• Aucun résultat trouvé

DF 10

N/A
N/A
Protected

Academic year: 2022

Partager "DF 10"

Copied!
268
0
0

Texte intégral

(1)

TOTAL DF 10 PAGES ONLY

MAY BE XEROXED

(2)
(3)
(4)
(5)

A STUDY OF CPFSK TRELLIS MODULATION CODES O N GAUSSIAN A N D NON-GAUSSIAN CHANNELS

A rheri. submitted to the School of Graduate Studie in partial fulfillment of the

requirements for the degree of Doctor of Philosophy

Faculty of Euginering and Applied Science llcmorid University of Newfoundland

June 1995

St. John's Newfoundland Cmsda

(6)

~ ~ b r a ~ h e s u e n a ~ o m k d" Csnada mqu~r~lorn and Oiect~m der acqorron:; et Blbllcgraphlc SB(v,ces Brn"0h dB$ se-s biblngraphnqUeB

gSWBllnglm-

0,mi.anam a M Wa"#Won

K I I I I N 4 Onwa (-0)

I(IAW4

THE AUTHORHAS GRANTED AN IRREVOCABLE NON-EXCLUSIVE LICENCE ALLOWTNO THE NATIONAL T.lRRARV OF PANAOA TO . . -. . .

-

.

-

.

.

. . . REPRODUCE. LOAN. DlSlRLDUTE OR SFLL COPIES OF HISIHER 1 HESIS OY ANY MEANS AND IK ANY FORM OR FORMAT, MAKING m l s THESIS AVAILABLE TO INTERESTED PERSONS.

THt AUTHOR WTNNS OWNERSHIP O F T t E C O P W G H T IN HISIHFR THESIS WITHERTHE THESIS NO*

SUBSTANTIAL EXTRACTS FROM IT MAY BE PRINTED OR OTHERWISE REPRODUCED W ITHOUT HIS/HER PERMISSION.

ISBN 0-612-06131-0

L'AU 1EUR A ACCORDE UNE I.ICEhCl W V O C A O L E ET hON EXCLUSIVE PER\IF.TTANT A LA IIII1LIOTIIEQUI:

NATIONAL II DL CANADA Dl!

~PROOUIRI:. PRETEK. I)ISlillllUI~I( . OU VENDKI: DES CCPlPS OE SA T t l r s r DEQUCLQUI: MAKIERE C I ' SOUS QUELOVE bOl(hlE QUI'TE SO1 I POLlR hlETTl(1i DLS I:XEIlPLAll<liS 1)1 CETTE THESE h LA DlSl'OSITIOS ID1 S PERSONNI. II\TERELSCI:<

L'AUTETJRCONSERVE LA PROPRIETE DU DROIT D'AUTEUR QUI PROTBGIi SA THESE. NI LA THESE NI -. - . nns - -.

EXTRAITS SUOSTANTIELS DE CEL1.E- CI W DOIVENT ETRE IMPRIMES OU AUTREMeNT REPRODUITS SANS SON AUTORISATION

(7)

ARSTRACT

Tirv ohjwriws afr:is rr~abarr to find impror.cments to CPFSK trellismodu- intiotn rndcs ,>a AtVCS cdnnnrb. and to investigate the effectiveness of using r~rboptinmm er,hcrent pha* dctcrtion of CPESK rignalr on non4aussian

~harucir. A simplified. lime-invariant. f i n i t c ~ t a t e trellis is introduced for .lI-CPFSK >ignds. Based on this, a matrix representation is formulated for If-CPESK d t h h

<

1/.!1. A class of fixed-h binary nonlinear CPFSIi trellis modulation codes is roostrueted and anslyrd. Xomerical m u i t s indicate t l ~ a t . for n given rompltxits. 1,insry nonlmenr CPFSK schemes can he de- signed ao that they achieve the maximum memory iengh allowed by the oambct of rr*.llis phase otntes. When h = 1/Y, the optimum binary non- iiorar CPFSK vhemer exhibit coding gains of upto 2.2 dB compared with MSii signalling. The suboptimum coherent pharc detection technique for CPFSK is a detection technique that hm been directly adapted fmm PSK.

Impiemmcntatian d this detector 1. much simpler than that of the correia- tion reeeivrr. B u d on n code search subject to a set of heuristic design ntles. sriEtri~nspwent 4-CPFSK and S-CPFSK trellis moduktion codes with h j i/,ll a* found for the carrier phane offset chamel. It is found that the best =If-lmosparent codes for IWCPFSK with h

<

I/.![ are ideutisal with the opl.imnm codes for lhe elarsieal Gaussian channel fottnd m the litera- ture. Usiog the conventional method of computing an equivalent minimum distance. the performance of suboptimum coberenl detection of CPFSK 18 c d l l a t e d on carrier ph.m offset r h a n n l . It is found that bCPFSK t r d i r modttlation r o d e a r e moresusceptible to carrier p h s e offsets than 4-CPFSK trellis modulation coder. Channel eutaff rate bounds ace calculated far eo- bcreot PSK and suboptimum coherent CPFSK on (I) the .AWGN channel nod (ii) the mobile satellite channel modelled as a Rice lading channel with s stcady lineobaight component. It is r h m that mboptimum coherent de- tectionof I-CPFSK is inferior to I-PSK, but suboptimumeoherent detection of ECPESK with h Z 114 and IbCPFSK with 6 2 118 offer better mding potential lhan coherently detected BPSK and IGPSK, respectively. This makes suboptim~tm coherent detection of bCPFSK and IGCPESK more attractive alternalives to PSK signillling on mobile satellite chmeIs.

(8)

ACKNOWLEDGEMENTS

I iun mast bratrful to Dr. S. Le-Sgoc for his gairiimcc ucl nlpcrri- sion of m). thnis. I r i s h to thaok Dr. R. \'cnkutcwu and R o L s s t w S.

Ekmzmkc for serving in m.v sapcn.isory earnanittec uncl for providing me with vdnablc advice during the pmpnration of tbc tbmis.

Financial support for this project nw provided b llpmorial tiui- versiry of Sewfoundand Graduate Fellowship, Factdty of En~ineniup md 3.pplied Science Teaching Adsteatship, and Satual Srirnr~saal Engineerin6 Research Collncil (ISERC) crl Cat~acln.

M y sinrere thanks dm go to $Ilow patlaate st!~clcntr for lhrir ht.lp.

and d l uls funiiy mend,cn for tlbrii mmr!mgmsa ~ u t l ~ltivl ihu.

(9)

Contents

Abstract ii

Acknowledgecnettta iii

C i l of Figures viii

l i s t of Tables l i t of Symbols

1 Intmduction 1

1.1 Digild ro!ntu!~nication npfemr

. . . . . . .

. . . .

. .

.

. . . .

1 1.2 Trellis morlvrlation codcs

. . .

.

. . . . . . . . . . . . .

3 1.3 C a n t i n u o u - p b mndulnfiin

. . . . . . . . . . . . . . . . . . .

9 1.4 Detcetion of CPFSK tr~llis modulation codes

. . . . . . . . . . . .

13 1.5 Camlatiao detection and trrlll dcroding

. . . . . . . . . . . .

I4 1.G Probability of cror and minimum squarcd Euelidcsn distance

. . .

16 1.7 Distance properties of CPFSK and energy-bandwidth trade-off

. . .

:8 1.8 Sh-on capacity and channel cutoff rate

. . . . . . . . . . .

23 2 Literature Review

2.1 Introduction

. . . . . . . . . . .

(10)

2 2 Contintlous-lrh;lw ~ u ~ ~ l ~ ~ i ~ t i i i i

. . .

27

22.1 D r t r r t i a ~ ~ u f r o l i t ~ a o a r l h : a r zn~~~l~!littitrt~

. . .

29

. . .

2.1.2 D;ludriclth of routinl~ous ph.w mochdatiou 32 2.2.3 Syuchrouisarionof rnutiuolo!s.l, h;wc mochJntiou

. . .

:I:

. . . .

2.3 Application of trellis motbdarlon rocirs l o Giutssiw ~rlranurlr :xi

. . .

? . I .Application of trellis modnlafiou rocles to fadin& c.hnuarIs 11, 2.3 .A pptirntion of CPFSli trellis luud!~latian caries to ruultip~tlt f:tllin~

channels

. . .

I I 2.6 %ape 01 tlre tLesi%

. . .

16

3 Matrk Description of C P F S K Signals 51

3.1 Introduction

. . .

a1 3.2 Trellis structure of CPFSli s i p &

. . .

>2 3.3 Simplifted finite stvte represeotatiou of CPFSli rigunlr

. . .

a6 3.1 Slatrin rl~scription of CPFSli aignnls

. . .

63 3.4.1 State transitiou matrix

. . .

87 3.4.2 Stnte location matrix

. . .

i n 3

.

S Courltuic~ur

. . .

i l 4 Binary Nonlinear C P F S K rnellii ModuMion Codes br Gaussian

Channels 72

4.1 Introduction

. . .

i 2 4.2 Sonlinear CPFSK trellis modulation mdrx

. . .

