• Aucun résultat trouvé

A massively parallel CFD/DEM approach for reactive gas-solid flows in complex geometries using unstructured meshes

N/A
N/A
Protected

Academic year: 2021

Partager "A massively parallel CFD/DEM approach for reactive gas-solid flows in complex geometries using unstructured meshes"

Copied!
27
0
0

Texte intégral

(1)

HAL Id: hal-02390009

https://hal.archives-ouvertes.fr/hal-02390009

Submitted on 25 Sep 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

A massively parallel CFD/DEM approach for reactive gas-solid flows in complex geometries using unstructured

meshes

Yann Dufresne, Vincent Moureau, Ghislain Lartigue, Olivier Simonin

To cite this version:

Yann Dufresne, Vincent Moureau, Ghislain Lartigue, Olivier Simonin. A massively parallel CFD/DEM approach for reactive gas-solid flows in complex geometries using unstructured meshes. Computers and Fluids, Elsevier, 2020, 198, pp.104402. �10.1016/j.compfluid.2019.104402�. �hal-02390009�

(2)

OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible

Any correspondence concerning this service should be sent

to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr

This is an author’s version published in: https://oatao.univ-toulouse.fr/26710

To cite this version:

Dufresne, Yann and Moureau, Vincent and Lartigue, Ghislain and Simonin, Olivier A massively parallel CFD/DEM approach for reactive gas-solid flows in complex geometries using unstructured meshes. (2020) Computers and Fluids, 198.

104402. ISSN 0045-7930 Official URL:

https://doi.org/10.1016/j.compfluid.2019.104402

Open Archive Toulouse Archive Ouverte

(3)

A massively parallel CFD/DEM approach for reactive gas-solid flows in complex geometries using unstructured meshes

Yann Dufresnea,, Vincent Moureaua, Ghislain Lartiguea, Olivier Simoninb

aCORIA-UMR6614, Normandie Université, CNRS, INSA and UniRouen, Rouen, 760 0 0, France

bInstitut de Mécanique des Fluides de Toulouse (IMFT), Université de Toulouse, CNRS, INPT, UPS, Toulouse, France

a b s t r a c t

Despite havingbeen thoroughlydescribed invarious simple configurations,the study ofgas-fluidized systemsinaCFD/DEM(DiscreteElementMethod)formalismbecomeschallengingasthecomputational domainsizeandcomplexityrise.Forawhile,attentionhasbeendrawntothedesignofphysicalmodels forfluid-particlesinteractions,butarecentchallengefornumericaltoolshasbeentotakeadvantagefrom theincreasingpowerofdistributedmemorymachines,inordertosimulaterealisticindustrialsystems.

Furthermore, unstructuredmeshes areappealing fortheir abilityto describecomplex geometriesand toperformlocal refinements,butleadtosignificantcoding effortinvolvingsophisticatedalgorithm.In aattemptto design anumericaltool abletocope withtheselimitations, the methodologypresented hereproposesan efficient non-blockingalgorithmformassive parallelism management,as wellas an exhaustivecontactschemetodealwitharbitrarilycomplexgeometries,alltobeoperatedonunstructured meshes.Theaimistwo-fold:(i)To assistlargerscalecodesintheirendeavortoclosethesolidstress tensorforexample,(ii)topavethewayforcomplexindustrial-scalesystemsmodelingusingDEM.The methodologyissuccessfullyappliedtoapilot-scalefluidizedbedgathering9.6Msphericalparticlesand enablestoreachinterestingphysicaltimesusingreasonablecomputationalresources.

