostratigraphic and paleoecologic purposes and, finally, the reconstruction of speculative depositional models based on all observations. An extensive chapter of the thesis consists of a comprehensive diagenetic study of the carbonates sampled in Russian Far East, and represents the very first work of this type for Panthalassa carbonates. Each diagenetic event has been geochemically characterized with high resolution analytical tools to determine the environmental conditions of carbonate cements precipitation. Those lasts have also been dated with the U–Pb method. The combination of all obtained results permits to establish a model of evolution of the carbonate system from its deposit to its exhumation, with the record of various environmental changes never recorded before. One of the final objectives of the REEFCADE project is to use the data and results obtained throughout the project to implement and refine the paleogeographic models for Panthalassa in the Triassic, which have so far been very poorly detailed (Fig. 1). For this purpose, the data and results of this study, as well as those of current and previous PhD projects, are used in the PANALESIS plate tectonic model (the only model reconstructing, to date, the Panthalassic realm; Vérard, 2019a,b). Figure 3 shows all the localities investigated by the REEFCADE project (including the results of this thesis and those in progress) relocated in the Panthalassa Ocean 220 Ma (Norian) ago (see chapter 6 for details about this model).

(25)

16

4 – Mode of occurrence of the studied limestone and work approach

The investigated carbonates are situated on the west–pacific region, on the Hokkaido Island (Japan) and in the Dalnegorsk area (Russian Far East) (Figs. 3, 4). Those regions are def–

Fig. 3 – Paleogeographic reconstruction at 220 Ma (Norian) after the PANALESIS model; Robinson projection.

The yellow stars indicate the Upper Triassic shallow–water carbonate deposition zones in the Panthalassa Ocean that have been studied in the REEFCADE project. 0. Hokkaido (Japan); 1. Dalnegorsk area (Russian Far East); 2. Shikoku Island (Japan); 3. Yukon (Canada); 4. Idaho (USA); 5. Oregon (USA); 6. California (USA); 7. Baja California Sur (Mexico); 8. Nevada (USA); 9. Sonora (Mexico). Present–day coast–lines (green) are shown for information only. The boundary between continental (grey) and oceanic (white) lithosphere corresponds to the continent–ocean boundary and not to the paleoshore–line.

–ined by an east–west succession of accretionary complexes and magmatic arcs trending south–

north (Fig. 4) and resulting of the subduction of the paleo–pacific plates below the North China block during the Phanerozoic (Isozaki, 1997; Isozaki et al., 2010; Kemkin, 2008; Kojima, 1989). The studied carbonates are defined as allochthonous systems from Panthalassa, accreted on Lower Cretaceous accretionary complexes, namely the Taukha Terrane in Russia and the Idonnappu Zone in Japan (Khanchuk et al., 1989, Igo et al., 1974; Ishizaki, 1979; this work) (Fig. 4). Such complexes are characterized by a mélange of various oceanic lithologies which generally correspond to the Ocean Plate Stratigraphy (OPS) model (Wakita & Metclafe, 2005), disrupted during the accretion process (Fig. 5). The Taukha Terrane and the Idonnappu Zone are therefore mainly composed of shallow–water oceanic limestone, cherts, basaltic rocks (mai–

(26)

17

Fig. 4 Tectonostratigraphic zonation of Hokkaido and its inferred continuation to surroundings areas.

Investigated localities in this work are situated on the Taukha Terrane (Russian Far East) and on the Idonnappu Zone (central Hokkaido). Abbreviations as B.: Belt; Z.: Zone; S.: South; Pen.: Peninsula. Modified after Ueda, 2016.