73

. . .

4.2.1 System model 7 4

4 3 Binary uor!liurar CPFSK t d l i r meddatios codes: Ir = I/.\!

. . . .

i 6

. . . . .

4.3.1 Bitmr) thoulinear CPFSK (,\I = 4 b = 114) 78

. . . .

1.3.2 Binnry nonlinear CPFSK (.W - 8 b = 118) 86

(11)

I

..

1.1 tIit3ttry zmaliurm CPFSli (.!I = I t

.

b = 1/16)

. . .

91

. . .

1.3.1 Gr~~a.ndiiltioo 91

1.1 Lliuary ltonlincflr CFFSli trcltir mocl~~lst~oil rode% I

+

Ij.11

. . . .

02

. . .

1 1 . 1 Bin;"? nonlinc. ar CPFSIi (.U = 4

.

b = 1/61 93 1 .I.? Biaery uoulinenr CPFSIi 1.11 = 1

.

It = 1/81

. . .

99

1.4.3 Binary soulinear CPFSli ( . l l = 1

.

h = 1/101

. . .

1 0 1

. . .

.

I

a

s l ~ u l p r i l n ~ r c s l l ~ t r 101

1.0 Rnratiounl -).mmctry of nonline~r CPFSIC

. . .

1 1 0

. . .

.

4.7 Cunn.lt~*iow 1 1 4

S S u b o p t i m u m Coherent Detection of C P F S K nellh Modulation

Codes on Non-Gaosslan Channelr 116

. . .

5.1 Introduction 116

. . .

5. 2 Commtmicstionsystem and ehaoncl modds I l i

. . .

a.2.1 Currier phme offset channel I l i

. . .

5.2.2 Slubilr satellitr ckanuel 1 2 0

. . .

5.3 P h w rlrtectiuu and treII_I decoding 127

a.4 Trl.llis dpc. crrliug on d ~ ~ s n r l s with Llitt? mexnury

. . .

130 j.5 D i h t ~ z w ~ I B ~ C . l r i ~ for P ~ W C detwtiou nml trellis clecoding of CPFSK

. . .

rigrl~ls 1 3 3

;

.;.

l Additiw wllite Gaus.ian noise channel

. . .

136

. . .

5.1.2 Carrier phase ofset rhaoncl 1 3 9

j.6 Cutoff rate Ro for a generd inttrlenved channel with amplitude only

. . .

fading 142

. - . . .

2.1 Conelusioos 1 4 5

(12)

G Performance Ecllu.atiou of CPFSK Trellis Modulation Codes au

Carrier Pllnrc Offset Channels 140

6.1 introd~rtiou.

. . . . . .

.

. . . . . . . . . . . . . . . . . . . .

1-10 G.? Computer scnrrh for *if-tr.mqiarut -1-CFFSIi tn~llir tsocittl;aio!~

c o d e s . . .

. . . . . . .

.

. . . . . . . . . . .

1.16 6.3 Compolcr search for self-franrpnrcnf 8-CPFSli rrnllia ~r~~~dnlalitnn

coder.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

162 6.4 Distance pmpcnies of CPFSli trrllia mociularion ro<l<-r ou rimivr

p l w e ofl~ef rhnll.rl. . . . .

. . . .

. .

.

.

.

. . . .

. .

169 6.1.1 Surnrricd resslrr

. . . . . . . . .

.

. . . . . . . . .

. 177 8.5 C o ~ c l ~ ~ s i o m

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

187 7 Performance Evaluation of CPFSK a c l l i s Modulation Codes an

Multipath Fading Channels 188

7.1 Introduction.

. . . . . . . . . . . . . . . . . . . . . . . .

188 7.2 Ro ealctilatiou for PSli

. . . . . . . . . . . . . . . . . . . . . . . . .

188 7.3 R. cxleulatiou for CPFSK

. . . . . . . . . . . . . . . . . . . .

I91 i.4 salllpricd i i ~ . . ~ l ~ t r .

. . . . . . . . .

.

. . . . . .

In.!

.

I..

-

C ,a, eh,riou.i

. . . . . . . . . . . . . . . . . . . . . . . . . .

222

8 Summary and Cooelt~sions 223

References 227

Appendix 242

(13)

List of Figures

. . .

Situplifini block dlngrnm of s romnluuiention syrtem 2

. . .

G ~ a c r i r trellis rncodcr 8

. . .

Cumuluo CPSl phase rcsponsr pabcs 11

. . .

P h s r R r r fur bCPFSK I ?

. . .

Corrcivtion dctcrtioo and trellis dreading. 15

Drtinitiou uf power mutaiumeut I>audwirlth for carrier modulatrcl sebcmcs

. . .

21 Elll.rgy-luslIwilltit L I H ~ ~ c - ~ ~ lor Y-CPFSK (mpr A ~ d ~ r s n s r t d.161) 22 ClttoH mte (If.) of

.

I.CFFSP and 8-CPFSK againat signal-I=-noise m ~ i a E./.\b on an 1 V G Y rhnt~ncl

. . .

26 Power density olSIS1;

. .

l.CPFSK ( h = 113) and SI=I

.

3RC ( h = 113) (after Andsrsan ct al.[O))

. . .

34 .\ lioimum Euclidean distance .Ifaptimruo rate-112 convolutional coded

&CPFSI<

. . .

41

. . .

Phare trellis lor billary CPFSK d p n i s 54

. . .

P h a c clylmdcr for binilly CPFSIi when h = 112 55 Pl~xae cr~utim~ily ~:onciitiuu lor CPFSK rignab

. . .

58

. . .

Finitestate representation of CCPFSK with h = 115 61

...

Fisitwtntr r~plp~etatillior~ 014-CPFSK with h = 113 and h = 1 M Trclk<-coded CPFSK (a) Black &a- (b) Finite-state mpresentai

. . .

ti",, a6

Yonliner CPFSK system mode1

. . .

74

. . .

ltcllis and state dingram of 4.CPFSK. h = 114 80 Optimum binary nonlinear CPFSK (M=4

.

q=4)

. . .

%I

(14)

4.4 Equi~ni<,ut Ihiu.lry uolrliucar CFFSK 01=4. <1=4).

. . .

8.1 4.a Trrllir #act .itittr ,liagrnxu <of I-CFFSR. b = 1/8.

. . .

$7 4 (i Ostirn!~m birl.up nouliuc.~ CFFSli (.\I=& q=81.

. . .

89

4.7 I I i I C P F S K I = I

. . .

!)i

4.8 Dinar). nonlinear CFFSIi I.\l=1. r1=61.

. . .

!Hi 4.9 Optirnlln, Ibinary eonlinea.ar CPFSIC (\>=A. ,I=$).

. . .

59 4.10 T d i s .md state ~lingrnin of .I-CPFSli. It = l/8.

. . .

1,111 4.11 Optimum binary nonlinenr CPFSK (.\I=& q=8).

. . .

1111 4.12 Binaq- nonlinear CPFSIi ee1uiuialenf to that of Fix. 1.11.

. . .

IIT!

4.13 Trcllia. rtatc diagram nnd rtiltc rrnurition alatrix for 4-CI'FSY. h = 1/10..

. . .

105 4.14 Equivdmt b i n q n o n l i n c v r CPFSK (.\1=4. rj=lU).

. . .

1116 2.1 G ~ n e r a i model of mmier p h u e nffsa.t cbanuc.1.

. . .

111 5.2 .\lobile satellite m m m $ e n t i o n rvstrm oloclcl ( a ) Simpliticd I,lork

c l i x ~ r n s ~ (I,) C1xxtmtr.l aarlrl.

. . .

I??

5.3 Phase detection and trellis decoding.

. . .

128 b.1 fmplen~rulnlinnoflhroplin1~~~nei~l~t-rt~t~~~~lf-lra~~~l~~n~~~!4.(.PFSli.

h = 11.1 trellis modulation node.

. . .

l j l 8.2a Statc transition matrix of thc optimum 64-atnte %~If-trnusi,iurut 4-

CPFSK code.

. . .

Liz 6.2b Implcmcntation of thc optimum G4atntc scif-transparrut 4-CI'YSK

trellir modlllati"" uuuIe,

. . .

128 8.3 Optimumcadcs for suboptimum cohcrcnt plmc ~lrtrctiua 1vf4-CPFSK

xiylxln with 12 $ 114 ns vxrri<.r ~dtx*? eHwl c~l~a#xl~rl.

. . .

I?$

6.4 Optimum 4-CPFSK trellis modulation cod- for rate 112, v=i irorl

. . .

f& 6 114 0" cartier l d ~ c n & ~ t <,III~II$~II. lCAl 6.5 State transition matrix for optimal self transparcut 4-CPFSK trellis

madtnlntioo mder when h

<

114..

. . .

181

. . .