1. Introduction

InFluidizedBedReactors(FBR), thefluidization regimeoccurs whenthe fluidthat passesthrough thegranularmaterialexceeds the minimum fluidization velocity.In thisregime, the drag force appliedtothesolidgrainscounterbalancesgravity,whichleadsto astrongmixingofthefluidandsolidphases.Thismixingensures efficientheatandmasstransfersacrossthereactorandminimizes temperature and species concentration gradients in the fluidized region. These propertiesare particularly beneficial inthe field of metallurgy, energy and chemical industry for instance, in large scaleoperationssuchaschemicalsynthesis,coatingordrying[1]. Low-temperature combustionwithhighconversionefficiencyand

Nomenclature for non-obvious or recurrent abbreviations (by order of appearance in the text): DEM, Discrete Element Method; ELGRP, Mesh element Group; PTGRP, Particle Group; INTCOMM, Internal Communicator; EXTCOMM, External Commu- nicator; MPI, Message Passing Interface; PTEXTCOMM, Particle External Communi- cator; PGTS, Particle Group To Send; VR , Voronoi Region; F, E,V, boundary Face, Edge, Vertex; BFG, Boundary Face Group; BSBFG, Bounding Sphere of Boundary Face Group; BSF, Bounding Sphere of Face.

Corresponding author.

E-mail addresses: yann.dufresne@insa-rouen.fr, yann.dufresne@coria.fr

lowpollutantemissionssuch asnitrogenoxidesisone ofthenu- merousachievementofFBR.Inthepast,alackofunderstandingof thecomplex dynamicbehavior of such deviceshas beenpointed out[2]asoneofthecauseoftheseveredifficultiesintheirdesign andscale-up [3]. Thus, much time and resource is spent on the buildingofpreliminarytestsonpilot-scale reactors thatwilllead tothe design ofthe final industrial-scalereactor by the meanof empiricalprocesses[4].

ComputationalFluidDynamics(CFD)hasalreadycontributedto theunderstandingofmanyelementaryphysicalprinciplethrough numerousstudiesonvarioussystemsizes,rangingfromthestudy ofheatandmasstransferattheparticlescale[5]tothemodeling ofcompleteindustrialunits[6].Theprimedifficultyresidesinthe largespectrumoflengthandinvolvedtimescales.Indeed,evenin industrialscalesystemswheretheratioofthereactorsize tothe solid particle diameter is very large, the fluidization regime fea- tures macroscopicstructures such asrecirculations, particle clus- ters and gas bubbles of which dynamics prediction strongly de- pendson themicroscopic descriptionof particlecontacts,inpar- ticular.

Today,themost promisingframework forthe modeling ofin- dustrialunitsremains theTwoFluidModel(TFM)alsoreferred to asEuler-Euler method,in which itis assumed that both the gas

(4)

andthe particle phase are inter-penetratingcontinua [6]. Its un- derlyingassumptionistheexistenceofaseparationofscales:the sizeoftheaveragingregionismuchlargerthantheparticlescale.

Thisclass of methods is computationally effectivebut theestab- lishmentofan accurate continuousdescription ofthe solidphase ischallenginganditsformulationrequiressemi-empiricalclosures anddetailedvalidations.Ontheother hand,theDiscreteElement Method(DEM)alsoreferred toasdiscreteparticlemethodallows for a more detailed description of particle-particle and particle- wall interactions. This deterministic approach finds its origins in the molecular dynamics methods initiated by Alder and Wain- wright[7]and hasbeen benefiting fromits advances eversince.

InCFD/DEM,orEuler-Lagrangemethods,thegasphaseisstillcon- sideredcontinuousanditstime evolutionisobtainedfromaclas- sicalCFD-typeEuleriancode,buttheparticlesaredescribedindi- vidually assuming that their motion obeys Newton’s second law of motion, which is solved using standard schemes for ordinary differentialequations.Thislevelofmodelingdesignatedasmeso- scalestillrequiresclosuresfordrag,collisionandotherforcesasa CFDgridcell typically containsup toa few tensofparticles, but itsadvantageslieinitsabilitytoaccountfortheparticle-walland particle-particleinteractionsinamorerealisticmannerthanEuler- Eulermethods.