–nly OIB), hemipelagic mudstone, associated with clastic terrigenous rocks coming from the continent and occurring as trench–fill sediment (Kemkin et al., 1999; Khanchuk et al., 2016;

Ueda, 2016) (Fig. 5). The accretion process, due to intense tectonic stress associated with relatively high temperatures within the prism, lead to the intense fracturation, shear and/or metamorphism of the incorporated rocks, including limestone. Consequently, when rocks are exhumed, they occur as isolated blocks (i.e., without spatial continuity) of various sizes but

(27)

18 originating from the same depositional system, and rarely presenting the original bedding and polarity. Due to this particular mode of occurrence, the sedimentological work cannot rely neither on macroscopic structures (extremely rare in such outcrops) nor on lateral and vertical facies evolution. Therefore, the working approach is to collect, on each studied block, many different microfacies samples in order to have as accurate representation as possible of the original system. Each sampled outcrop have been dated using foraminifer assemblages and the combination of all results allow us to define a general stratigraphic extension. The diagenetic approach relies on either the similarities or differences of cements, or on post–depositional features (i.e., intersection of events, morphology, size, luminescence, isotopic and trace elements geochemistry) between all outcrops and is supported by U–Pb dating of the main events. The work approach for such study is precisely detailed in the chapters 2 and 3.

Fig. 5 – Oceanic Plate Stratigraphy (OPS) model. From Peybernes, 2016 and modified after Wakita and Metclafe, 2005.

5 – Thesis organization

The thesis is organized in 7 chapters, including the Introduction and Conclusion.

Chapters 2 to 6 correspond to scientific papers, published in renowned peer–review journals. It is consequently possible that there are some minor redundancies on some parts of this work.

The general content of each chapter is detailed hereafter:

(28)

19 The chapter 2 is about the characterization of the Upper Triassic atoll–type carbonates of the Dalnegorsk area (Taukha terrane, Russian Far East) from a sedimentological and biostratigraphic point of view. A theoretical depositional model is proposed and a possible acme of the foraminifer species Parvalamella friedli is evidenced.

The chapter 3 corresponds to the comprehensive diagenetic study of the Upper Triassic shallow–water carbonates from Dalnegorsk (Russian Far East). It focused on various geochemical approaches including analyzes of stable isotopes, traces and ultra–trace elements and U–Pb dating of carbonate cements. Various post–depositional events were identified and a precise reconstruction of the evolution of the carbonate system from its deposit to its accretion has been established.

The chapter 4 examines the microfacies and biostratigraphy of the Upper Triassic shallow–water carbonates from the Idonnappu Zone (Hokkaido Island, Japan) and a theoretical depositional model is proposed. The strong similarities with analogous systems from the Sambosan Accretionary complex (southern Japan) are discussed.

The chapter 5 treats of the birth and death of seamounts in the Panthalassa Ocean from the Late Triassic to Early Jurassic, based on a precise sedimentary and diagenetic synthesis of atoll–type carbonates from Mount Sambosan (Shikoku, southwest Japan). Several evolutionary steps are highlighted and compared with events recorded in the Tethys Ocean.

The chapter 6 consists in the very first paleontological synthesis of green algae occurrence and description in Panthalassa during the Late Triassic. Six new species, possibly endemic of the Panthalassa, are reported as well as other species known before from the Tethys Ocean. Based on these important results, the paleobiogeographic significance of such data and the related diffusion of marine organisms in the Triassic oceans are widely discussed.

The chapter 7 concludes this work and some outlooks are given for the future continuation of the REEFCADE project.

(29)

20

References:

Adachi, N., Asada, Y., Ezaki, Y., & Liu, J. (2017). Stromatolites near the Permian–Triassic boundary in Chongyang, Hubei Province, South China: A geobiological window into palaeo–oceanic fluctuations following the end–Permian extinction. Palaeogeography, Palaeoclimatology, Palaeoecology, 475, 55–

69.

Brayard, A., Vennin, E., Olivier, N., et al (2011). Transient metazoan reefs in the aftermath of the end–

Permian mass extinction. Nat Geosci 4, 693–697.

Bucur I., Rigaud S., Del Piero N., Fucelli A., Heerwagen E., Peybernes C., Peyrotty G., Verard C., Chablais J., Martini M. (2020). Upper Triassic calcareous algae from the Panthalassa Ocean. Rivista Italiana di Paleontologia e Stratigrafia, 126(2), 499–540.