6.6 Submatrices for WE-transparcot I-CPFSK. h = 118. I03 8.7 Optimummdeoforsuboptimum eohcrcotpharr dctcetinn of &CI'FSK

. . .

signals with h & l / I an canianir phase cR~et thmeLs. 16;

(15)

6.8 Stirlr fril~lritioe matrix fur optimal sdf-trauaperrut 8-CPFSK trellis

. . .

ato,lrlni,,~ ~.,drs wL.u 18 118.. 168

6.9 Slizdanmn cquitmlcnr dirfnce w r n m modttlvtiou index for I-CPFSK

. . .

#~#.lli3 rna,<lvIdit9r$ s.8,9i~.8 un ,.~mi@r l ~ i ~ x q ~ cuKwt c l ~ m ~ r ~ ~ l ~ . 174 6.lll \linimum c q u i ~ d e n t djstance wmar modulation index for I-CPFSK

tn,ilir ~ncrridainn roclo nu carrier phasr rlLet rhaunela.

. . .

182 6.11 nccciver path memory vcrrus eamicr phnsc offset for .I-CPFSK trellis

ruoduintion caries.

. . .

181 0 . n nnriver path memory versus carrier phme offret for 8-CPFSK trellis

ruodlrlation eodo.

. . .

1 8 1.1 Curuff rat? R* ng&ust 5ippd-to-uoire ratio E./:Vo for WPSK ou an

:\WG+ channel.

. . .

196 i.? Cum,mrimn of cutoff rate I(o of 4-PSK with eohneut detection and

I-CPFS1< with suboptimum cohermt detwtion on an .iWGN ehannel.199 i.:I C8,~!gnri~a,n of 1rf8toffmt~ RO of R-PSK with n l h r r ~ # $ t detwtinn aucl

8-CI'FSK with suboptimum coherent detwtion on an .i>VGZT channei.203 7.4 Colnpnrirnn ofcntoff rate RO of I&PSK 4 t h coherent detrrtioo a d

I6.CPFSK withsuboptimum coherent detection on an .iWGS channel.206 7.5 Comparison afcutoff ratc boundsfor suboptimumeoherent ddcction

. . .

of CPFSK and mherent PSK an mobile satellite channels. ?I1 i.0 Channel cutoff rate RO versus Ea/lVo for suboptimum mhercnt dc

twtiou of 4-CPFSK ou mobile satellite ch-el.

. . .

214 7.7 C h e l cutoff rate Ra versus Ea/No for suboptimum coherent d e

. . .

tntiou of CCPFSK au moldle rateUite h n e l r . 216 i.8 Channel cutoff rate Ro versus Eb/No far suboptimum coherent de-

. . .

Iwtintt of IS-CPFSK 08, zuotrib aatellile chnnnplr. 219

(16)

List of Tables

1.1 Ermr pcrformaocc degradation of .\I-CPFSK r i t h h = 1/.11 rrlatirr to BPSK.

. . .

ID 4.1 Coding gain and miuimm~m S ~ U U F U I Eticlidean dist;luee ofl~juuuy UUU-

linear CPFSK..

. . .

1111 6.1 Coding gain of optimum self-tmnsparcnt I-CPFSK trellis modtti;l-

tion codes ou au W G R ckdndndnl.

. . .

139 6.2 ImpiementationofseIf-tr-parent I-CPFSB trellis mod!~intios rodcs

,~.iti, ~"~,,"<,ltlti",~al ~ < > , l k .

. . .

l i i 6.3 Cadxng gain of optimum self-transparent CCPFSK trellis modsdn-

tion mdes ou an .AWG4 rbanarl.

. . .

1ri 6.1 Implementationofself-transpnrent 8-CPFSI< trellis m o c b ~ b t i o d e s

with convolutional code.

. . .

166 6.5 Slinimum equivdPnt distance for 4-CPF3K trellis maduliltion cnclcn

with h = 1/4 an carrier phase offset ehanneI8.

. . .

l7U 6.6 Slinimum quivrleut d i i t u o e for 1-CPFSK trellis u~udulntiot~ W ~ P ,

with h = 115 on carrier phorc o&ct chnnncls.

. . .

172 6.7 Miuiu,flm etlaideut dirtfncer for CCPFSK Irellir mucllthtisn ~.t~cl?s

. . .

with h = 118 en carrier phase offset channels. 180 6 8 Mininlnrn e<18tiualc!~t d l s t u c ~ s for 8-CPFSK trellis ~n<)tl>d~tillla c01lni

. . .

with h = 1/10 on carrier phase offset channels. 181 6.9 Critical angles far ruhoptimx~m mmberrnt d e t I l f 4 - P SK lrrllis

. . .

modulation codes on carrier phase offeet channels. iBF, 6.10 Criticalmgles forsuboptimum cohcrent detcetionofCCPFSK trcllis

. . .

modulation coda on eanier phase o&et ehannch. 186

(17)

7.1 Ctltolf riclr RO of .ll.PSK on an .AjVGS channel..

. . .

1%

7.2 Card+rd,. Rn cuf I-CPFSK with ~ u b q , t i m e 8 coherent dctertion on im .\\VGS channel.

. . .

1%

7 9 C8tr~~llrxle R,, ole-CPFSK will, n#lnlpti#rulru ~ . d w m t ri~twriou rm

;m :\N8GS channel.

. . .

201 7.4 Cutoff rale R,, of IGCPFSK r i t h nd,nplimnm o o b ~ r m t detertion

on no A\VGS c h m e l .

. . .

201 7.2 Cntoff rate of 4-PSK. .and h = 114, 4-CPFSK with suboptimum

cohr-rent drtection on Rician fading channel.

. . .

108 7.G Cutoff ratc of %PSI. and h = 118, 8-CPFSK r i t h suboptim,m

. . .

ruheceut d e t ~ t i o n on Rician fading c h m e l . 208 7.7 Cutoff rate of 16PSti. and h = 1/16, 16-CPFSI< with ruboptimum

. . .

1.011rre~t detwtiou an Ririan fading channel. 208

(18)

CCITT CPFSK CPSI D DPSK FDSlA

4;"

[C

4 t l Eb E.

FFSK Fbl FSK fo h

:\~uplituclc \lodulntion :\mplituclr-Shift-licyiog Additive tYhitc Gn~xsdnn Soisr nth data rymhol Shnnnon capacity Code-Division Slulfiplc Accpsr

International Telegraph and Telephone Coun#itarive Cnruulitrrr Cootin~towPhasc Frequency-ShiIt-IicyinR

Continltotw-Phase hlodulatioo Et~rlidpnn distxnee DiLreutiul PLarrShift-Keying Frerttteet,y-Division hhdtitie A~.rr$.i

'VcmnlirPci : . I ~ ~ ~ ~ ~ ~ d minim~tul Eant.li<k.an t l i ~ t ~ ~ w < . 3nnswlirPci rrlunred tuiuiuh~lul ~,rlitidnmt clirtantvr Bmehancl d n u sigonl

E n e w per hit Energy per p b d Fast-Frequency-ShiIt-Keying Requeney hlodulation Frcqucncy-Sift-Keying Carrier frequency Madolation index lmaginary part of a function

x i i i

(19)

!SI 1;

li L I A0 .I/

Al AP AIED lIHPS1 AlLSE SISK AISS V

.\'<,I2

S.

,tit)

YmnX P P. m,, PLL PSA.\I P S l i O(11

lt8t~r-S) ~ul,oi lnfrrfrrrvre O>~l*trilint length o l n rude

Cohro.nf to uocuhersnt cnrrg? rrrio (nice farror) L ~ u ~ t h of firquencp pulre

Ci rnuH bunncl pammcter Opri~nnm Chernoff hound pnr~mrter Orrler of the modulatioo scheme Alnxlrutlm o psletion prohahility Sliuinmm Es~.liclcan Dirt~ocv Slalti-b P h ~ w l l o d t b t i a u Slnxiruum-Likelihoorl 5queuce Estituatiuu Yieie.uu Sllift lieyiag

Slal~ilr Sntt,llilr Srniicr

S#m~l>er of slntrs. Length of Lrnttsmillarl wrl!lenrp Do!chle-3idrd noire power speelral dcaqilg Rcceivcr path mcmory

xoisc

Slcmory length of a code hlwimum memory l u g t h d a code X u m n t o c of tho modulation index Symbol error probability

Phase angle a t the end of nth signallins interval PhascLocked Loop

Pilot Symbol .bsisted hlodulation Phase-Shift-Keying Phase arrglc

xi"

(20)

S J R

1 TCT TD.\II TTlB

Dcnolninarur 01 tbc luocluh?tiau itldrr Quodraturr :\mplitadr Uoddatian Qaitdrsttuc .4rnplitudc-Sbift-Ii~iig Received r i ~ n d

Raispd-Cosine n c d part 01 a ti^ ti^^

Channel ctttoff rate Radio Frequency Sorluali~ed fading nropfihlic Standant Cridioo Signal-t-Xoire Ratio Trxuh~sirr~l higual

