• Aucun résultat trouvé

THE NEW EXPERIMENTAL RESULTS ON MAGNETIC ORDER IN bcc SOLID 3He ARE WELL EXPLAINED BY PLANAR FOUR SPIN EXCHANGE

N/A
N/A
Protected

Academic year: 2021

Partager "THE NEW EXPERIMENTAL RESULTS ON MAGNETIC ORDER IN bcc SOLID 3He ARE WELL EXPLAINED BY PLANAR FOUR SPIN EXCHANGE"

Copied!
9
0
0

Texte intégral

(1)

HAL Id: jpa-00220176

https://hal.archives-ouvertes.fr/jpa-00220176

Submitted on 1 Jan 1980

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

THE NEW EXPERIMENTAL RESULTS ON

MAGNETIC ORDER IN bcc SOLID 3He ARE WELL EXPLAINED BY PLANAR FOUR SPIN EXCHANGE

M. Roger, J. Delrieu, J. Hetherington

To cite this version:

M. Roger, J. Delrieu, J. Hetherington. THE NEW EXPERIMENTAL RESULTS ON MAGNETIC ORDER IN bcc SOLID 3He ARE WELL EXPLAINED BY PLANAR FOUR SPIN EXCHANGE.

Journal de Physique Colloques, 1980, 41 (C7), pp.C7-241-C7-248. �10.1051/jphyscol:1980738�. �jpa-

00220176�

(2)

JOURNAL DE PHYSIQUE ColZoque C7, suppZ&m~~?z$ n i l r.' 7, Tome 41, jui7,Zet 1980, page C7-241

THE NEW EXPERIMENTAL RESULTS ON MAGNETIC ORDER I N bcc S O L I D 3 ~ e ARE WELL EXPLAINED BY PLANAR FOUR S P I N EXCHANGE

M. Roger, J.M. D e l r i e u and J.H. ~ e t h e r i n ~ t o n *

DPh-G/PSRM

-

CEN Saclay, BP. 2, 91 190 Gif-sur-Yvette, France

*

Michigan S t a t e University, E u s t Lansing, N i . 48824, USA.

RBsumB

-

Un modble B deux parambtres : Bchange

a

t r o i s s p i n s J r e t 6chanpe p l a n 21 f l u a t r e s p i n s Kp ( l e s Bchanges B deux s p i n s s o n t nBglig6s) e s t e n accord ~ u a n t l t a t i f avec l e s f a i t s expBrimentaux s u i v a n t s :

1 ) En champ maenBtique f a i b l e H < 0

:O

s t r u c t u r e de l a phase ordonn6e dBduite des expBriences rbcen- t e s de rgsonance a n t i f e r r o m a g n 6 t i q u e d ' o s h e r o f f

;a

v a l e u r s de l a s u s c e p t i b i l i t B ; de l a frBquence d e rdsonance e t de l a v i t e s s e moyenne des ondes de s p i n ;

0

t r a n s i t i o n du premier o r d r e 1 1 mK.

2) En champ H > 4 kG :

0

prBsence d'une

?base

d ' a i m a n t a t i o n f' Btonnament f o r t e h 4 kG e t lentement va- r i a b l e (de 0.6 2i 0.7 f o i s 1 ' a i m a n t a t i o n de s a t u r a t i o n e n t r e 4 e t 72 kG ;

0

diagramme de phase inha- b i t u e l avec une temperature de t r a n s i t i o n du second o r d r e Tc2(H) c r o i s s a n t avec H .

3 ) Accord avec l e s dBveloppements de h a u t e s t e m s r a t u r e s de s u s c e p t i b i l i t d e t c h a l e u r s p c c i f i q u e . A b s t r a c t

-

A two parameter model ( t h r e e s p i n exchange J and p l a n a r f o u r s p i n exchanee Kp,(no t r a n s p o s i t i o n s whatsoever) a g r e e s quan t a t i v e l y w i t h t h e foflowing experimental r e s u l t s :

I ) A t weak magnetic f i e l d H< kG :&the s t r u c t u r e of t h e o r d e r e d phase deduced from t h e r e c e n t a n t i - ferromagnetic resonance experiments of Osheroff ;

0

t h e s u s c e p t i b i l i t y , t h e resonance frequency, and t h e s p i n waves mean v e l o c i t y ;

0

a f i r s t o r d e r t r a n s i t i o n a t T = 1 rnK.

2 ) A t H > 4 kG :

0

a phase w i t h unexpected high and slow v a r y i n g m a g n e t i z a t i o n : M i n c r e a s e s from

--

0.6 Ilo t o 2 0.7 t'o between 4 and 70 kC- (Vo : s a t u r a t i o n magnetization) ;

0

an unusual phase dia- gram w i t h second o r d e r c r i t i c a l temperature Tc2(H) i n c r e a s i n g w i t h H.

3 ) High temperature s e r i e s expansion f i t s of t h e s u s c e p t i b i l i t y , s p e c i f i c h e a t above t h e phase t r a n s i t i o n .

The experiments, performed on bcc s o l i d 3 ~ e i n t h e c u b i c s y m e t r y and thus t h e d i p o l a r n a p n e t i c i n - l a s t decade, a t low t e m p e r a t u r e s , r e v e a l e d i n t e r e s - t e r a c t i o n s g i v e no a n i s o t r o p y a t f i r s t o r d e r t i n g unexpected n u c l e a r magnetic p r o p e r t i e s . w i t h i n t h e molecular f i e l d approximation (MFA)

.

