• Aucun résultat trouvé

The Decade of the Geopotential - techniques to observe the gravity field from space

N/A
N/A
Protected

Academic year: 2021

Partager "The Decade of the Geopotential - techniques to observe the gravity field from space"

Copied!
52
0
0

Texte intégral

(1)

The Decade of the Geopotential –

techniques to observe the gravity

field from space

Matthias Weigelt Tonie van Dam Olivier Francis

(2)

Geophysical implications of the gravity field

2

© ESA

(3)

Gravity field modelling

3

with gravitational constant times mass of the Earth radius of the Earth

spherical coordinates of the calculation point Legendre function

degree, order

(unknown) spherical harmonic coefficients

(4)

Gravity field modelling

4

with gravitational constant times mass of the Earth radius of the Earth

spherical coordinates of the calculation point Legendre function

degree, order

(unknown) spherical harmonic coefficients

(5)

5

Snm - order m - C

nm

degree n

Spherical harmonic spectrum of ITG-GRACE2010s

-80 -60 -40 -20 0 20 40 60 80

0

20

40

60

80

-12 -11 -10 -9 -8 -7

Spherical -6

harmonic

representation

degree-RMS

Spectral representation

(6)

6

Snm - order m - C

nm

degree n

Spherical harmonic spectrum of ITG-GRACE2010s

-80 -60 -40 -20 0 20 40 60 80

0

20

40

60

80

-12 -11 -10 -9 -8 -7

Spherical -6

harmonic

representation

degree-RMS

Spectral representation

(7)

Pre CHAMP era

(8)

Space geodetic observation techniques

courtesy Oliver Baur

SLR:

Optical:

courtesy NOAA BC-4

(9)

1966:

Development of the gravity field precision and resolution

(10)

1972:

Development of the gravity field precision and resolution

(11)

1976:

Development of the gravity field precision and resolution

(12)

1982

:

Development of the gravity field precision and resolution

(13)

1987:

Development of the gravity field precision and resolution

(14)

1990:

Development of the gravity field precision and resolution

(15)

1996:

Development of the gravity field precision and resolution

(16)

The Decade of the Geopotentials -

the concepts

(17)

Satellite missions

17

High-low SST

Low-low SST

Gradiometry

CHAMP

GRACE GOCE

© GFZ-Potsdam

© CSR Texas

© ESA

(18)

CHAMP

(19)

Satellite system CHAMP

CHAMP = CHAllenging Minisatellite Payload

• Initial orbit height: ~ 485 km

• Inclination: ~ 87.5°

• Key technologies:

– GPS

– Accelerometer – (Magnetometers)

• Observation quantity:

– Position by GPS

– Non-gravitational forces by accelerometers

(20)

Newton‘s equation of motion

(21)

Newton‘s equation of motion

(22)

Newton‘s equation of motion

→ →

(23)

Newton‘s equation of motion

→ →

Observation: (position)

(24)

Newton‘s equation of motion

→ →

Observation: (position)

Differentiation: (acceleration)

(25)

Newton‘s equation of motion

→ →

Observation: (position)

Differentiation: (acceleration)

(26)

Newton‘s equation of motion

→ →

Observation: (position)

Differentiation: (acceleration)

(27)

Newton‘s equation of motion

→ →

Observation: (position)

Differentiation: (acceleration)

(28)

2010:

GAIN due to CHAMP

(29)

GRACE

(30)

Satellite system GRACE

GRACE = Gravity Recovery and Climate Experiment

• Initial orbit height: ~ 485 km

• Inclination: ~ 89°

• Key technologies:

– GPS

– accelerometer

– K-Band ranging system

• Observation quantity:

– distance (range)

– change of distance (range rate)

30

© CSR, UTexas

(31)

Geometry of the GRACE system

31

Differentiation Integration

Rummel et al. 1978

(32)

2013:

GAIN due to GRACE

(33)

2013:

GAIN due to GRACE and GOCE

(34)

2013:

GAIN due to GRACE: time variable gravity (TVG)

(35)

Achievements

in terms of the TVG

(36)

Spatio-temporal resolution ?

10-3 10-2 10-1 100 101 102 103 104 105

100 101 102 103 104 105

10000km

1000km

100km

10km

1km

sea ice

vulcanos

PGR

ocean currents ice mass balance solid

Earth and ocean

tides

lithosphere mantle tectonics

postseismicdeformation

coseismic deformation

groundwater snow soil moisture

runoff water balance storage balance

sea - level

quasi-staticocean circulation

atmosphere

(37)

Spatio-temporal resolution ?