Signxlliu~ interval $or ~yilind>nl dnsalimt Bit iut~rvnl or bit $?$ration Time

Tone-Calibration Technique Time.Division hfultiplc Acecss Transparent Tone-In-Band twbiqtte World Administrative hadio Canferenvc Input symbol rqueocc

Output symbol sequence

(21)

Chapter 1 Introduction

1.1 Digital communication systems

Cummntuiratian systems are intended m ean~qv information 6nm one location to morbcr or from one point in time to another. These m t e m s indudc telcphohony.

telepaphy. I,ma*leaat audio, television, eellulsr mobik redo. aud mablrelie remd- iug, to utuur H Cw. TO transmit inIowation over & chwnelor t o store information ih a nnvli8~rrm. tuxny I~ariic: ribqd prucesieg opvraliunr Ilave lo I,? perfumml st1 tllr lni~%c4~;~ucl ~ i ~ t x l . Tile filllnwin6 are h t n d w r u t d to d l rounormi<rtinn sstrulr (altllotrgll, in, K girco .iy:*ttu, uoc nli opendiozrx app~nr), rcnlme cr,cling, I ~ I I R L I ~ P I coding, moddatioo, msll,iplexing. filtering 8md ryochronisatian. Thp rim- pliAd 1,lork dingam of Fim1r.n 1.1 show8 only thwc operations of. communicntioo

~ y s t u n that wc of concern to this study.

Modulntion is an imponant Bignal processing operation that takes place in a mmmuniration system. In modulation, a parameter such as amplitude, phase or hqueney af a carrier signal ia w i e d arr a function of the instantanom value of the signal we want to transmit. I t can be effectively used to match a signal with the ehnracteristice of the t m m i a ~ i o n medium and to m i n i d m the effects of &an- ncl noisc and interfennce. Often, modulation is also characterid by a eequency

(22)

i n

t 2:::: I 1

.) Modulator

1

information

Demodulator f

I T F H - - l

Biqure 1.1 Simplified black d i a g r a m o f a communication s y s t e m

(23)

traurlatlon to a nrw ltipber hand oi fmrittencies to pmride the capability o i mul- lipinxinl; mnuy ~ i g n i l l ~ . The ilarehand idomation is retrieved at the receiver by 111. c~omplnllcntary oor inverse operation of moddstion which is the demodulation.

H o w ~ v ~ r . the demodulation method is not unique aince there can be servral distinct implemeutstiuus.

hisdularioa cnu br. either aunlog or digital. Digitd eqtlirnlents of three well knctant x s ~ i o g urrBlrti<nb f~Aniqw.*. amplita~le ~n~o<hdntiou (AM). phase moth- istion (PM) nwi Imi~~euay zuudalxtiuu (FJI1) a r c nrui,lit!rle h l f t keying (ASK).

irbaw shift keying (PSK) and frequency shift keying (FSIi). respwtiveiy.

.

A m p l i t u d ~ s h i R keying (ASK): In ASK, information is encoded in &a- erete amplitude leveboPtheearricrsignd, ASK has good bandwidth-efficiency but its pcrformanee is re~rrely degraded in nonlinear and %ding ehaaneb.

.

P h k s e s h i R keying (PSK): In PSK. the p kan& of the carrier signal is

\ w i d ac~ording to the measage signal. PSK is a constant-enveiope moduls tion teclmique and it has good bandwidth-efficiency. The bandwidth depends ou the data rate nod not on tbc number of discrete pbavc angles used for sic n d b g nod, thembm. PSK is cumonly in high data rate applicatiom in s u r ~ l i u r ; ~ ~ b m o ~ b .

.

Frequency-shifl !&mg(FSK): FSK inwlycs ehangimg the carrier between frequcncin depending on the baaeband information. This is also a mmutant envelope modulatim technique. In conwntional FSK, the switching from one frequency to another is carried out without regard to the eontinulN of the phase angle of the carrier at awit&q time. The diacontinuitica in the phase angle cause undesirable discrete frequencies in the p m e r spectrum. If the p h a x is maintained mntinuous a t switching times, the &tin5 FSK is

(24)

knonn as continlnoos-phnss FSE; (CPFSL). CFFSIi gcorrdly In;u a rmc>otll keq(l~nc)- spwtnuo m d the baodricith drilruck o a tile dala rat? .zr mdl ;w on the number of frequencies used for sipnalling.

There has been a g r o a i n ~ trcud t o w d s llriug digital mocldation rwiulullpas iu d l cornmudreation sJ'StCma. This is owing to the rapid alvnurrs in clipital 1rc.18- nolam and the ad*antagcs there sjstems offer. such iu the cnpxity lo tr.ulat,:t different IJTeS of bareband s i v d s (speech. video. data) in B mmmon format u t l the ability to regenerate the r i m d . thereby m i n i i ~ i n g tltc idvcmc ~ffe~prts of uokc and iuterferenm.

BY the end of the r - o t q most wim-line and optical libre ~umoatuiurtion syx- tenla will he fillly-tligitd. It is d m likek t l ~ t this will I,? tnnr La rt~t>xt wiw4ess

~ommusicntiona. Begiuuiug rill) l>co~ci<-rr*t sf high <I-mlily cligitnl ~tqxlia ;drc.iuly tmn<lpnvity iu lapan aoll E n m l r and with rll-digital i~igi~.~Ieli~tiliol~ I<.lrvi\iou sy,- tema now heing tested in the U.S.A., it appmr. that. Ihy lllr c . 1 ~ 1 of thir clcviult.

digital will have superseded andog in d l forms 01 hmndrarting. Digitnl rxic,cbtla.

tion tmhniqucs arc also certain to bmome the udrversal choice lor hrtlrrc personnl eommudrcation systems and mobile satellite services.

In the rxisting didtnl communication system, tbere is alwnys n uwd for tlm increase of spectral efficiency. Thia is nmwnry h m s c thc radio lrnluenry (RF) epeetnrm is a finite natural resource, while the user demand fer q e d n l m rtcmlily inere-. Limitatioos in bandwidth have been felt in voiecband d a b traosmission through wire-lines, point-t-point digital m i m a v e radio, digitd ratellitc mm- municatim and 1 4 - m o b i l e communirations. At the m e n t l y mneludel World Adminiauative Radio Confcrenrr (WARC-92), the most important and ehdleny- ing tark w the allocation of pdditional ap&- for both existing and haturn

(25)

nlol,il~ r~~mmsrrication syhtrmr 1831. E~pansion of frpqnencies for high-berluency, ralrllil~ und Irrrestrial di~itai-n~tcljo hroadeartio~. and space communieation~

airo x rnxjor topic of intensf. in maoy of the a b o w applications the aMilabie tru~rrnittpr p o w r is dso iimital. Therefore hoth handridth w d power-rffieiencie uc dehiraM<, charactrristira of digital modulation fwhniques. Trrlli loodulatiou v ~hnvc shown k to lhe hotb p m r r and hunlwirltlrr.ffiri~nt when comparpd with tlr. c.cnm.nlies*l ciigifxl x~tod>clrticn~ tr<~buiqnn;.

1.2

Trellis modulation

codes

The conventional approach to channel codiob regards coding and modulation as w w a t c operations. Therefore the encoder and modulator are independently opti- miscd to nrhiwe the require4 error performance. T h e original idea of coding was to acid nrlandnut rymh,lJ (parity bits or check hits) ru binary d r t s ayrubols M, that t h , rt.reivnondd cvpioit the r ~ d u n d ~ u e y to correct ermueous hits. SIrrrsey 1691 hud Uugccl~uek 194, 951 shuwed that considcrrbly lower ermr pmlwtb'ities for the siuuc aw'rag. sigud 1311wrr v a n b~ ~ L i e w i I?Y r~omhinin~ the aperatiou. tof mcorling and

~ n s ~ l ~ ~ l n i o ~ ~ ie tile g w : r r of d g n l .iarigu. D~w~clttlntiou xud d m d i n g likewise wot~lcl he aspects of signal detection a t the meeiver.

T C hlen hehind this alternative way of achieving redundancy sms to .FA ex- panded ehnnoei signal sets with trellis-mded modulatiaa In trclliseoded modu- lation, a s i ~ a l eonstcllation with 2"+' signals is used t o transmit n bits of infor- mation. Tho eoartellation cqxpansion ratie is thus a faetm of two. Thc 2"" signal coosteUation is divided or partitioned into s n h a l s , in a regular way, so that the i a r a - r u k t t i i d space distance is @cater thna that of the parent constellation. A ronwlutional code of mte-n/(n+l) is used toaeiwt thesesignal points. Part of the

(26)

rtlomiutional rode ourput selcctr th? n~hscr rililc the other 1,111 S C ~ N I I the sigibni points Gom tile snbsrf. The rnort~ilation expienrios of n fnrtor of t ~ o ir tiw to tilr eodc iedtmndnucy of one bit per symbol. This type cd codiug i* also rrbrrt.,i t o ;r.

rel-par.ttbon carltngin the iit~rat!uc. In (911. 11 ar flmme that loaly a ~ ~ ~ i e d ial- ditionai coding gain can be nchicvd 11,). resorting tu orr~srriiation ~~?ii,azwiot~ I;a.ton greatrr than tuo.