I . A t f i e l d H < 4 kG a n u c l e a r a n ~ i f e r r o m a g n e t i c o r d e r n o t p r e d i c t e d by t h e Heisenberg model

The s u s c e p t i b i l i t y m e a s u r e ~ e n t s '

'

'2'31 i n t h e ranpe 10

5

T

5

30 mK ~ i v e a n e g a t i v e Curie Weiss temperature 8

=

2.9

+

0.3 mK. Thus idithin a n e a r e s t neighbour Heisenberg model (HNNA)

,

we would e x p e c t a second o r d e r t r a n s i t i o n t o a n u c l e a r magnetic l o n g ranp,e o r d e r a t T

--

2 mK (Hiph temperature s e r i e s e x p a n ~ i o n s ' ~ ] gi:e t h e o r e t i c a l l y 0.69 f3 ; experimen- t a l l y , u s u a l Heisenberp: antiferrornagnets give a va- l u e of t h e same o r d e r , a s example T

-

0.8 0 f o r t h e s p i n 1 /2 a n t i f e r r o m a g n e t s ~ G ~ G ' ~ ] ) .'Experimentally t h e t r a n s i t i o n o c c u r s a t a much lower temperature T

--

1 mK and i s f i r s t o r d e r . The o r d e r of t h i s t r a n s i t i o n was f i r s t s u p ~ e s t e d by t h e o b s e r v a t i o n of an a b r u p t drop of entropy a t 1 mK [ 6 y 7 1 and i s now confirmed w i t h c e r t i t u d e by r e c e n t experiments '91

.

The r e c e n t a n t i f e r r o m a g n e t i c resonance s t u d i e s of Osherof f e t a l L g l g i v e important i n f o r m a t i o n s on t h e s t r u c t u r e o f t h e low f i e l d ordered phase.

The l a r z e resonance frequency observed i n zero f i e l d f = 8 2 5 kHz excludes a l l phases p r e d i c t e d by a Heisenberg model w i t h f i r s t and second neiphbour

interactions!lo1. These phases have s u b l a t t i c e s with

Osheroff e t a 1 observe t h r e e resonances ( o r mul- t i p l e s of t h r e e ) a t l a r g e f i e l d which proves t h e presence of one ( o r s e v e r a l ) s i n p l e c r y s t a l w i t h domains havinp only t h r e e d i f f e r e n t s p i n o r i e n t a - t i o n s ; consequently t h e d i r e c t i o n of a n i s o t r o p y i s one of t h e t h r e e axes (OOl), (010) (100). Any o t h e r a x i s would l e a d t o more t h a n t h r e e dopains ( f o r i n s t a n c e (1 10) g i v e s s i x 6 o c a i n s ) . Among t h e s t r u c t u r e s which a r e d e s c r i b e d by t h e simple p l a n e w a E e q u a t i o n :

with t h e c o n d i t i o n S. + =

cSte

(cf method of V i l l a i n [ ' O 1 ) , O s h e r i f f e t a 1 f i n d o n l y one phase w i t h t h e r e q u i r e d symmetry and w i t h t h e c o r r e c t

z e r o f i e l d resonance frequency. I t s wave v e c t o r i s K = ( l o o ) , S t c o n s i s t of (100) p l a n e s of p a r a l l e l s p i n s a r r a n p e d i n t h e sequence UP-up-down-down-. (We r e f e r now t o t h i s phase by t h e n o t a t i o n "uudd", cf f i p - l c ) . I n z e r o f i e l d , t h e d i r e c t i o n of t h e s p i n s i s p e r p e n d i c u l a r t o t h e (100) a x i s and f r e e i n t h e plane (100l(It i s a "pla-

-+

n a r a n i s o t r o n y " ) . A small f i e l d H o r i e n t a t e s t h e s n i n s p e r n e n d i c u l a r t o i t s e l f , and rerroves t h e

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1980738

(3)

JOURNAL DE P H Y S I Q U E

degeneracy. This is the simplest structure descri- bing the experiment but we point out that more

-f

complicated structures(S. being the superposition of more than one Fourier component K) with the 100 ani- sotropy direction give nearly the sane resonance frequency : for example antiferromagnetic states consisting of (100) planes of parallel spins arran- ged in the sequence n plane with spins up followed by n planes with spins down ~ i v e a relative change f -f2 of frequency with respect to the uudd plane

-

n

2 equal to 6% for n = 4 and 7.4Z for n=rn.

2. AT RELATIVELY LOW FIELD H 2 4 kG, A PHASE WITH UNUSUALLY HIGH MAGNETIZATION

The previous described antiferromagnetic phase is restricted to H <

4

kG. Another phase with unex- pected behaviour is observed at H

2 4

kkG. There is a second order transition at a critical tem~erature T (H), increasing with H[778'11y123131. Its magne-

cl.

tization can be deduced from the dependence, with respect to H, of the limiting pressure P(H) in a Pomeranchuk cooling as measured by Adams et a1 [81 and Codfrin et a1[12'. If we neglect the entropy : S

--

0, the thermodynamical relations give :

F -ME :mapnetization andvolume

( =e; $'::

05 'solid

d ~ L l t Vs-VL

R: magnetization

and volume

of liquid (2)

(This equation is similar to the Clapeyran-Clausius relation, the conjugate variables (T,S) being re- placed by (H,M)). FJe ne ME, thus M is propor-

tional to the slope fig. 3 we :eve plotted the curve AP = P(H)-P(0) obtained from [ 8 , 1 2 ] at low field and from[l2lat high field. The magnetiza- tion deduced from this curve is shown on insert 3a.

Ys varies from 0.6 Mo 4 kC to 0.7 Po at H around 60

-

70 kG being the sa- turation magnetization). The extrapolation of this curve at H = O gives M (H=O)

--

0.59 PI

.

Adams et

a1[I4] observe a broa;eninp, and ahifcof the reso- nance line almost independent of the

field between 4.3 and 29 kG. The undetermined shape of their sample and the weak accuracy on the temperature prevents a valuable analysis of their broadened NP!R line. Nevertheless the maximum shift

=

1.6 Gauss in the wing of the observed line corresponds fo the maximum possible

I!

demagnetizing field : 4~1I =

-

3.3 Gauss. This M

I

t1 0[8*121

.

This unex-

gives

- "

0.5 and agrees with

pected 'high magnetization at relatively low field

H

-- 4

kG ; the small change of Y (-- 15%) from H = 4 to 70 kG and the increase of the

critical temperatureTc2(H) with H are in com- plete contradiction with a Heisenbere model. The HNNA model gives an antiferromagnetic spin flop phase with two sublattices ;Tc2(H) decreasing mono-

4kB 6 tonicaly from 6 to zero at H

=

-

y U

--

72 kG (cri- tical field of transition to the

se)

.