Forthe time being, apartfromtheclosures stillneededwhen usingCFD/DEM, two mainfactors limit its utilizationforrealistic industrialsystemstudy:i) Thesolving ofthemomentumbalance foreach particle gives rise to substantial costs that can only be overcomeby themeanofoptimizedparallelismmanagement and ii) industrialsystemgeometries areoftencomposed ofcylindrical andirregularpartsthat preventtheuseofconventionalCartesian meshes and necessitate a proper methodology to treat particle- wall contacts. Reaching sufficient computational performances in CFD/DEMsimulations servestwo purposes:thefirst istodevelop closurelaws which can represent the effective averaged interac- tionsinthelargerscalemodelssuchasTFM,andthesecondisto pavethewayforpilot andindustrial scale systemsimulations in thelongrun.

Many open-source or commercialCFD/DEM packageshave al- readyshowngoodcapabilitiesforsimulatingsuchsystemsormore complex ones. Among them, one can cite NGA [8] and MFIX- DEM[9]parallelsolverswhichare bothcapabletosimulatereac- tiveflows basedonCartesianmeshes. Othercodes relyingonun- structured meshesare built based on the coupling ofone solver dedicatedtothefluid phaseandanothertothesolid phase,such as OpenFoam®+LIGGGHTS® [10] and Fluent®+EDEM CFD® [11]. This study presents the design of a massively parallel code for simulatingbothphasesonunstructuredmeshes.Concerningcom- plex geometries, contrary to the algorithm suggested by Lin and Canny[12]implementedinthepopularI-Collide[13]collisionde- tectionpackage, the methodproposed inthiswork is ableto re- turn the measure of a particle penetration depth into the wall, whilebeingsimplerthantheVoronoi-clipalgorithm[14],whichis designedforarbitrarycomplex3D polyhedracollisions.Thiscode canalsoworkinreactingconditions.

AnapproachcombiningDEMtorepresentthesolidphasewith Large-EddySimulation (LES)equations solved on an Eulerianun- structured grid forthe fluid phase hasbeen implemented inthe finite-volume code YALES2 [15], a LES and DNS (Direct Numeri- cal Simulation) solver based on unstructured meshes. This code solvesthelow-MachnumberNavier-Stokesequationsforturbulent reactiveflows usinga time-staggeredprojection methodfor con- stant[16]orvariabledensityflows[17].

There isabundantliteratureonthesubjectofthedifferentex- istingmodels fordrag[18],collisionforce[19]andother closures thatmaybeusedforturbulenceorheat transfermodeling.These discussionsdon’tfallwithinthescopeofthiswork,whichfocuses

onamethodologyforperformanceincrease.Thus,onlyelementary modelsareusedinthepresentwork.Furthermore,asheattransfer neitherplays asignificant rolein codeperformancesnorinvolves extra specific numericalmethodology, our attentionturns to the studyofanisothermalgas-soliddensefluidizedbedexperimented attheUniversityofBirmingham[20].

In this context, this paper is organized in seven parts. The Euler–Lagrange formalism is first describedfor both the gaseous andtheparticle phaseinSection 2.Some noteworthyfeatures of theYALES2codearethenbrieflyintroducedinSection3.Thepur- poseofSection4istopresentanefficientalgorithmforparallelism management.Then,aviablemannertotreatsphericalparticlecon- tactswitharbitrarycomplexgeometriesispresentedinSection5. The main caseunderstudyis describedinSection 6. Finally,the performancesofthecodearemeasuredinSection7.Usefulabbre- viationscanbefoundinfootnote1.

2. TheEuler–Lagrangeformalism

This section exposes themain models andnumerics used for solvingthelow-MachnumberNavier–Stokesequationsderivedfor granularflows inaLESframework.Then, adescriptionoftheclo- suresandnumericsforsolidphasemodelingispresented.Thecou- plingbetweenthephasesisprovidedintheAppendixA,including theinterpolation/projectiontechniqueandthedescriptionoffilter- ingstepssuitedforunstructuredmeshes.