10-3 10-2 10-1 100 101 102 103 104 105

100 101 102 103 104 105

10000km

1000km

100km

10km

1km

sea ice

vulcanos

PGR

ocean currents ice mass balance solid

Earth and ocean

tides

lithosphere mantle tectonics

postseismicdeformation

coseismic deformation

groundwater snow soil moisture

runoff water balance storage balance

sea - level

quasi-staticocean circulation

atmosphere

GRACE

(38)

Spatio-temporal resolution ?

10-3 10-2 10-1 100 101 102 103 104 105

100 101 102 103 104 105

10000km

1000km

100km

10km

1km

sea ice

vulcanos

PGR

ocean currents ice mass balance solid

Earth and ocean

tides

lithosphere mantle tectonics

postseismicdeformation

coseismic deformation

groundwater snow soil moisture

runoff water balance storage balance

sea - level

quasi-staticocean circulation

atmosphere

GRACE

(39)

Spatio-temporal resolution ?

10-3 10-2 10-1 100 101 102 103 104 105

100 101 102 103 104 105

10000km

1000km

100km

10km

1km

sea ice

vulcanos

PGR

ocean currents ice mass balance solid

Earth and ocean

tides

lithosphere mantle tectonics

postseismicdeformation

coseismic deformation

groundwater snow soil moisture

runoff water balance storage balance

sea - level

quasi-staticocean circulation

atmosphere

GRACE CHAMP

(40)

Change in water storage

40

GRACE GFZ Rel. 4 High-low SST

(41)

Water is stressed …

41

• Water balance in India (Rodell et al., Nature, vol. 460, 2009)

(42)

The Future

(43)

GRACE und GRACE Follow-On (GFO)

43

Low-low

© CSR Texas

• K-Band + Laser

• GPS

• Accelerometer

year

(44)

GRACE und GRACE Follow-On (GFO)

44

Low-low

© CSR Texas

• K-Band + Laser

• GPS

• Accelerometer

year

up to 4 year data gap

(45)

Bridging the gap …

45

High-low

GOCE

year

(46)

Bridging the gap …

46

High-low

GOCE GOCE

© ESA

year

(47)

Bridging the gap …

47

High-low

GOCE GOCE

© ESA © EADS Astrium

SWARM

year

(48)

Beyond GRACE Follow-On

10-3 10-2 10-1 100 101 102 103 104 105

100 101 102 103 104 105

10000km

1000km

100km

10km

1km

sea ice

vulcanos

PGR

ocean currents ice mass balance solid

Earth and ocean

tides

lithosphere mantle tectonics

postseismicdeformation

coseismic deformation

groundwater snow soil moisture

runoff water balance storage balance

sea - level

quasi-staticocean circulation

atmosphere

GRACE CHAMP

(49)

Beyond GRACE Follow-On

10-3 10-2 10-1 100 101 102 103 104 105

100 101 102 103 104 105

10000km

1000km

100km

10km

1km

sea ice

vulcanos

PGR

ocean currents ice mass balance solid

Earth and ocean

tides

lithosphere mantle tectonics

postseismicdeformation

coseismic deformation

groundwater snow soil moisture

runoff water balance storage balance

sea - level

quasi-staticocean circulation

atmosphere

GRACE CHAMP

(50)

Summary

• The decade of the potential yield an improvement

in the gravity field by three orders of magnitude.

• Time variable gravity can be observed for the first

time with a monthly sampling.

• Ongoing strive for higher spatial and temporal

resolution (with a likely setback in the coming

years).

(51)

Thank you

Matthias Weigelt Tonie van Dam Olivier Francis

(52)

Références

Documents relatifs

Although Dorje (rdo rje) is generally known in Tibetan as meaning vajra (thunderbolt), Ak- Dorje seems to be completely unknown in the language. It was presumably coined

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

Descriptive and geostatistical analysis of the physico-chemical parameters [equivalent humidity (EH), organic matter content (OM), organic carbon content (OC),

The Earth Orientation is generally considered as (i) Earth rotation axis movements in space (precession-nutation), (ii) Earth rotation axis movements in the Earth (polar motion),

by these techniques, the temporal variation of a few Earth grav- ity field coe fficients, especially ∆C20 , can be determined (for early studies, see for example Nerem et al. They are

From the top to the bottom, there are the solar wind in km/s, the Bz component of the IMF (in nT) , the magnetic index Ae (in nT) which is related to the ionospheric currents in

11 Span of the difference degree RMS with respect to GGM02 S of the monthly static solutions for GRACE (dark gray) and CHAMP (light gray): the worst monthly solution of each data

Long wavelength gravity field determination from GOCE using the acceleration approach Long wavelength gravity field determination from GOCE using the acceleration approachM.