Its magnetization (at T = 0) : F = Vo

xlSRe

is

-

linear with field and reaches the saturation at Hc

--

72 kG cf fig. 3. Thus the phase, observed in 3 ~ e has ferromagnetic tendancies but differs £roc a ferromagnetic phase which would give F = P f = C ste

S 0

(in the limit T + 0), at any H.

Some ferromagnetic tendancy is also observed in the behaviour of the susceptibility x(H+O) in the paramagnetic phase. Near the transition,

x

in- creases with respect to the extrapolated Curie Weiss law -At high temperature series expan- sion :

2131 has been fitted with

6

= -2.6 mK and B=-2.7mk ,

This behaviour is opposite with respect to that of a Heisenberg antiferromagnet where B = C 2 J 2 2 n (zn number of nth neighbours) is always positive.

3. THREE AND FOUR SPIN CYCLIC EXCHANGE : A THEORE- TICAL INTERPSETATION OF ALL EXPERIHENTAL RESULTS

A)

Microscopic origin of four spin exchange : sim- ple geometrical arguments

The interaction potential of Lennard Jones between Helium atoms has a very strong repulsivehard core and a weak attractive part ; Helium atom are

thus well described by a hard sphere model (which has been successfully used to calculate the ener- gy[151).Within this simple model the problem of exchange in Helium can be illustrated by the naive followinp; picture : suppose you stand in the sub- way at 6 p.m between "Concorde" and "Etoile" and you want to exchange place with your neighbour ; people are so squeezed that at least two or three persons have to move cyclicaly with you, "pair exchange" being practically impossible. In the geometrical exchange mecanism of n hard spheres, two parameters are essential :

1) the free space 6 available in "the box" sha- ped by the surrounding atoms in the exchange

(4)

c o n f i g u r a t i o n ,

2) t h e t o t a l displacement d = (Xi 6 ):r

'I2,

of t h e p a r t i c l e s i n t h e 3 N dimensional space of configura- t i o n d u r i n g t h e exchange p r o c e s s . The exchange f r e - quency i n c r e a s e s w i t h 6 and d e c r e a s e s w i t h d . There i s a n optimum between t h e s e two c o n d i t i o n s which can f a v o r one type of exchange.

I n bcc He t h e f r e e space 3 6 i s much l a r ~ e r f o r t h r e e and f o u r s p i n exchange t h a n f o r p a i r exchan- ge [ I 6 ' 17]. Although d i n c r e a s e s w i t h n, t h r e e and f o u r s p i n exchanges a r e l i k e l y t o be dominant. Higher o r d e r ( f i v e , s i x s p i n

...)

exchanges have a compara- b l e f r e e space 6 b u t a r e d i s f a v o u r e d by t h e i n c r e a - s i n g d. These c o n j e c t u r e s have been c o r r o b o r a t e d by q u a n t i t a t i v e c a l c u l a t i o n s [16'171 from which we conclude t h a t t h r e e and f o u r s p i n c y c l i c exchanges a r e most l i k e l y dominant w i t h r e s p e c t t o t r a n p o s i - t i o n and h i g h e r o r d e r exchanges. I n a bcc l a t t i c e , t h e r e a r e two kinds o f f o u r s p i n c y c l e s with f i r s t neighbours : one p l a n a r (P) and t h e o t h e r f o l d e d

(F) (cf r e f ' 7 1 ) . Our c a l c u l a t i o n s a r e too rough t o determine t h e h i e r a r c h y between them.

B) Yagnetic p r o p e r t i e s and phase diagrams w i t h i n t h e t h r e e and f o u r s p i n exchange model i n t h e H.F.A.

a ) H m i l t o n i a n :

Keeping o n l y t h r e e s p i n exchange J and f o u r t

s p i n exchanges : p l a n a r and f o l d e d KF, and n e g l e c t i n g p a i r t r a n s p o s i t i o n s , we w r i t e t h e Hamiltonian :

Q

i j k i s t h e t h r e e p a r t i c l e c y c l i c permutation ope- ( T)

r a t o r ; t h e sum C i s t a k e n over t h e more compact t h r e e a t o z c y c l e s

Q

ijka i s t h e f o u r a r t i c l e cy-

(TP

(P)

c l i c permutation o p e r a t o r ; t h e sums C

,

C a r e taken o v e r f o l d e d and p l a n a r c y c l e s . I t r e s u l t s from P a u l i P r i n c i p l e r l g l t h a t even, odd permutations a r e ferromagnetic, a n t i f e r r o m a g n e t i c r e s p e c t i v e l y ; t h u s ( c f r e f . f 9 ) , J t ,

$

and K a r e a l l n e g a t i v e .

[ I 9 1

.

I n terms of s p i n P a u l i m a t r i x oi

w i t h

Thus we w r i t e t h e e f f e c t i v e Hamiltonian :

w i t h e f f e c t i v e p a i r i n t e r a c t i o n s between nth neigh- (

: ) +

*

bours ( J n , 0.0.)

=

J UP t o n = 3 and f o u r t h orderterms.

From (5) we have :

bl Low f i e l d ordered phase

a )

One parameter models

I t i s f i r s t i n t e r e s t i n g t o d i s c u s s t h e p r e d i c - t i o n s of t h e s i m p l e s t models where one of t h e t h r e e parameters (Jt,K.,KF) only i s r e t a i n e d . 1 - T h r e e s p i n exchanpe a l o n e g i v e s an e f f e c t i v e two s p i n Hamiltonian w i t h ferromagnetic i n t e r a c t i o n s 2 -We t h e n t a k e only f o u r s p i n exchanges ( J _ = O ) Tn molecular f i e l d , t h e enerpy

?

of one i i o l a t e d f o u r s p i n c y c l e ( 1 , 2 , 3 , 4 ) : = < 'J fl 1234-+

+ e -'

1234'

i s minimized when t h e f o u r s p i n v e c t o r s S , a r e

I

i n a same p l a n e and p e r p e n d i c u l a r t o each o t h e r :