2.1. Gasphasemodeling

The LES governing equations for granular flows are obtained from the filtering of the unsteady, low-Mach number Navier–

Stokesequations,takingthelocalfluidandsolidfractionsintoac- count. Further details concerning the volume filtering operations canbe foundin[21].Thegoverningequationsformassconserva- tion,momentumtransport,sensibleenthalpytransportandspecies transportfinallyread:

∂∂t(ερ¯)+·(ερ¯u˜)=0, (1)

∂∂t(ερ¯u˜)+·(ερ¯u˜u˜)=P¯+·(ετ¯)+ερ¯g+Fp→f, (2)

∂∂t ερ¯˜hs

+· ερ¯u˜˜hs

=·μt

Prth˜s

+dP0

dt +· ελ∇T

+εω˙T+Qp→f, (3)

∂∂t ερ¯Yk

+· ερ¯u˜Yk

=· μt

Sck,tYk

+·

ερ¯DkYk

+εω˙k. (4)

u,ρ,μ,P, hs,P0,T, λ,Dk,Yk,ε are thegas velocity, density,dy-

namic viscosity, dynamic pressure, sensible enthalpy, thermody- namicpressure,temperature,thermalconductivity,diffusioncoef- ficient,mass fractionofspeciesk,andfluid fraction,respectively.

ω˙kis the chemical source termand ˙ωT the enthalpy source term.

Theturbulentvariablesnotedμt,PrtandSck,tarethegasturbulent viscosity,turbulentPrandtlnumberandturbulentSchmidtnumber ofspeciesk.Theviscousstraintensorτ¯ iscalculatedas:

τ¯=+μt)u˜+u˜T23(·u˜)I

, (5)

whereIistheidentitytensor.Fp→f andQp→f arethemomentum sourcetermandtheheatsourceduetothecouplingwithparticles,

(5)

respectively.Thereisnospeciestransferbetweengasandparticles.

Details concerning the computationof theseterms can be found intheAppendixA.Theseequationsaresupplementedbytheideal gasEquation-Of-State(EOS):

P0=ρ¯r˜T with ˜r=

kS

RYk

Wk, (6)

with r being the ideal gas mass constant, R being the ideal gas constant, Wk themolarmass ofspeciesk,andSbeingtheset of species.

Forthesake ofclarity,thefluid filteredquantitiesu˜,ρ¯,P¯,h˜s, T,Yk,τ¯, ˜r,Fp→f andQp→f willbe writtenu,ρ,P,hs,T, Yk,τ,r,

FpfandQpfinthefollowingsections.

Eqs. (2)–(4) are integrated using an explicit variable density solverprovidingafullymass,momentumandenthalpyconserving timeadvancement.

2.2. Particlephasemodeling

The translational motion of a particle’s center of gravity and itsrotationalmotionaroundthecenterofgravitycanbefullyde- scribed by the following system of equations given by Newton’s second law, assuming spherical and constant mass particle with highsolid/gasdensityratio:

mp

dup

dt =FD+FG+FP+FC with dxp

dt =up, (7)

Ip

dωp

dt =MD+MC, (8)

wheremp,up, xp,Ip andωp are theparticle mass,velocity, posi-

tion,momentofinertiaandangularvelocity, FD isthedragforce, FG=mpg is the gravity force and FP=VpP@p is the pressure gradient force. In the last term, Vp is the particle’s volume and

P@p is the local pressure gradient interpolatedat the centerof the particle. As in many dense gas-fluidized bed cases, a soft- sphere model[22]is employed,inwhichparticles areallowed to overlapotherparticlesorwallsinacontrolledmanner.Aresulting contact force FC accounting forparticle-particle andparticle-wall repulsion isthus addedinthe momentumbalance ofeach parti- cle.MC isthetorqueofthecontactforceFCandMD isthetorque offluiddragforces.Theparticletemperatureevolutionisgivenby:

mpCp,pdTp

dt =QF, (9)

whereCp,pandTp aretheparticlemassheatcapacityandtemper- ature,andQFistheheatfluxexchangedwiththefluid.

