• Aucun résultat trouvé

Box Tomography: An efficient tomographic method for imaging localized structures in the deep Earth

N/A
N/A
Protected

Academic year: 2021

Partager "Box Tomography: An efficient tomographic method for imaging localized structures in the deep Earth"

Copied!
2
0
0

Texte intégral

(1)

HAL Id: hal-01654114

https://hal.archives-ouvertes.fr/hal-01654114

Submitted on 3 Dec 2017

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

Box Tomography: An efficient tomographic method for

imaging localized structures in the deep Earth

Yder J. Masson, Barbara Romanowicz

To cite this version:

Yder J. Masson, Barbara Romanowicz. Box Tomography: An efficient tomographic method for

imag-ing localized structures in the deep Earth. EGU General Assembly 2017, Apr 2017, vienna, France.

pp.2017 - 9502. �hal-01654114�

(2)

Geophysical Research Abstracts Vol. 19, EGU2017-9502, 2017 EGU General Assembly 2017

© Author(s) 2017. CC Attribution 3.0 License.

Box Tomography: An efficient tomographic method for imaging localized

structures in the deep Earth

Yder Masson (1) and Barbara Romanowicz (1,2,3)

(1) Institut de physique du globe de Paris, bureau 315, Paris, France (masson@ipgp.fr), (2) Collège de France, 11 place Marcelin Berthelot F- 75231, Paris Cedex 05, Paris, France. , (3) Berkeley Seismological Laboratory, University of California, Berkeley, CA 94720, USA

The accurate imaging of localized geological structures inside the deep Earth is key to understand our planet and its history. Since the introduction of the Preliminary Reference Earth Model, many generations of global tomographic models have been developed and give us access to the 3D structure of the Earth’s interior. The latest generation of global tomographic models has emerged with the development of accurate numerical wavefield computations in a 3D earth combined with access to enhanced HPC capabilities. These models have sharpened up mantle images and unveiled relatively small scale structures that were blurred out in previous generation models. Fingerlike structures have been found at the base of the oceanic asthenosphere, and vertically oriented broad low velocity plume conduits [1] extend throughout the lower mantle beneath those major hotspots that are located within the perimeter of the deep mantle large low shear velocity provinces (LLSVPs). While providing new insights into our understanding of mantle dynamics, the detailed morphology of these features requires further efforts to obtain higher resolution images.

In recent years, we developed a theoretical framework [2][3] for the tomographic imaging of localised geo-logical structures buried inside the Earth, where no seismic sources nor receivers are necessarily present. We call this ”box tomography” [4]. The essential difference between box-tomography and standard tomographic methods is that the numerical modeling (i.e. the raytracing in travel time tomography and the wave propagation in waveform tomography or full waveform inversion) is completely confined within the small box-region imaged. Thus, box tomography is a lot more efficient than global tomography (i.e. where we invert for the velocity in the larger volume that encompasses all the sources and receivers), for imaging localised objects. We present 2D and 3D examples showing that box tomography can be employed for imaging structures present within the D” region at the base of the mantle. Further, we show that box-tomography performs well even in the difficult situation where the velocity distribution in the mantle above the target structure is not known a-priori.

REFERENCES

[1] French, S. W. and B. Romanowicz (2015) Broad Plumes at the base of the mantle beneath major hotspots, Nature, 525, 95-99

[2] Masson, Y., Cupillard, P., Capdeville, Y., & Romanowicz, B. (2013). On the numerical implementation of time-reversal mirrors for tomographic imaging. Geophysical Journal International, ggt459.

[3] Masson, Y., & Romanowicz, B. (2017). Fast computation of synthetic seismograms within a medium containing remote localized perturbations: a numerical solution to the scattering problem. Geophysical Journal International, 208(2), 674-692.

[4] Masson, Y., & Romanowicz, B. (2017). Box Tomography: Localised imaging of remote targets buried in an unknown medium, a step forward for understanding key structures in the deep Earth. Geophysical Journal International, (under review).

Références

Documents relatifs

Dans chaque quadrillage, colorie tous les carrés pour qu’il y en ait autant en vert qu’en rouge.. Logique Autant

La loi du 30 décembre 2006 a rendu la représentation des actionnaires salariés au sein des conseils d’administration ou de surveillance des sociétés cotées dès

Title: Vulnerability to stress consequences induced by repeated social defeat in rats: contribution of the angiotensin II type 1 receptor in cardiovascular alterations associated

Second, substituting amino acid residues outside the peptide active site. This strategy may generate more subtle variations in peptide pharmacological properties,

Les produits alimentaires peuvent renfermer des microorganismes, certains sont indispensables car ils participent à l´élaboration ou à la transformation de l´aliment, assurant

Nous détaillons su essivement la otation de l'extra tion d'informations, puis elle de leur fu-.. sion, en examinant pour ha une la transposition des dimensions qui la

COMPARATIVE STUDY OF MERCURY AND CADMIUM EXPOSURE IN A FRESHWATER FISH (BRACHYDANIO RERIO) Histological microanalysis of Cd-induced minerai

Donne toutes les possibilités pour AB, BE et BC afin que le volume de ce prisme droit soit de 18 cm