= & i n $

n : ( 1 , 2 , 3 , 4 ) +(+,+,I,+) w i t h

E-i

a t

T = O . I f

$

i s t h e dominant exchange ( t a k e

% -

J

--

o ) , t h e energy i s e a s i l y minimized a t t

T = 0 : i n t h e bcc l a t t i c e , t h e minimum configura- t i o n (+,+,4,+) can b e r e a l i z e d f o r a l l f o l d e d c y c l e s : we o b t a i n t h e s c a f [ 1 8 ' phase c f # i g . l a w i t h two simple c u b i c a n t i f e r r o m a g n e t i c l a t t i c e s w i t h orthogonal magnetization. This phase, proposed

i n t h e preceedinp; f o u r s p i n models [18,20,211 has f o u r s u b l a t t i c e s w i t h c u b i c symmetry and t h u s t h e magnetic d i p o l a r i n t e r a c t i o n s g i v e no a n i s o t r o p y a t f i r s t o r d e r ( w i t h i n t h e WA). I t i s t h u s incom- p a t i b l e w i t h t h e l a r g e a n t i f e r r o m a g n e t i c resonance frequency observed by O ~ h e r o f f ' ~ ] . The s i t u a t i o n i s more i n t r i c a t e w i t h dominant p l a n a r f o u r s p i n ex- change

$

: i t i s n o t p o s s i b l e t o o b t a i n a l l p l a n a r c y c l e s w i t h t h e minimum c o n f i g u r a t i o n (+,+,+,+) t h e system i s somewhat " f r u s t r a t e d " . The r e n e r a l methods' lo' used t o minimize t h e energy w i t h q u a d r a t i c s p i n i n t e r a c t i o t s a r e t o o r e s t r i c t i v e :

(5)

JOURNAL DE PHYSIQUE

they assume t h a t t h e ordered s t r u c t u r e i s d e s c r i b e d by ( 1 ) . Nith f o u r s p i n terms t h e s o l u t i o n c a n be more complex and be a s u p e r p o s i t i o n of more t h a n one F o u r i e r component. With a computer we used t h e f o l l o w i n g minimization procedure f o r a f i n i t e num- b e r of s p i n s with p e r i o d i c boundary c o n d i t i o n s a t z e r o temperature.

We s t a r t from randomly o r i e n t e d s p i n s ( N = O ) . For a s p i n c o n f i g u r a t i o n N, a f t e r c a l c u l a t i n g t h e a F on t h e s i t e i , t h e con- molecular f i e l d Hi =

- %

+

f i g u r a t i o n N+1 i s o b t a i n e d by t u r n i n g Si p a r a l l e l t o + H . . S t a t i o n a r y c o n f i g u r a t i o n s t h u s o b t a i n e d a r e o f t e n l o c a l minima of t h e e n e r e y . I n o r d e r t o e l i - minate t h e s e u n s t a b l e phases, we add some "thermal"

a g i t a t i o n . The c o n f i g u r a t i o n N + 1 i s o b t a i n e d w i t h

+ +

random f l u c t u a t i o n s

6

Si of t h e o r i e n t a t i o n of Si around H . s o t h a t we move through t h e c o n f i g u r a t i o n + space i n a f a s h i o n s i m i l a r t o t h e thermal a g i t a t i o n . When d e c r e a s i n g t h e temperature, i . e . t h e amplitude of random f l u c t u a t i o n s 6 + S;, we o b t a i n t h e configu- r a t i o n w i t h lowest energyZ221

.

With only p l a n a r f o u r s p i n exchange (J = K F = O ) , t h e s t r u c t u r e t h u s

t

o b t a i n e d h a s t h e maximum nunber (two o u t of t h r e e ) of p l a n a r c y c l e s " s a t i s f i e d " w i t h t h e lowest energy c o n f i g u r a t i o n ( f

,+,

J , + ) , t h e o t h e r being " f r u s t r a - ted" w i t h c o n f i g u r a t i o n ( I , + , + ,+) and t h e energy

= +

-

This phase (cf f i g . Ib) h a s ferromagne- t i c l i n e s along t h e d i r e c t i o n Ox p a r a l l e l t o one of t h e t h r e e axes ( l o o ) , (OlO), (001). P e r p e n d i c u l a r t o Ox, t h e r e a r e two p l a n a r simple s q u a r e i n t e r p e n e - t r a t i n g a n t i f e r r o m a g n e t i c s u b l a t t i c e s w i t h orthogo- n a l o r i e n t a t i o n (''ssq a£" p h a s e ) . This phase having more t h a n one F o u r i e r component i s n o t d e s c r i b e d by ( 1 ) . I n c o n t r a s t t o t h e "scaf" phase, t h i s phase has a l a r g e d i p o l a r a n i s o t r o p y . The a n i s o t r o p y a x i s b e i n g one of t h e t h e r e a x i s ( l o o ) , (010)

,

(001) r i t would g i v e t h r e e d i f f e r e n t domains i n agreement with O s h e r o f f ' s r e s u l t s . However i t s symmetry d i f - f e r s from t h a t of t h e "uudd" phase, t h e o r d e r para- meter b e i n g a t r i e d r e given by two orthogonal d i r e c - t o r s ( d l , d 2 ) corresponding t o t h e two antiferroma- g n e t i c s u b l a t t i c e s . The d i p o l a r a n i s o t r o p y energy i s

by t h e s i g n of C =-

-

C 0 2 0 . 5 i s such t h a t d 1 and d a r e p a r a l l e l t o (010) and (001). The second

a 2 ~ _

d e r i v a t i v e s

---f

with r e s p e c t t o t h e r o t a t i o n s of

ae

( d l , d 2 ) around (010) and (001) g i v e two degenerate zero f i e l d l o n g i t u d i n a l a n t i f e r r o m a g n e t i c resonan- c e s R2

a ' ~ ~

and t h e second d e r i v a t i v e

7

w i t h r e s p e c t t o t h e

a~

r o t a t i o n of (d d ) around t h e a n i s o t r o p y axe 1' 2

Ox// (100) g i v e s a n o t h e r resonance Ql

(xI

and

xl1

a r e t h e s u s c e p t i b i l i t i e s f o r H respec- t i v e l y p e r p e n d i c u l a r and p a r a l l e l t o t h e p l a n e (d d ) ) . The z e r o p o i n t motion renormalize C1 by

1' 2

a f a c t o r around .85 and C by -.95(cf 5 6). Thus t h e r a t i o (C1-2Co)/2C1

=

1121.5 i s small and g i v e s Q1

=

5Q2.