The source terms for particles FD and MD are calculated us- ing a combination ofthe Ergun [23] andWen andYu [24] drag laws,andaclosurefromtheworkofDennis[25],respectively.The closuresused forthe computationofQF won’tbe detailedinthis study,whichfocusesonanisothermalapplication.Therelationbe- tweenFD,FP andFpf,betweenQF andQpf,aswell asdetails concerningtheinterpolationkernelsaregivenintheAppendixA.

Asecond-orderexplicitRunge-Kutta(RK2)algorithmisusedto advancetheparticles intime.Theuseofasoft-spheremodelde- mandsthattp<TC,wheretpistheparticletimestepandTCis acontacttimedescribedinSection2.2.1.Inthiswork,tp=TC/10 wasconsidered,toensureareasonableprecision.

2.2.1. Modelingofcollisions

Thetotal collisionforceFC actingon particleaiscomputedas the sum of all pair-wise forces fcolb→a exerted by the Np particles andNwwallsincontact.Asparticlesandwallsaretreatedsimilarly

Fig. 1. Soft sphere representation of two particles undergoing collision.

duringcollisions,thebindexreferstoboth:

FC=

Np+Nw

b=1

fcolba with fcolba=fcoln,ba+ftcol,ba. (10)

Here a linear-spring/dashpot [22] model is used along witha simpleCoulombslidingmodelaccountingforthe normal

fcoln,ba

and tangential

ft,b→col a

components of the contact force, respec- tively,asintheworkofCapecelatro[21].Foroneparticle(orwall) bactingonaparticlea:

fcoln,ba=

−knδabnab2γnMabuab,n

0 and

fcolt,b→a=

μtan||fcoln,ba||tab if δab>0,

0 else. (11)

Fig.1showsarepresentationoftwocollidingparticles.knisthe normalspringstiffness,γnisthenormaldampingparameter,and μtan isthe friction coefficient. The termδab=ra+rb||xbxa||

isdefinedasthe overlapbetweenthe a andb entities expressed usingeach particleradius rp andcenter coordinates xp. The sys- tem effective mass Mab is expressed as Mab=(1/ma+1/mb)1. The unit normalvector nab from particlea towards entityb and aunittangentialvectortabaredefinedusingparticles’relativepo- sitionandvelocity.nabandtabarecalculatedasfollows:

nab= xbxa

||xbxa|| and

tab=

u

abuab,n

||uabuab,n|| if ||uabuab,n||>0,

0 else. (12)

The relative velocity of the collidingsystem atthe contactpoint uabiswritten:

uab=(uaub)+(raωa+rbωb)nab. (13) Itsnormalcomponentisthengivenbyuab,n=(uab·nab)nab.

Using Newton’s third law yields an analytical expression for the system’s natural frequency ω0=

kn/Mab and the contact time[26]:

TC= π ω20γn2

mp

kn

. (14)

Références

Documents relatifs

En outre, la différence d’évolution avec l’emploi intérimaire en fin de trimestre peut s’expliquer par la période couverte : l’évo- lution de l’emploi en fin

For the May sample of the Roche population, the following variables were analyzed: date on which the nest cycle started, body size, intensity of red throat coloration corrected

After showing some comparisons with analytical results, some computations on real automotive engines are done with KIFP and compared, when results are

A practical analytical calculation of their surfaces and volumes is given in the general case: any number of intersecting spheres of any radii.. Applications to trilateration and

(This is the only case in which a wall with local configuration ◦|◦ can become active. As required by the definition of admissible configurations, the pointer will be set on the left

Our method to study the TASEP consists in the construction of a new covering Markov chain X // on a set Ω n of complete configurations, that satisfies two main requirements: on the

We have discussed in this paper the speed of approach to equilibrium for a colli- sionless gas enclosed in a vessel whose wall is kept at a uniform and constant tem- perature,

Results were presented in the form of graphs that be can directly used to measure local fracture parameters with tests on axisymmetrically notched specimens or to predict