Chablais, J. (2010). Sedimentology and Biostratigraphy of the Upper Triassic Atoll–type Carbonates of the Sambosan Accretionary Complex (Panthalassan Domain, Japan): Depositional Setting, Paleobiogeography and Relationship to their Counterparts in the Tethys. University of Geneva.

Chablais, J., Onoue, T., Martini, R. (2010a). Upper Triassic reef–limestone blocks of southwestern Japan:

new data from a Panthalassan seamount. Palaeogeogr. Palaeoclimatol. Palaeoecol., 293 (1–2), 206–

222.

Chablais, J., Martini, R., Samankassou, E., Onoue, T., Sano, H. (2010b). Microfacies and depositional setting of the Upper Triassic mid–oceanic atoll–type carbonates of the Sambosan Accretionary Complex (southern Kyushu, Japan). Facies, 56 (2), 249–278.

Chablais, J., Martini, R., Onoue, T. (2010c). Aulotortus friedli from the Upper Triassic gravitational flow deposits of the Kumagawa River (Kyushu, Southwest Japan). Paleontol. Res., 14 (2), 151–160.

Cohen, K. M., Finney, S. C., Gibbard, P. L., Fan, J.–X. (2013). Updated the ISC international chronostratigraphic chart. Episodes 36, 199–204.

Corso, J. D., Ruffell, A., & Preto, N. (2018). The Carnian Pluvial Episode (Late Triassic): New insights into this important time of global environmental and biological change. Journal of the Geological Society, 175(6).

Flügel, E. (2002). Triassic reef patterns. In: Kiessling Wolfgang, Flügel, E., Golonka, J. (eds) Phaneroz. reef patterns. Special Publications of SEPM, 391–463.

Galfetti, T., Bucher, H., Martini, R., et al (2008). Evolution of Early Triassic outer platform paleoenvironments in the Nanpanjiang Basin (South China) and their significance for the biotic recovery. Sediment Geol 204, 36–60.

Grigg, R.W., Hey, R. (1992). Paleoceanography of the tropical eastern Pacific Ocean. Science 80 255, 172.

Grosjean, A. S., Vennin, E., Olivier, N., Caravaca, G., Thomazo, C., Fara, E., Escarguel, G., Bylund, K. G., Jenks, J. F., Stephen, D. A., & Brayard, A. (2018). Early Triassic environmental dynamics and microbial development during the Smithian–Spathian transition (Lower Weber Canyon, Utah, USA).

Sedimentary Geology, 363, 136–151.

Heerwagen, E. & Martini, R. (2018). The Antimonio ramp in Sonora, Mexico: A shallow–marine Upper Triassic mixed siliciclastic carbonate ramp system. Facies, 64(2), 1–25.

Heerwagen, E. & Martini, R. (2020). The Vizcaíno terrane : another occurrence of Upper Triassic shallow – marine carbonates in Mexico. Facies, 1–13.

(30)

21

Hofmann, R., Hautmann, M., Brayard, A., et al (2014a). Recovery of benthic marine communities from the end-Permian mass extinction at the low latitudes of eastern Panthalassa. Palaeontology 57, 547– 589.

Hofmann, R., Hautmann, M., Bucher, H. (2014b). Recovery dynamics of benthic marine communities from the Lower Triassic Werfen Formation, northern Italy. Lethaia.

Igo, H., Koike, T., Igo, H. & Kinoshita, T. (1974). On the occurence of Triassic conodonts from the Sorachi Group in the Hidaka Mountains, Hokkaido. Geological Journal, 80(3), 135–136.

Ishizaki, S. (1979). Discovery and signifiance of Triassic bryozoan fossils from the Pre–Yezo Group in Esashi Mountains, Hokkaido. Earth Science, 33(6), 355–359.

Isozaki, Y. (1997). Jurassic accretion tectonics of Japan. Isl Arc 6, 25–51.

Isozaki, Y., Aoki, K., Nakama, T., Yanai, S. (2010). New insight into a subduction–related orogen: A reappraisal of the geotectonic framework and evolution of the Japanese Islands. Gondwana Res 18, 709.