The r e n o r m a l i z a t i o n f a c t o r cominp from s p i n waves i s e s t i m a t e d roughly ( c f 5

6)

t o 0.85. Thus t h e h i z h frequency : Q '

==

0.75 Ql

--

1067 kHz, (when

1

t a k i n g t h e e x p e r i n e n t a l v a l u e of X[31) i s too l a r - I

g e r g l . I n a mapnetic f i e l d , t h e d e g e n e r a t e fre?uency R2 would s p l i t i n t o two modes, g i v i n p a spectrum more comvlicated t h a n t h a t of Osheroff

191 .

The conclusion i s t h e n t h a t t h e experimental r e s u l t s of O s h e r o f f r g l cannot be explained w i t h i n a one para- meter model.

p =

-

N

v

i s t h e number d e n s i t y .

C = 2.16 and C, = 5.31 were c a l c u l a t e d by numerical summation. The e q u i l i b r i u m c o n f i g u r a t i o n , determined

(6)

( a )

s c a f (b) s sq af'

(c)

-

u u d d

Fig.1 : The bcc l a t t i c e i s s e p a r e d i n two simple- cubic l a t t i c e s ( f u l l and dashed l i n e s ) . The s c a f ( a ) and p f ( d ) phases have no d i p o l a r a n i s o t r o p y a t f i r s t o r d e r . T h e s s q a f phase (b) minimizes i t s d i p o l a r energy w i t h i t s s p i n d i r e c t e d a l o n g t h e (018) o r (001) a x i s p e r p e n d i c u l a r t o t h e f e r r o m a g n e t i c l i n e s . The a n i s o t r o p y of t h e uudd phase i s p l a n a r . The d i - r e c t i o n of t h e s p i n i s p e r p e n d i c u l a r t o t h e 100 a x i s and f r e e i n t h e 100 ferromagnetic planes(shadded a r e a s )

B)

Two parameter model ( J

t ' K ~ )

Neglecting two s p i n and f o l d e d f o u r s p i n exchan- ges, we can account f o r a l l experimental d a t a with a two parameter model i n c l u d i n g t r i p l e exchange J and pZanar f o u r s p i n exchange K p . For t h e energy

t

minimization, another kind of " f r t l s t r a t i o n " i s in- troduced by J t < 0 which " l i k e s " ferromagnetic t h r e e s p i n c y c l e s (f,+,+). The computer method e x l a i n e d above g i v e s t h e "s s q a f " phase f o r

! ~~1

<

lTl.

EP

For

1

.Jt

1

>

/>I

we o b t a i n t h e "uudd" phase Fro- , #

posed by Osheroff !. I n t h i s phase, a l l p l a n a r f o u r s p i n c y c l e s have t h e same c o n f i g u r a t i o n : ( + , + , 3 , L ) w i t h

(&

=

- l.

4 One h a l f of t h e t h r e e s p i n c y c l e s a r e ferromagnetic w i t h

Y '

= <

e

+

; @ ;

> = and t h e

i i k ., 2

o t h e r have t h e " f r u s t r a t e d " c o n f i g u r a t i o n ($43) with

'

=

- 2

1

.

Within t h e V F A , t h e f r e e energy of t h i s phase i s :

p = <2Sz) i s t h e p o l a r i z a t i o n and S(p) t h e entropy The r a t i o of t h e c o e f f i c i e n t s of t h e p and 4 p L term i s l a r g e - : f o r example

I J ~ I -151

K - 3 $ h J t - 2 . 2 . Thus we o b t a i n a t Tcla s h a r p f i r s t o r d e r t r a n s i t i o n between t h e uudd and paramagnetic phase, with p

-

1 up t o t h e t r a n s i t i o n . A good approximation t o T i s given by

cl

t h e r e l a t i o n :

4 uudd 3

N - ~ =-T F ~Rn2=N ~ F ~ ~(p = 1) = 25

+

- K

cl t 2 P

The Curie Weiss c o n s t a n t i s

With J t = - 0 . 1 mK and Kp = -0.355 IEK we o b t a i n 9 = 2.79 mK and 'I= 1.06 mK.

c 1

The i n v e r s e p e r p e n d i c u l a r s u s c e p t i b i l i t y - - : X-l = -c-'8(-4.J +3K )

= - c - ~

1.91 6, i s i n good

t P

agreement with t h e experimental r e s u l t C 3 ] . The d i - p o l a r a n i s o t r o p y and t h e a n t i f e r r o m a g n e t i c resonan- ce frequency were c a l c u l a t e d by Osheroff e t a l . Ve p o i n t o u t two c o r r e c t i o n s t h a t must b e a p p l i e d t o t h e v a l u e c a l c u l a t e d w i t h i n t h e !"FA : f i r s t

9'

due t o t h e z e r o p o i n t s p i n waves d e v i a t i o n s estima- t e d t o

--

0.85 by Osheroff e t a l " ] , secondly t h e atomic l a t t i c e z e r o p o i n t motion o r phonons renor- m a l i z a t i o n f a c t o r I)

,lz3'

which,by h n t e Car10 i n t e - g r a t i o n of t h e v a r i a t i o n a l wave function,we have e s t i m a t e d i n t h i s c a s e t o be around 0.8 t o 0.85 (Osheroff e t al"] d i d n o t t a k e i n t o account t h i s second f a c t o r ) . We t h u s e s t i m a t e t h e c o r r e c t i n g f a c t o r t o $RN = $s@F'

=

0.75 5 0.1 and f i n d f

--

800 kHz i n p e r f e c t agreement w i t h t h e e x p e r i - mental r e s u l t .