Todsy coding has an eren more gnrinl definition: that is, r ro<lr is it hrt ,nf sequencer. Therefore. Toding is the imposition of one of n s*t sf rn1ttcun.r or patterns onto the transmitted signal [IU]." The rcwircr. havillg n ~,rn,t.z kttnwlrdg of the set of patterm. choasr~ the pattern r l m r t lo t h e w i g rrrrinvl ri~18aI.

The patterns i m p r e e d ~ p o n signal w~wforms with t h e use of #data rcrp8na.cs can be made as romplex rrr neewary within the i i i i r s of imples~etaatiue. Tilt new definition combines the idear of redundancy coding and modalntiou intto nsr operation. Redundancy achieved by pn-coding aud hy erpiu~rling thcrignai n.1 ilrr both included in the new definition. By imposing coded pallerns w t n 1d8;a~ nncl amplitude. it has been ahown that trellis rnodulntioa rorlcs nrbicve Ligbrr power and bandwidth-efficiency. Hmvever, this is nchiemd only by iiucrcaring lllc mwciwr complexity and processing delay.

According to Viterhi [971, the mmplenity, which is exduvively iu rlic <ligit;d p r o ~ w i n g , can be made as cheap and virtstaliy as power thrifty iu ecnled hy market demand influence on mnomier of %ale, because t h e phenomenal cvointtion of solid-state circuit integration bas reduced the eort of eommuniention cl-etmoic devices by many orders of magnitude, even while proportionately rdtleing thcir rirc and complexity In the part, prohibitively mmp1,lor receiver structures have bmn tile m jordrawbaek of coherent digitalsipaiting sehemeausing trellis modulationrorles but, complexity is no longer the limiting factor in the ~ r a c t i c a l impiemcntntion of

(27)

rnrh rcbrrnc%.

Thcrc rn two Lroad cinsres of trellis modulation codes. The fvst includes the rnt-pistition m r k introduced by Ungeiboeck (941. As erplained before. in act- putition mrling, r n h s ~ t s of a larger~ignal set are w r i a t e d a i t h the transitions of a linitcrtae machine (usually ~ r o o v a l ~ ~ t i o o a l mrie.) Part of the data is carried iu rhr dmice of thr s t l r e t aud a p m imidc the auluct itself. 21 generic trellis cnmdm

~ ~ ~ . ~ ~ ~ ) p ~ 1 ~ i t ~ g tile iclra of vet-pwrtition c.lxIii>g is shown iu Fiplre 1.2. Cocled pat- 1-s of 1,1111 ylmw and ~ ~ t ~ p l i t u d c are praeut iu I I C ~ ~ o d w beram the signal set is o f t ~ u clqtmlmtare Amplitude l.ldalatioo (QAhl). Thus the>- am noan-constant- n1velopt. cndcs ntortly nppiirnhie l o the ndditive white Gnt~nian wise channel.

Sevrrnl Ungcrhn~ck r o d e have heea adapted hy the International Telegraph and Telephone Conaultstivo Committee (CCITT) (ITU-T) as the standards for data traosrnission over the public switched telephone nehiork

(34.

The ~ r o n d class of t r e k modulation codes knmn ss continuow-phase mod- datian (CPM) codes ha* a lm i v e d ~ much attention owing to thcir constnot- mvclope property. These arc bmrd on PSK aod FSK. The constant-wwelopeprop- crty makes them panieularly suitable for applications in nonlinear eh%noela surh a. thc oatellice eommunic8tition rhaondr. CPM signals employ ceded patterns of phase within in aeonstant amplitude signal and achiever spectral efficiency without additional filtering [a]. Thus CPbl m u l d d e r lea de@iim due t o amplified nonlinearitier (for -pie i n a travelling-wave-tube of a satellite repeater) than would conventional PSK trellis rnoduktion mdes. Since saturating ampl&m are typically 2-3 dB more power efficient thnn purely hear p o w amplifers, thiscould h rusuted as a gain for CPM in relation to non-mnstmhnvelope trellis rndula- riozr mmien.

(28)

Encoder selector Bits

Signal-point

Remaining Coded Bits signal

points

Figure 1.2 Generic trellis encoder

(29)

1.3 Continuous-phase modulation

'licilis ruorlulation codes hnsed on continuau+phnsc m o d d a t i ~ n (CPSI) carry infor-

~ ~ t : ~ l i o x ~ in t h ~ rv~xtiuuous c n d ~ d phase of an RF carrim. thmfme. the transmitted

\iluni p h m is u contin?~aus function of time. The condition that the rignal pharc Ire rontinuonr introduces correlation betwen sign* in adjacent r i p l l h g inter- vals. The frequency of a CPM signal a t any given lime is the sum of frequency brs, rach cidnsd by n multiple of the channel symbol duration and scaled in proportion to n chnnnel inpnt symbol. The general signal format that will be used iu this stlcdy is niven helow in (1.11. The notation. arith minor changes. foUows that of 161.

Icf~thomsticdly, th e CPY signal can be rxproaxd as 161:

u~lnwe E. i* the s,ymhol energy. T is t h e symbol duration and fo is the nominal nurivr fn~,~8#na.y. The pImwc, crf the signal xi 1 = 0 or the phnw an@< nr%nmlllrterl o~.rr tlnr llc~ivci -m < t 5 0 is denoted hy 4.. Rr rollerent com~utmicatiou systems c,oeridrrd here can be set equal t o rem withont any lor$ of generality. e(t, X) is the i~~formntioo-carrying phase given by:

r h r c x =

...

z.~, r e , , r o , r , , r r .

...

r. is tho sowe a q u e n c ~ of I U - ~ data symbols, emh taking a d u e of the set {x

I

r. = +I. i3. t5.

. . .

, +(rM - 1)) with equal probability.

The pmportionslity constant h. is the modulation index of the CPM signel that may vary horn signalling interval to s i g m h g interval. Along with d t ) , it detr.minca how much phase changes in the signd for each data ~ymbol. When h,

9

(30)

varies born siwslliw interval to s b n l l i a ~ iutrrval alrh n s d ~ r m q is r ~ f i ~ m ~ d to i l ~ multi-h s i ~ n d l i n ~ [I?]. lo multi-h scheme. h, rhan~ea crrlir.dy tl~roaph r rumdl set of indices over ronserutiw sipnlling intenalr.

ln (1.2). q(l) is the phase response pdsc obtRiUpd fmm the hnwl,anrl h c g ~ u c . ) . puke g ( t ) throtlgh the relation

Geuerxlly. it Liu; 1,eet.n shonn that thp ltiglle*t .rloge i a q(1). rixida is 11.. f r ~ t ~ w ~ ~ t . ~ peak of g ( t ) , nffeets t b width of the main lobe of tlw frpqtleury spnetnmx. wllilr the spectral ride-lobes are .set hy Ihe number of rontinl~oa* ~leri>ativn in rlw 1)1m11.

[GI]. The pllwr pldse naponre bqigios a t t = 0 nnrl spans n finite dutration of (L- I ) signalling intervals, whcrc L is tho order of the CPII xhcmc. Far L 5 1. hll- m p o n e CP41 schemes are obtained and far L > 1, partiaCrcspome C P Y schcmrs arc obtdncd. Some commonly u d p h m r e s p o m pnlscs nre shown in Fiptrr 1.3.

By choosing di5crent phase responw pulses q(t) and varying I. , a d rV. n l h i t l c w variety of CPM = h e m e cnn be realircd. A list of the most common CPM rignai formats em be found ekewhere 161.

The phase of CPM signal forms a t m structure. In particular the p h m of an .W-CPFSK signal follows a linear traj-tory with one of M slopes d u r i n ~ eiwh signdling interval. The phase tree of a typical CPFSK s i w d is s h m in F i w 1.4. Any trellis modulation code that can be generated with a finite-*ate machine has a trellis M MU as a nee structure. Hywever, this study will have little mad for the tree struehue since it ran be simplified t o form a finitestate trellis for ratioud vdue modulation indices as will be discttwd later in Chapter 3.