Jin, X., Gianolla, P., Shi, Z., Franceschi, M., Caggiati, M., Du, Y., & Preto, N. (2020). Synchronized changes in shallow water carbonate production during the Carnian Pluvial Episode (Late Triassic) throughout Tethys. Global and Planetary Change, 184(May 2019), 103035.

Kemkin, I. V. (2008). Structure of terranes in a Jurassic accretionary prism in the Sikhote–Alin–Amur area:

implications for the Jurassic geodynamic history of the Asian eastern margin. Russian Geology and Geophysics, 49(10), 759–770.

Kemkin, I.V., Kametaka, M., Kojima, S., (1999). Radiolarian biostratigraphy for transitional facies of chert–

clastic sequence of the Taukha terrane in the Koreyskaya River area, Southern Sikhote–Alin, Russia.

Journal of Earth Planet Sciences, Nagoya University 46, 29–47.

Khalil, H., McRoberts, C.A., Del Piero, N., Stanley, G.D.J., Martini, R., Rigaud, S. (2018). New biostratigraphic constraints for the Martin Bridge Formation (Upper Triassic, Wallowa terrane, Oregon, U.S.A.). Rev. Paléobiol., 37 (January), 109–119.

Khanchuk, A.I., Nikitina, A.P., Panchenko, I.V., Buriy, G.I., Kemkin, I.V. (1989). Paleozoic and mesozoic guyots of the Sikhote–Alin and Sakhalin. Dokl. Acad. Sci. USSR 307 (1), 186–190 (in Russian) Khanchuk, A.I., Kemkin, I.V., Kruk, N.N. (2016). The Sikhote–Alin orogenic belt, Russian South East:

Terranes and the formation of continental lithosphere based on geological and isotopic data. J. Asian Earth Sci., 120, 117–138.

Kojima, S. (1989). Mesozoic terrane accretion in Northeast China, Sikhote–Alin and Japan regions.

Palaeogeography, Palaeoclimatology, Palaeoecology, 69(C), 213–232.

Martini & Rigaud (2014). The paleobiogeographic and stratigraphic distribution of early Mesozoic foraminifers: Toward a better understanding of large scale dispersal and recovery processes? Abstract.

International Symposium on Foraminifera, Chile, 19–24 January 2014, Abstract volume, pp. 46–47.

Murray, R. C. (1960). Origin of porosity in carbonate rocks. Journal of Sedimentary Petrology, 30(1), 59–

84.

Olivier, N., Fara, E., Vennin, E., Bylund, K. G., Jenks, J. F., Escarguel, G., Stephen, D. A., Goudemand, N., Snyder, D., Thomazo, C., & Brayard, A. (2018). Late Smithian microbial deposits and their lateral marine fossiliferous limestones (Early Triassic, Hurricane Cliffs, Utah, USA). Facies, 64(2), 1–24.

(31)

22

Onoue, T., Chablais, J., Martini, R. (2009). Upper Triassic reefal limestone from the Sambosan accretionary com– plex in Japan and its geological implication. J. Geol. Soc. Japan, 115 (6), 292–295.

Pruss, S.B., Bottjer, D.J. (2005). The reorganization of reefs communities following the end–Permian mass extinction. Comptes Rendus Palevol 4, 553–568.

Peybernes, C. (2016). Upper Triassic mid–oceanic shallow water ecosystems of the Panthalassa Ocean:

insights from theSambosan Accretionary Complex, Southwest Japan. University of Geneva

Peybernes, C., Chablais, J., Martini, R. (2015). Upper Triassic (Ladinian?–Carnian) reef biota from the Sambosan Accretionary complex, Shikoku, Japan. Facies, 61 (4), 20.

Peybernes, C., Chablais, J., Onoue, T., Escarguel, G., Martini, R. (2016a). Paleoecology, biogeography, and evolution of reef ecosystems in the Panthalassa Ocean during the late Triassic: Insights from reef limestone of the Sambosan Accretionary complex, Shikoku, Japan. Palaeogeogr. Palaeoclimatol.