This two parameter f i t a g r e e s a l s o w i t h high temperature d a t a ; i t gives f o r t h e high tenpera- t u r e s e r i e s expansion of t h e s p e c i f i c h e a t : C = .251(;

B2 - g3

B 3 ) , 5

=

7.15 mK 2

,

i n good

v 2

3 . 1251 agreement w i t h [ 2 4 y 2 5 1 and

--

0 . 8 (mK) ( r e f

3

g i v e s

r3

> 0 i n c o n t r a s t t o t h e Heisenberp model ; i t s a b s o l u t e v a l u e i s n o t determined w i t h accuracy.

The c o e f f i c i e n t of t h e t h i r d term i n t h e i n v e r s e s u s c e p t i b i l i t y expansion of t h e paramagnetic phase i s ( c f E q . 3) e q u a l t o B = -0.5 PK 2

.

I t r i v e s q u a l i - t a t i v e l y t h e observed i n c r e a s e of

x

with r e s p e c t t o t h e Curie-Weiss law (cf 1 2 ) . I t s magnitude i s small c o m ~ a r e d t o t h e experimental f i t L 3 ] , b u t i t i s p o s s i b l e t h a t a t very low temperatures t h i s f i t g i v e s , r a t h e r than e x a c t l y B, t h e c o n t r i b u t i o n of

s e v e r a l h i p h e r power tern? i n t h e

-

T 1 s e r i e ~ e x ~ a n s i o n .

el H i g h f i e l d phase

The g e n e r a l method of ~ i l l a i n ' l O ] can be a p p l i e d t o f i n d t h e o r d e r e d phase i f we assume i t appears from t h e ~ a r a m a g n e t i c phase through a se- cond o r d e r t r a n s i t i o n , a s i s i t w e l l e s t a b l i s h e d now. I n t h e paramagnetic phase, a l l s p i n s a r e

(7)

JOURNAL DE PHYSIQUE

-+ -+

e q u i v a l e n t S. = So ( w i t h i n t h e IIFA). An ordered phase appears a t Tc through a second o r d e r t r a n s i - t i o n i f t h e s u p e r p o s i t i o n of a small component 6

xi

p e r p e n d i c u l a r t o S lowers t h e energy. The

-+

l i n e a r i z a t i o n of t h e I.*F e q u a t i o n s w i t h r e s p e c t t o

6s.

-+ g i v e s :

The s t a b l e s t r u c t u r e i s t h e one l e a d i n g t o t h e h i g h e s t c r i t i c a l temperature. By t h i s method we f i n d a t h i g h f i e l d K =

-

27T (1,0,0) which corresponds (cf f i g . Id) t o a phase w i t h two simple c u b i c l a t - t i c e s A and A ' h a v i n g t h e r e s p e c t i v e m a g n e t i z a t i o n s

-t -t

H and V symnetric w i t h r e s p e c t t o t h e magnetic A + A '

f i e l d H :

(10) This r e s u l t i s g e n e r a l w i t h Jt < 0 ,

$

and Kp ne- g a t i v e . I n t h i s phase, f o l d e d and p l a n a r f o u r s p i n c y c l e s a r e e q u i v a l e n t w i t h t h e same c o n f i g u r a t i o n

('?,f,t,?).

The c r i t i c a l f i e l d of t r a n s i t i o n a t -1

t h a n t h e v a l u e given by t h e same phase w i t h i n t h e HNNA model ( f a c t o r 2 f o r a = 0 . 5 ) .

I n c o n t r a s t t o t h e HNNA model, t h e c r i t i c a l temperature Tc2(N) i n c r e a s e s w i t h t h e f i e l d up t o a l i m i t HL (cf diagram of f i g . 2 ) , t h e n d e c r e a s e s and tends t o z e r o a t Hc.

The p r o p e r t i e s of t h i s phase a t r e l a t i v e l y low f i e l d a r e s u r p r i s i n g . With J s t r i c t l y p o s i t i v e , i n

t

c o n t r a s t t o t h e Heisenberg model, t h e a n g l e

,d

( r e f . 1 0 ) determined by minimizing t h e energy does n o t tend t o z e r o a t H = O . I n t h e l i m i t H = O we o b t a i n a spontaneous magnetization :

rJT

(I( r 0.53 ;1 w i t h t h e two parameter

=

Kp

f i t J =-0.1 mK ; %=-0.355 mK). The c r i t i c a l f i e l d t

H ( l i m i t N = 1 F ) b e i n g v e r y h i g h H

=

157 kG 11 v a r i e s very slowly with t h e f i e l d . This behaviour i s t h a t of t h e experimental r e s u l t s d e s c r i b e d i n 5 2. Thus t h e syrmnetry of t h i s phase i n t h e l i m i t H + 0 i s t h e same a s t h a t of a "weak ferromagnetic"

phase b u t w i t h an important d i f f e r e n c e , t h e sponta- neous m a g n e t i z a t i o n a t H -+ 0 i s n o t "weak"

-

We c a l l t h i s phase a "pseudo f e r r o m a g n e t i c one"

( p f ) . H i t h increasinp: T, t h i s phase g i v e s a t some c r i t i c a l temperature Ti1 a f i r s t o r d e r t r a n s i t i o n t o t h e normal a n t i f e r r o m a g n e t i c phase ( n a f ) having t h e same symmetry a s t h e "pf" phase i n a magnetic

f i e l d b u t w i t h

$

+ ~ / 2 and ?? + 0 a t H + 0. The corresponding f i r s t t r a n s i t i o n l i n e s ends a t a c r i - t i c a l p o i n t . Crossing t h i s l i n e , we have a discon- t i n u i t y of p o l a r i z a t i o n p and a d g l e

4.

The whole phase diapram w i t h i n t h e two para- meter f i t J =-0.1 mK,

t

$

= -0.355 I ~ K i s shown on f i g . 2 and compared w i t h b o t h t h e diagram p r e d i c t e d by t h e HNNA model (with t h e same 8 ) and w i t h t h e

experimental r e s u l t s .