(31)

C P ~ K (IRE) (full response)

4(t)

I

0 T 2T 3T

2REC (second order partial response CPPSK)

O T Z T 3 T

xc

(third order raised-cosine)

~ i q u r e 1.3 Common CPM phase response Pulses

(32)

rigure 1 . 4 phase tree for 4 - C P F S I

(33)

1.4

Detection of CPFSK trellis modulation codes

CPFSK rr~llir mnd~~latiou rorlrr rnn h r rlrtartcd either hy reqxluence detection tech- niqatrv+er ~triugq.tui~~l-i,pymbr,ldctrcfion ttrrhniqurs. In prarrire. the maximum- likelihood r ~ q ~ ~ v n w cktrrtor r,ourirra of n rnrrrlation rlema~lulator follomd by a trellis decocicr. Typically, thc Vitcrbi algorithm is employed in the trellis dceodcr to makc use of the eorrcl~tion hetween rignnl. introduced by the phase continuity property. Slost tmllih dneoding rchemca (the notable exception being sequential clrcoding) operate in n nay chat two or more paaaible encoded nerluences over a limited riluc spnn (knor~n M t h e tcccivcr path memory or t B deeodrr memory) are compared to decide which sequence is mmt likely. given the corresponding meei~ed aer/eencc. In nu idcel situation. this dwirionsbuld bemadmum likelihood. In such n ease, given the received sequenw yr. y2.

. . . .

yr corresponding to an input symbol sequencr. of r , , r 2 ,

. . .

. x s , the decoder should select the socodcd requelncc that moximiaes the probability P(y,. M.

... .

y,v

/

r l . a,.

. . ..

2.v) The Vitcrbi dga- rithm 1131 ~xses many snch deeisious. thereby selecting the maximw-likelihood se- quence aver therompletem~ssage rather than determining the maximum-likelihood symbol a a giwn time b e d on only one such deeiLn (as in most decodings~hemes for black codes

IiO]).

\Ireil known symbol-by-symbol detection schemes available for the detection of CPFSIi trellis modulation codes we coherent detection, non-coherent detection and lixoitpr-discriminator dctaction. In oon-mherent d~teetion, the receiver only knows tile symbol-tioling while the carrier-phesc is completely uoknown to the receiver.

Though not suitnble for every channel condition, coherent detectior techniques are elperior to uon-mhered detection techniques and t o realist the full potential of trellis modulation codas, coherent detection is essential.

(34)

1.5 Correlation detection and trellis decoding

The optimtxlu tnrrciatioo rctrivpr for rnlhererlt dctcrtia, of CPFSli rrrltis amtla.

htiou coder ir ,howo iu Figure I.;. It can i,r s~pnrntrd into thp foiio~vit~l: !invc~, t a s k demod~thtion. s~nrhronisation. ~lrroding.

1. D c d n b t i o n ir aceompiirhe<l by n imuk of ~.orrrirturs (analog mtdtiplirr innd internlor combination) rttppLed with n honm rer nt rohemnt rvfern~re rig.

nnls a,(t). a(1) 8 a ( t l .

. ... .

sO1(1)_ In F i p r a i.:,t.(:) is t11r rerris,<l sip~:tI nnd " ( 1 ) denotes Gaussian noise. To democlttlat~ m ~m~tro~lrrl .If-CPFSF s i c ual. y.11 such rcfmcncr signals are needed. d ~ c r r y i s the druou~i,n;~lm of 11~1.

rational value modulation index h. Cornlatom ;uc rrpiacal i s pmactic,c 11). n set d matched-filters.

2. Synchroulratioo of the locally generated rcfeienrr r i p & ' plmc t o I Ibr ntrricv used in the modulator is ncecsrary for the eorrcrt dcmodulntiuu of tllc sign;d.

It also indudea extraction ofsymhol.timing ioformntiou m that thr rrcriwcl signal and the movered clock are synrhroalsd with thc trausmittcr ~rlork.

3. Decoding of the demodulated s i p d aceonliilg t o t h \?tarhi nlgorirlbrrl 1131 ia conjunction with a d i r t m e mewure appropriate for thc cl~nuxlcl cuurhtiuas rrsl~lta in the sequence of symbols most likely t o have hcpn rrannuittcd.

The performanee of the correlation receiver is important hreausc it is uftcu !uv.d rrv a reference with which to compare the performance "1 ruhoptimlln~ dwolling trc1~- niqu*j. Becaus of the high complexity of the correlation rccciver.uuc ir tuotiwdcd t o a u d y suboptimum receivers and to seek a campromirc h e t n c n performatlr~ ;lad receiver compbxity.

(35)

i

S(t)+n(t) ALGORITHM

I

Figure 1.5 Correlation detection and trellfs decoding.

(36)

1.6 Probability of error and minimum squared Euclidean distance

Tla snd nrararr of perfornmncr of 8 ~nclr<l hytrnn is ria ;nv?ragc ~~mnl,:drility of rrmr that ir achieved at r specifiai sipd-tcnluirr, rntia (SSR). I

.

rt~mt I,mnil.;$

applications. a- are only iutcrpstnl in the higll-SSR pcrfonlmarr. Thzt is. nr. ;In.

intcrestd in thobe bitrmtiaus where the prubabibty of error b lcrs tbnn 10-"c.

10.'. In this eace an approximate p r a c d t m is rxniinhb wi~irh zu,akos nurr cri tht*

union bound 127. 10.5). The l~uian bound tcrhniq~#s cnu h? lssrcl with ally trrlli.

modulntion code with maximum-likelihond dccodiug It is bmrd on tiw idc:~ th;,l an event can be expressmi as the nilion of several ~ ~ ~ b e v e n t ~ . ~bn the 111~1~dI~ility 01 that event occurring is alasys l a s than or equal to the sum of tlw grobai>iliti~s 101 all subeveuts. T h r . the probability ofcrmr ran be upper-hoard a* tlrcatcru sf tin.

probabilities of each of the emor-events. Alro, it is wcll know13 that the pn~i*xlrility of ermr primarib ~iependa on the Euclidean distancc or thc rigunl qmo. rIirtia!v<, between the tran~mittedsequence and its nearest ncighbour 1105).

In an additive white Causrian noise (A\\'GN) chauncl. thc Euclidc.iul dirtrurrr between any trvo CPFSK signal sequences ~ . ( t ) and al(l1 is given )BY 119):

D2[8.(il, r'.(tll i ] l s n ( t l - s:(t)I2dt. (1.41 where the integral extends over an ermr-event (the time that tho two signal rc- quenees dier). Ar shown in Appendix A, (1.4) dlrees to (1.5) for plmwe nmcl- ulated signals and in the special ease of CPFSK siguals, (1.61 further n.4nsr.s to (1.6).

D2b.(i), ~'.(t)] = ZE./T/[~

-

cos [dm(,)

-

C,(t]]}dt (1.;) D2(a.. 3:) B Z E . ( l - ~ i n [ x h ( ~ ~ - z ~ l I / P n h ( ~ ~ - r ' . I l ~ ~ ~ l ~ h ( = .

-

r'.llZ+ dm

-

*:,I1

(1.61 16

(37)

Tlhis van I?? lard ns the dmodiug metric in the maximum-likelihood decoding a l p citlan. ~uhntally thc \ltcrhi algorithm I.131. In (1.5) and (1.6). o.(t) ando;(t) are the p h w andm irmkoned io moddo-2s) of the two r i ~ d qupnces r.(t) and s ; ( t ) at 1 = 7 6 .

Tile miuimtuu rlunrcd Et~cliciean distanre (SIED) is the giobxl minimum of (1.6) o n r the Snitratatc trrllir r?ppprrsentiug the trrllis modulation mde. Thnt is.

DL.. n

mi, D21dn(l).a:(t)l

v

r.(t) # s'.(t), (1.i) whcre the mini-ntian is cmied out over all possible pairs of signal aequemeea

~ ~ ( 0 , 8x1).

Acmrding t o the dmsical signal spam theory

llUS],

the nnymptotic cnor pmb- ability of any trellis modulation code operating over the additive white Gaussian uoisc chanud is given by:

(1.8) where Ea/iYn is the bit-energy-to-noise-dcsity ratio ~d Q( ) is the Gausian error i u t e p d giwn by Q ( r ) = & ~ ; e ~ c ' * / ~ d y . It is clear h m (1.8) that the enor perfonnmee of t r r k modulation codes in AWGN chanoclr can be impmmd by ioercming the minimum squared Euclidean distance.

It isconvenient ifwe canmake the distmcr in (1.8) independent ofenergy so that romparisons can be made with cod- of diflerent alphabet size or sipalling I w e k U. This could he done by forming the normaliscd minimum squared Euclidean Bstancc.

C,

= Dlin/2Eb, (1.9)

where EI is the energy per bit. According t o the abwc normaliaation the minimum squared Euclidean distance for minimum shift hying (MSK) bemmcs 2, which is the reference for dl our numerical results.

17

(38)

.T Distance properties of CPFSK and energy- bandwidth trade-off

For coherent detection of m JI-CPFSK signal with la = p/q. where p aucl rl ;ur relatively-prime positiw integer^. the mmlarioo receiver U C P ~ S q.11 t . o r n i i ~ t ~ ~ i OI

matched filters [62]. Often. depending on t k value of the mo<lnlntioo iadcx. this number can be reduced t o n number below 141. The eompl~dly of the mmlntion receiver will still be high except lor smaU .\I aod p values. lu the case of lulrarlrcl .\I-CPFSK signals. ao .If-state t r e b decoder cao whiehirvr i4mat all tlw rocling gin that is g u a n t n t d by the mo~lulatiou pro,rorc~n [62]. IU

C I

it is sh- t b d . for all It < 1, W a r y I1~U-wpouu~ C P l f n.11~xnun can I,? dm.o<lrcl l~rinmg x ~ I ~ t ~ ) d r r <of 'I--skates with ouly minor deg*lation in e m r ~ P T ~ O ~ H I I I . ~ .