Palaeoecol., 457, 31–51.

Peybernes, C., Chablais, J., Onoue, T., Martini, R. (2016b). Mid–oceanic shallow–water carbonates of the Panthalassa domain: new microfacies data from the Sambosan Accretionary Complex, Shikoku Island, Japan. Facies, 62 (4), 1–27.

Preto, N., Kustatscher, E., & Wignall, P. B. (2010). Triassic climates – State of the art and perspectives.

Palaeogeography, Palaeoclimatology, Palaeoecology, 290(1–4), 1–10.

Regnet, J. B., David, C., Robion, P., & Menéndez, B. (2019). Microstructures and physical properties in carbonate rocks: A comprehensive review. Marine and Petroleum Geology, 103(November 2018), 366–376.

Rigaud, S. (2012). The Late Triassic Martin Bridge carbonate platform (Wallowa terrane, NW U.S.A.):

Sedimentology, biostratigraphy, and contribution to the understanding of aragonitic and microgranular foraminifers. University of Geneva.

Rigaud, S., Martini, R. (2016). Agglutinated or porcelaneous tests: where to draw the line? J. Foraminiferal Res., 46 (3), 333–344.

Rigaud, S., Martini, R., Rettori, R., Stanley, G. (2010). Stratigraphic potential of the Upper Triassic benthic foraminifers. Albertiana, 38, 34–39.

Rigaud, S., Martini, R., Rettori, R. (2012). Parvalamellinae, a New Subfamily for Triassic Glomospiroid Involutinidae. J. Foraminiferal Res., 42 (3), 245–256.

Rigaud, S., Martini, R., Rettori, R. (2013a). A new genus of Norian involutinid foraminifers: its morphological, biostratigraphic, and evolutionary significance. Acta Palaeontol. Pol., 58 (2), 391–405.

Rigaud, S., Blau, J., Martini, R., Rettori, R. (2013b). Taxonomy and phylogeny of the Trocholinidae (Involutinina). J. Foraminiferal Res., 43 (4), 317–339.

Rigaud, S., Vachard, D., Martini, R. (2015a). Agglutinated versus microgranular foraminifers: end of a paradigm? J. Syst. Palaeontol., 13 (2), 75–95.

Rigaud, S., Martini, R., Vachard, D. (2015b). Early evolution and new classification of the Order Robertinida (Foraminifera). J. Foraminiferal Res., 45 (1), 3–28.

Rigaud, S., Vachard, D., Schlagintweit, F., Martini, R. (2016). New lineage of Triassic aragonitic Foraminifera and reassessment of the class Nodosariata. J. Syst. Palaeontol., 14 (11), 919–938.

Références

Documents relatifs

In the Middle Permian (Murgabian), in spite of the global sea level fall, and in opposite of the Kubergandian time, the "Fusulinid Sea" transgressed over

Age -targeted samp fl fing was a flso fimposs fib fle , s fince a fl fl Da fl - negorsk outcrops are off the same age (Nor fian , based on off fforam fin fiffera ffauna

To fill this gap, five limestone outcrops, so far poorly described in the literature, were identified and sampled in the Pippu and Esashi areas (central and northern part of

Most known species of calcareous algae in the Up- per Triassic (including dasycladaleans, udoteaceans, and “solenoporaceans”) have been identified in limestone rocks

Microfacies, diagenesis and depositional setting of the Late Triassic mid-oceanic carbonates from Dalnegorsk area (Taukha terrane, Far Eastern Russia).. Bathurst Meeting

val, and in the Dolomitic limestone and laminated dolostone (AC22a. at the top of the series. Samples for conodont.. 37, 52, 66) were all collected in the Bioclastic intercalations

Two of the best areas to study these carbonates are Hokkaido Island (north end of Japan) and Sikhote-Alin mountain range (Primorsky and Khabarovsk Kraïs, Far East Russia) where

The base of the series is represented by the marls, calcilutites and calcarenites with foraminiferas, bivalves and seldom radiolarians of the Mufara Formation