The c r i t i c a l f i e l d Hc, of t r a n s i t i o n between t h e "uudd" and t h e "pf" phase i s Hcl= 12 kG, some- what h i g h compared t o t h e experimental v a l u e H c , r 4 k c . But f l u c t u a t i o n s call a p p r e c i a b l y change t h i s molecular f i e l d v a l u e . A t h i r d phase appears i n a small domain i t i s a n h e l i c a l phase d e s c r i b e d by (1) , w i t h wave v e c t o r K = Z (O,O,KZ) ;

K = a r c o s

( - 3:212;f).

We presume t h i s i s a n a r t i f a c t of t h e mean f i e l d approximation.

The c r i t i c a l temperature of t r a n s i t i o n of t h e naf phase i n c r e a s e s up t o H

=

120 kG corresponding

F i g . 2 : Phase diagram o b t a i n e d w i t h i n t h e molecular f i e l d approximation w i t h o n l y t h r e e s p i n exchange.3 and p l a n a r f o u r s p i n exchange Kp. ( A l l o t h e r exchan- t ges a r e n e g l e c t e d ) . F u l l and d o t t e d l i n e s i n d i c a t e r e s p e c t i v e l y f i r s t and second o r d e r t r a n s i t i o n . C i r - c l e s a r e experimental p o i ~ t s f r 0 m [ ~ * l l l , 3 : f i r s t or- d e r t r a n s i t i o n , e second o r d e r ' . t r a r s i t i o n .

- C r o s s e s a r e rough v a l u e s of e second or- d e r c r i t i c a l temperature o b t a i n e d byfT2 ]. The das- hed d o t t e d l i n e i s t h e phase d i a p r a n w i t h i n t h e HNNA model w i t h 8 = - 2 . 8 mK.

=

3.8 mK

H -

I

,

/ 1

I X

2 -

I I

I I

,

I

1 2 3 I I

,

v Pf

I I / I

1 -

H

t

1:

H 1 0 0

...

The l ' m i t i g p r e s s u r e i n a Pomeranchuk c e l l mea- r e d by "12' i s p r o p o r t i o n a l t o d e energy

a t

T.0 :

+ 4? C C C t . 4 . f .

+ + + + +.+ +

-

o g

u u d d

o

/y

i para

:

T (mK) O 0

In I

1

I

(8)

I n t e g r a t i n g r e l a t i o n (2) we o b t a i n : H

AP(H) = P(H)

-

P(o) =

(

v ( H ) ~ H = E(H)-E(O)

a

9.; =AE (H)

Fig.2 compares t h e experimental curve AP(H) o b t a i n e d from [ 8 ' 12' and t h e t h e o r e t i c a l curve AE(H,T = 0 ) . Both curves have t h e same shapes. The main d i f f e - r e n c e comes from t h e too high t h e o r e t i c a l f i e l d of t r a n s i t i o n g i v i n g a s h i f t between t h e two c u r v e s . I n s e r t 2a compares t h e experimental and t h e o r e t i c a l m a g n e t i z a t i o n c u r v e .

F i g . 3 : The experimental e q u i l i b r i u m p r e s s u r e A P = P ( H ) - P ( 0 ) i n a Pomeranchuk c e l l (dashed l i n e ) i s compared w i t h t h e t h e o r e t i c a l curve ( f u l l l i n e ) Experimental p o i n t s m a g n e t i z a t i o n ?1/1Io deduced f rom AP.

d l Spin wave spectrwn of t h e low f i e l d ordered phase IJe have c a l c u l a t e d t h e s p i n wave spectrum of t h e "uudd" phase. There a r e one doubly d e g e n e r a t e o p t i c a l mode Q+ and one doubly d e g e n e r a t e a c o u s t i c mode R- given by : (The a n i s o t r o p y i s n e g l e c t e d )

2 2 2 2 2

R,

= w -Y +rl -v

2 2 2

' I 2

t 2 [ ~ 2 ~ 2 + ~ 2 v 2 - 2 w y ~ ~ o s akx-ri

v

s i n akxl with :

w = -8J -1 2K +4(2Jt-K (cosak +cosak )

t P

2

Y

-4Kpcos ak cosak Y y = +8 J cos akx

t

v = 2 4 ( J t -K P ) c o s

"7 -

cos - akz 2

q = 24Jt cos cos akz

We t e s t e d t h e s t a b i l i t y of t h e uudd phase w i t h r e s - p e c t t o t h e s p i n waves. With t h e a i d of a computer, we found w f > 0 f o r 10 000 p o i n t s t a k e n a t random i n t h e B r i l l o u i n zone.

A t low wave v e c t o r ka << 1, t h e a c o u s t i c mode i s

By i n t e g r a t i n g over a n g l e s we f i n d t h e "mean s p i n wave v e l o c i t y " e x p e r i m e n t a l l y deduced by Osheroff

from m e l t i n p p r e s s u r e [ 2 6 1 . The t h e o r e t i c a l v a l u e i s C

-

6.7 m/s w i t h i n our two parameter model ; Osheroff g i v e s 8 . 4

+

0.4 m/s.

4 ) CONCLUSION

With o n l y two parameters : dominant p l a n a r f o u r s p i n exchange Kp = -0.355 mK and s m a l l e r t h r e e s p i n exchange J =-0.1 mK t

--

0.3 Kp, we f i t p r a c t i c a l l y a l l . experimental r e s u l t s a t low tempe- r a t u r e on bcc 3 ~ e . A b e t t e r aereement w i t h t h e hiph temperature d a t a ( i n p a r t i c u l a r w i t h B [ ~ ] ) i s o b t a i n e d w i t h t h r e e parameters :

But t h e unwanted f e a t u r e s of t h e uhase diapram cannot be e l i m i n a t e d t h i s way, however and s o we d e c l i n e t o f i n e tune a t t h e expense of a n e x t r a parameter. From p r e l i m i n a r y r e s u l t s of kfonte-Carlo s i m u l a t i o n s w i t h c l a s s i c a l s p i n s , we t h i n k t h a t t h e f i r s t o r d e r t r a n s i t i o n c a l c u l a t e d a t 1 mK i n t h e mean f i e l d approximation happens a t a s l i g h t l y lo- wer temperature,with our parameters. (T r 0.8 mK).