.4 r o m p d m of minimum qonrcd Ettclideao rlistanrn of II-CPFSK will!

h = 1/.\1 urd Y-PSK is shown in Tnhlp 1.1. Tlwvrrnr prd,rn~iul~.r rl~griwl~liol~ o f CPFSK rcioti>~ to binar). PSK is a l a shown there. The assoriatc<l dcgmlotioo M

predicted by the minimum aguared Euelidcur distaoec is zero far the binary ~.ilac.

but, it is substantial for highcr order modulations. Howewr, lor many uoulincar applications, this d c ~ a d a t i o n is more than offsct by the rduetiou of the eovclopc amplitude variation e a u d by bandlimiting the signal [lffi]. Clenrly, 'bI.PSK nig- n a l ~ have larger minimum squared distancn than the carrespondinl; 111-CPFSK signals for h = l/iV, though multiplc-bit detection is d in the latter PME. Dy treating the CPFSK signal ss a PSK signal and sampling the p h a e at symbol transition instants, i t is possible to decode the signal with a less complex detection t&qw known ss phase detection and trcllie dccodio6 [GI). However, it rao 1 ~ 0 shown that the p e r f m e a c e of this suboptimum receiver depends on the phaae de- tection process that is, in the estimation of phase a t the end of sisalling into&.

(39)

Table 1 . 1 Error performance d e g r a d a t i o n a € M-CPPSK with h = l / M relative t o B P S K .

1

PSK CPFSK (h=IM

1

,

M

Degradauaol

(dB)

1

d i i n B f i n / d ~ #inIda

I

(40)

The Eurlidcnn distmce metric ~ i w n In. (1.G) is ma lonyer n ~ l i d and a urw mctrir for this suboptimum trellis decoder h a t o be tlehcd. r h i r h t&es into acconmt the srntiaticr of the errors in the estimation of pbarc. A mom d~t.zilrd ckrriptios of this si~boptimum rercivrr and its pdormancr r d t m t i o n rill be rouridrml iu Chapter 5.

In carrier modulated xhe01es the lmm~llri~ltb is oftnr <IPGUCII d y the IAUSV of frrtl!teueies nl,sut thr < . ~ r r i # r I I P ~ ~ ~ L ~ I I I . ~ %$fltin wbicl! S ~ M I ~ P 5x1~1 fiixc~liou t d Iiw r i y d ~ , o a ~ r i s n ~ a x i u n l (61. it! s t C r ar,rclr it i s n a x n m ~ ~ l in tc.norr of rllr frxc.ti(,mrd out-of-bnodpower. For instanre, rhr 05% I'OwQr routailrulent b~lldwicltb~l(il1~~rri8.r modulated scheme with n cwrier f r q t ~ ~ n c y fa nud power spertnlol S ( 1 ) is tht, vdllc.

of B such that

* + n / 2

io-s,2

5 I f ) d f = o . 9 5 1 m s ( f ) ~ ( 1 . 1 ~ ) B is knmn as the doublesided power containment bandwidth of t b sigunlii~jg xhcmc and it ix illustatd in Figme 1.6.

I t is well known that when the modulation indcr of a CPFSK signal is dcr.n~;rn~cl tmards zcm. the bandwidth it aceupin also dmrears. However. a rn~nllcr modn~lac tion index generally l e d s to inferior enor performance because of the smnller s i u - imum r q u d Euclidean distance. F i y e 1.7 l o w s minimum squared Euclidmm

&tanre (101q6,,n) against bandwidth for s M.iety of IW-CPFSK rcheolcx with different modulation indices and alphabet size* ( s i p d i n g levels). This i. cool- m o d y !am ar the energy-bandwidth plot. Two f a m i l i ~ of nws arc r h m in F i p 1.7. one for 99% paver containment in the double-sided R F handwidth alucl the 0th- for 99.9% inbaod power. Clearly, CPFSK x h e m n with smaller I lur lera bandwidth but, coosume more energy. Binary CPFSK perfonus poorly r n o l p ~ r r ~ l with 0th- whemea because the curve lie MU to the lover right of the uthm.

(41)

Figure 1.6 Definition of power containment bandwidth

€0. carrier modulated schemes.

(42)

Figure 1.7 Energy-bandwidth trade-off f o r H-CPFSK ( a f t e r Anderson e t al. [ 6 1 . 1

(43)

The currr, br I-CPFSK and CCPFSR lollow each other closely and both per- 10rm rclativrly hrttrr than 16-CPFSK. Althou~h 1a-e &tan=? wins are possible i s clomiop I w g ~ r h d ~ r c r they are inevitably esociatrd with wid" bandwidths.

Both CCPFSI< and &CPFSL with ~ mmodulation iudims (typically d I 5 1/1\11

!lave their nrergy-i>andwidth pedormanrv c r w e well to the loaw left of other n6cmvr. With the amdl a l p h a k t sire they provide a good compromise among I~~rnlwicltl~-rHic:inlcy. puw~r-rfh<,iruc'y and <omgiexity.

1.8 Shannon capacity and channel cutoff rate

Shannon mpaeity, C. is the fundamental limit to cammuaieation in any channel.

For instance, the Shannon capacity of a band-limited additive Gaursian noisc chan- ucl (in IAta per motld] is given by,

wbm. B ir llw cl~xuurl lmdwirith. rud SXR denote the rec:eiv?d signal-renoise raticr. It set.? an ~tlqrerbatud on the rate a t which iufmmntiou maybe tmansmittittecl through Ihp channel withottt error. However, reliable transmission near capacity wotrld only be pornible with very complex coding d e m e s .

While the Shannom capacity gives a range of r a t e where reliable transmission is possible, i t is now believed that the h e 1 cutoff rate Ra can be t&en as the practical uppet bound on information rate P4]. It bmomes wry w e m i i n to eommunieatc reliably over a channel when the information rate R exceeds Ro.

Not only Ra hives a m g e of rates at which reliable o p m t i o n is possible but a h it gives an exponent to average probability of enor 1241. h t h e r m o r c , whencombined coding and modulation is used on discrete chanoek the probabiity of e m r may not be meaningful bccsuac in modem trellis modulation coding there is no direct

(44)

not be meaningfui bernvs~ in auoriern trellis morlulntion r o d i q tbrm is uo dirrc.1 error mrrertion i n ~ o l n d . This \ v u cri<l~rtt from t l ~ r tlen. drBuitiuu of radial girru in page 6.

.\I~aniugfiil comprironr among discrete chroucls mu br I,asnl on the rutoH rate RO [69. 1051. \lorcover. baunrls on RO r a n bc quite I I R C ~ I I ~ ill prnli(.tiug t b ~ relatiye performance changes that occur when the t~oire l ~ m c e ~ s or c h a ~ u e l ~10dc.1 changes. The me of R. to assea the effmtivene~s of trrliis modtrlntion rorlrx on in- terleawd muitipth fading charneb has alw, been recently mcommrndr~l by srvend rnearchers (3i. i91.

ararh-ticaliy. ~ h m finit. . I I - ~ ~ ) . ( ~ , ) . i = I. 2.

....

.\I ;,rr transmitted wer the .A\VGX chainel with probabilities [q,).i = I. ?.

....

J I . thr cutoff rate is given by 1691:

I .A,

4 = - 1 o g ~ ~ m i n ~ ~ , ) ~ ~ ~ ; ~ , ~ - * ~ , ( 1 . 1 2 )

,=,,=I

a,he.- .Yo (WjHz) is the variance of the noise wavefom. The unit 01 Ro ir bits prr waveform or bits per signaliing i n t e n d (bit/T).

Calculationof Ro for rn-um-likelihooddctmtion ofCPFSK signalson AWGX channcls is given in [Ill. F i w 1.8 shows the atoff rater d 4-CPFSK and 8- CPFSK signals for several h-valoes plotted against the signal-tc-noise ratio. T l z w plots determine, in terms of the channel cutoff rate Ro, the relative eHectivcnass of each CPFSK modulation scheme on an AWGR channel. The larger Ro is for a given ayerage transmitted energy, t h e better the channel on which coding is t o bc used. R. levels-off at log, bits per signalling interval, rinec M-ary mod~~lntion can ~ n l y transmit a maximum of log, '&I bits per symbol e m l e e . Schemes with h = 1j.W exhibit almost all th* coding potential of IM-CPFSK signalling in tho intermediate to high ~ i g n a l - t o - ~ ~ i ~ ~ ratio range. W h e n tho signal-to-noiso ratio ia

(45)

rrnall4-CPFSE and I-CPFSI reheturn haw almost the same cutoff mter. Clearly, iherearin~ A bryuud 1/11 does nor result in rigascant reduction in the SKR re- rlnircri. Tbcrcfar~ h a d ou the channel elltoffrate criterion too JI-CPFSK sign&

wirb 1, 5 11.11 provide rlie beat combination of power-efllcicncy and bandwidth- efll~.ieocy for AWGS channels.