Thus w i t h i n a more a c c u r a t e approximation t h a n t h e FIFA, t h e parameter shouldbe s l i g h t l y c o r r e c t e d

t o f i t de phase diagram. This could g i v e a lower f i e l d of t r a n s i t i o n between t h e uudd and naf phase and a s l i g h t l y h i p h e r "mean s p i n wave v e l o c i t y "

i n b e t t e r agreement w i t h t h e experimental r e s u l t s .

(9)

JOURNAL DE PHYSIQUE

REFERENCES

1

-

W.P. K i r k , E.B. Osgood and M. G a r b e r , Phys.

Rev. L e t t .

3,

833 (1969)

2

-

D.M. B a k a l y a r , E.D. Adams, Y . C . Hwang,

C.V. B r i t t o n , I n t . Quantum C r y s t a l Conference F o r t C o l l i n s , C o l l . Aug. 1977

3

-

T.C. P r e w i t t and J . M . Goodkind, Phys. Rev.

L e t t .

2

1283 (1977)

4

-

G.S. Rushbrooke, G.A. Baker and P.J. Wood i n

"Phase t r a n s i t i o n s and c r i t i c a l phenomena", Vol 3 c h . 5 , Domb and Green, Ed., Acadenic P r e s s London (1974)

5

-

L.J. de Jongh and A.R. Miedema i n Experiments o n s i m p l e m a g n e t i c model s y s t e m s , Ed. T a y l o r and F r a n c i s LTD

6

-

W.P. H e l p e r i n , F.B. Rasmussen, C . N . Archie and R.C. R i c h a r d s o n , Phys. Rev. L e t t .

32,

927 (1974)

-

J. Low.Temp. Phys.

2,

617 (1978) 7

-

R . B . Kummer, R.M. M u e l l e r and E.D. Adams

J . Low. Temp. Phys.

7,

319 (1977)

8

-

E.D. Adams, J.V. D e l r i e u and A . Landesman, J . Physique L e t t .

39,

L190 (1978)

9

-

D . D . O s h e r o f f , V.C. C r o s s and D.S. F i s h e r , Phys. Rev. L e t t .

s,

792 (1980)

10 - J . V i l l a i n , Phys and Chem. S o l i d s

11,

303 (1959) 11

-

E.A. S c h u b e r t h , D.M. Bakalyar and E.D. Adams,

Phys. Rev. L e t t .

42,

101 (1979) 12

-

H . G o d f r i n , G. F r o s s a t i , A. Greenberg,

B. H e b r a l and D . Thoulouze t o b e p u b l i s h e d . 13

-

T.C. P r e w i t t and J.H. Goodkind t o b e p u b l i s h e d

14

-

E.D. Adams, E.A. S h u b e r t h , G.E. Haas and D.H. B a k a l y a r , Phys. F.ev. L e t t .

44,

789 (1980) 15

-

M.H. K a l o s , D. Levesque and L. V e r l e t , Phys.

Rev. ?A, 2178 (1974)

16 a)J.M. D e l r i e u and F. Roger, J . P h y s i q u e C o l l .

2,

C6-123 (1978)

b)J.M. D e l r i e u and fl. Roger

-

T h i s c o n f e r e n c e 17

-

J . I . D e l r i e u , Fa. Roger and J . H . H e t h e r i n g t o n

t o b e p u b l i s h e d i n J . Low. Temp. Phys/

18

-

J.H. H e t h e r i n g t o n and FDC G l i l l a r d , Phys. Xev.

L e t t .

2,

1442 (1975)

19

-

D . T h o u l e s s , Proc. Phys. Soc. Lond.

86,

893

(1965)

20

- r.

Yoger, J.M. D e l r i e u and A. Landesman, Phys. L e t t . A52, 449 (1977)

If. Roger and J.Y. D e l r i e u , Phys. L e t t . A s , 309 (1977)

21 - M. Roger, J . M . D e l r i e u and J.H. H e t h e r i n g t o n J. Physique L e t t .

41

L139 (1980)

" J used i n t h i s r e f e r e n c e i s minus one h a l f ~ ~ t h e c o r r e c t J ( = J l 1 2 ) d e f i n e d i n t h e f o r m u l a

t

(4) o f t h e p r e s e n t p a p e r . The f i r s t f o r m u l a of page L 141 of t h i s r e f e r e n c e must b e cor- r e c t e d f o l l o w i n g

22

-

We thank D. E s t e v e f o r s u g g e s t i n g u s t h i s me- t h o d

23

-

a)A Brook H a r r i s

-

S o l . S t a t e . Comm.

9,

2255 (1971)

b)A. Landesrnan, Ann. Phys.

8,

5 3 (1974) 24

-

Y.F. Panczyck and E.D. Adams, Phys. Rev.

1356 (1970)

25

-

B . H e b r a l , G. F r o s s a t i , H. G o d f r i n , G.Shumacher, D.Thoulouze, J . Physique L e t t .

60,

L 4 1 (1979) See comment on t h e u s e o f C1"N thermometry by W.P. H a l p e r i n ( t o b e p u b l i s h e d )

26

-

D.D. O s h e r o f f and C . Yu, t o b e p u b l i s h e d

Références

Documents relatifs

have shown, in [CP12], that there exists no algorithm computing a simple and equitable fair division for n ≥ 3 players in the Roberston-Webb model.. The strategy used in these

- Taking into account the small energy difference of conducting holes between Cu and 0 sites and large on-site energy for double occupancy which prevents holes from crossing

The integrals in V(t) are similar to that gi- ving the energy and thus the most reliable methodis the Metropolis Monte-Carlo Method 11 0-1 21. the total displa- cement of

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

ty, one is lead to believe into a second order tran- sition of the solid along the melting line, such that its temperature Tt increases with increasing field, as shown on figure

This new doublet (designated T-l) reasonably corresponds to frozen Fe2+ iron in six coordination.. See table and text for key. 1.2.Samvle 2.- The room temperature spectrum of a

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

This paper investigates the contribution of fundamentals to the persistence of currency crises by identifying the determinants of high volatility in the exchange market pressure index