Rcreareh reported in t h b thesis is motivated by the above obsamtions and is directed towards (i) the improvement of trellis modulation ?odes baaed on IW-CPFSI signals vith h

<

IliCI for data transmission thmugh the clarrieal Gaur dan channel, and (ii) the application of suboptimum coherent detection (coherent phase detection and trellis decoding] of .lf.CPFSIi treilis modulation mdes for data transmission through non-Gaussian channels. By 'non-Gaussian' *e mean channels with emier-phase offsets and channels a i t b amplitude only multipath fadinding. It should be emphasized that only fuU response, fur&-h .CI-CPFSK sign&

r i t b a rectangular phase response puke will be considered and unless othemise stated ideal coherent detection v i t h a maximum-likelihood decoder a t the receivn is aasumed. The scope of the present study L given in the n m chapter after the pertinent literature on the aubjeet has been reviewed.

(46)

Figure 1 . 8 Cutoff rate Rg of 4-CPFSR and 8-CPFSK against signal-to-noise ratio ES/No on an AWGN channel.

26

(47)

Chapter 2

Literature Review

2.1 Introduction

This chapter presents a revim of literature on continuous-phase modulation (CPbI).

Thc liternttue specific to mntinuotuphnae frerlueneyahift keying (CPFSIC), which is a finU-rrapau~e subset af CPM. will be emphasised. A lot of reward work has brcu roncft~rte'l a. detection, error pcrfomxnee. spectral performancr and aw-

<,hrotmis~li<~n of CPFSR. R ~ g b l i n g trellis cocled CPFSK. sr1,stantially worn m n ~ ~ l t r xn. nvxilnl,lr 6,r tile vlxnxicill ~lclitivp white G~urviau naixp l m l u e l xn eowgwe<l to ~wnr-Gn!lasiau I . I ~ X U U O ~ . A survey 01 the (?mrmt l i t e r a t m i d i r a t e s that l e s an>nunt of work hna Leen ~eported on the application of CPFSK twUs rnod~lktion

<r>drs to channels with multipath fading and carrier-pbse aLets.

scope of the pr-t study and the o ' g m h t i t i ~ ~ of thc thesis is given a t the and of this ehapler.

2.2 Continuous-phase modulation

Digital p b m m ~ d u l a t i o ~ with cantinuotm phwe firat appeared in the wmk of clr Bwlr

BY.

O~l,ome and Luntz 1761 and Sehonhoff 1851. However, the papers of Aoderwn. Anlin and Sundberg [12.14,19] ~ummarizedand pneralized thcpwvious

(48)

wrk. and prompted a lot of dadics to hc coochatrd in cootiunuas-l,hae modu- lation (CPSl). In partimdnr. the two-pwf paper I*y Aaliu rud S t t ~ x l h m ~ 114. I q introduced the general farm afCP11. In Part-I t h v icstrictcd their attcutiou to full-respolueCP31. while in Psrt-11.~0-nutLord by R~pdb~rk, pnrfiol-mqonrr CPLI wza eousidered. Relative rrmr PPI~ONIUCP H U ~ 6 ~ w t m l ch61~~~t~ci?itics 01 V;U~UIII coutinuoua-phaac modulatbn formats were prcscuted fur the AWGN chnoucl ,u sunling icieal ruhemnt detrrtiuu. It FFF xlao xltowu lllrt r;igliL.uut ~ , n , ~ a ~ i a ~ cw!ui,le*ity wonid Ire rerlnire~i 10 Xlbieve low em)r l > r n l ~ > i ~ i l i l i ~ ~ wllilr n.taittirsg both power and handwidth-efficiency Andersn nod Taylor [I21 introci~nc.rcl ~naalti- h CPM signalling and investigated the error and rpwlrnl pnqwdics. A pruc.tic~d matitation s t the time for the above work wm satellite tmr~mih*ii~n atntl tligit~l mobile radio using nonlinnlinar p o w r amplifiers. A historical wcwiew of the theory and research litemure on CP51 can be found in [G. 87. 101].

rimeng the many CPM & m n that haw bmo rcportcd, the eiws of fill1 rr- rponse s i g m l h g known ar conlinuaw-phosc jmq~ency-shtJ1-bcying (CPFSK) bm 8~sv.m eomiderabicattcntian [7,13.15.38. i6.77.80.85]. The special cnse of hioxry CPFSK with the modulation index 111. often r e f e d to as Minim-Shift-Kcyiup (BISK) P2. 32.471 or Fast-Frpquency-ShifthiftKgiing (FFSK) B2, 33. 411. ha. hcrn studied extensively during the late 1960's for u r on band-limital oon-linear chiut- ncis as an d r e m t i v e to e o n w t i o u d quaternary PSK (QPSK). de Bud* 1331 b ~ ? dm-d the p e d o m c e olMSK with a twc-bit observation interval sod has given a d-synehmnising receiver structure for MSK. Forney 1431 hss given a dear expo aitiou of the use of Viterbi algorithm for msltimum-likelihood aerluenee c~timxtion (MLSE) of coherently detected CPFSK and in particular, oxwniued t b c w c of MSK. The work of de Budn [331 nod Foruey (431 genernterl unwi~ in t r w l iu M-xry CPFSK signalling.

(49)

A restricted c i w of c o n t i n u o u s - p k modulated ripalp known as multi-h sig- n;dling or muiti.lr p h m modulation (3lHPSI) 111. 12. 22, 40. 41. 42. 731 also har rrvci\nl mvrh attention in the literature owing t o their superior error pedo-ce.

In most multi-1, sehems the moclulation index \ d e s q c l i c d y from symbol in- terval to symbol iutervd. Tbi leads to r delayed merging of neighhoming phare trellis paths, n hirh in turn increases the minimum squared Euclidean distance and ihqm,v~n tlnr *m,r ~,rrfonunu<:e. T h prim pair1 for the impmw.1 emperfomauce of ernlri-6 ri@!xllillg c nltu],-l to fixecl-h . ~ I . I I c ~ P ? I is the iuerear. in the receiver romplrxity. This is c,nurd Ihy the use of more than one ,due of h which require UI riclitiooal type of ryochronhtion known m ssper-baud synehroni~ation [40]. In iulnptiv~ multi-h signalling 14% 411 the modulation index in a given symbol interval dcpcn& on both the transmitted symbol nod the state of the system. Adaptive binary multi-b CPM schemes that achieve maximum mmtraint length allowed hy the number of trellis stntcs hnvc been designed and they have been shown t o oKer better energy-bandwidth t r a d e - d than SISK signalliog 1401.

2.2.1 Detection of continuous-phase modulation It Ihx* I,rnl shovu in the litmature [32,33,43,76] that between the tuo elx*aes of dr- tertisu t w h ~ i q n ~ ? ~ available for CPFSK ripuls, the Ma*m~lru-~kelihmd Sequence Dpt~etiou (MLSD) technique yicl& better performance than the symbol-hy-symbol detection technique. For rational "due modulation indices. the CPFSK signal e m be modelled as a finitestate timeinvariant Markw process 16. 14, 191, thus the Vitcrbi algorithm can be uaed for optimum demodulation in the prrrmce of ad- d i t h white Gauasim noise 143. 941. For the pulicular care of hlSK, coherent B1;uiruum-Liilihaod Squcncc DctEEtion nut d e v e the anme enor probability x*

thc eonvcntional non-mhercnt detection of binary FSh with 3 dB less power 133)

Références

Documents relatifs

Des techniques efficaces de codage de source et de codage conjoint source/canal sont alors présentées dans la section 2.3, avant de poursuivre dans la section 2.4 par le résumé et

This approximation may become insufficient however and the influence of a finite number of other states have to be taken into account s o that the function Ff(r) is now a

It is known that channel coding is capable of increasing the diversity order of non-cooperative networks for propagation over general block fading channels, i.e., the channel is

III provides the following outcomes: i) if N r = 1, SM–QAM never outperforms QAM, and the gap increases with the data rate; ii) whatever N r is and if R &lt; 3bpcu, SM–PSK and

Our comprehensive analytical study highlights the following general results: i) it is shown that SSK and GSSK modula- tions can outperform conventional modulation schemes in

We study achievable rates with perfect secrecy in the high SNR regime by characterizing an achievable secrecy degree of freedom (s.d.o.f.) region for two models, the Gaussian

a large number of low-power randomly-distributed sources (UTs), whereas in the latter case interference originated from a small number of high-power regularly-distributed sources

Herein we present an analytic framework to describe the linear Minimum Mean Square Error (MMSE) performance of multiuser channels that exhibit full receive correlation: an