• Aucun résultat trouvé

15 2.3 Hierarchical grid generation

N/A
N/A
Protected

Academic year: 2021

Partager "15 2.3 Hierarchical grid generation"

Copied!
3
0
0

Texte intégral

(1)

Contents

1 Introduction 1

1.1 Background . . . . 1

1.2 Scope and methodology of the thesis . . . . 2

1.3 Thesis outline . . . . 5

2 Hierarchical grid generation approach 7 2.1 Model definition . . . . 7

2.2 Hierarchical parameters specification for hybrid grid generation . . . . 10

2.2.1 Hybrid generation flags . . . 11

2.2.2 Anisotropic parameters . . . 12

2.2.3 Isotropic parameters . . . 14

2.2.4 Source entities . . . 15

2.3 Hierarchical grid generation . . . 16

3 Unstructured simplicial grid generation 19 3.1 Introduction . . . 19

3.2 Delaunay triangulation . . . 22

3.2.1 Definition and properties . . . 22

3.2.2 Construction methods . . . 24

3.2.2.1 The Bowyer-Watson algorithm . . . 24

3.2.2.2 Bowyer-Watson primitive operations . . . 25

3.2.2.3 Robustness and round-off error . . . 26

3.2.2.4 Performance . . . 27

3.3 Isotropic simplicial grid generation . . . 27

3.3.1 General unstructured grid generation scheme . . . 27

3.3.2 Boundary recovery . . . 31

3.3.3 Background grid . . . 35

3.3.4 Internal point generation . . . 37

3.3.5 Grid optimization . . . 42

3.3.5.1 Element quality . . . 45

3.3.5.2 Smoothing . . . 46

3.3.5.3 Local modifications . . . 47

iii

(2)

Contents

3.3.5.4 Optimization strategy . . . 48

3.3.5.5 Performance . . . 48

3.4 Anisotropic simplicial grid generation . . . 49

3.4.1 Metrics and distances . . . 51

3.4.2 Metric definition . . . 53

3.4.3 Anisotropic Delaunay triangulation . . . 54

3.4.4 Anisotropic internal point creation . . . 56

3.4.5 Anisotropic optimization . . . 57

4 Hybrid surface grid generation 59 4.1 Introduction . . . 59

4.2 Hybrid edge grid generation . . . 62

4.2.1 Edge parametric representation . . . 62

4.2.2 Semi-structured edge grid generation . . . 63

4.2.3 Unstructured edge grid generation . . . 64

4.3 Hybrid face grid generation . . . 66

4.3.1 Face parametric representation . . . 66

4.3.2 Semi-structured face grid generation . . . 68

4.3.2.1 Hyperbolic grid generation equations . . . 70

4.3.2.2 Discretization and boundary conditions . . . 70

4.3.2.3 Modifications for surface hyperbolic grid generation . 71 4.3.2.4 Termination criteria . . . 72

4.3.2.5 Example . . . 73

4.3.3 Unstructured face grid generation . . . 73

4.3.3.1 The two-dimensional Delaunay triangulation . . . 74

4.3.3.2 Surface internal point creation . . . 74

4.3.3.3 Example . . . 75

4.4 Automatic isotropic parameter specification . . . 76

4.4.1 Introduction . . . 76

4.4.2 Automatic curvature-based edge grid generation . . . 78

4.4.3 Automatic curvature-based face grid generation . . . 80

5 Semi-structured volume grid generation 83 5.1 Introduction . . . 83

5.2 Semi-structured hexahedral/prismatic grid generation . . . 87

5.2.1 General scheme . . . 87

5.2.2 Computation of marching directions . . . 90

5.2.3 Computation of marching distances . . . 93

5.2.4 Termination criteria . . . 94

5.2.5 Interfacing with the unstructured grid generator . . . 95

5.3 Generalized fronts . . . 97 5.3.1 One-dimensional generalized fronts for surface grid generation 97

iv

(3)

Contents

5.3.2 Two-dimensional generalized fronts for volume grid generation 99

5.4 Front unfolding . . . 101

5.5 Front folding . . . 104

6 Results 109 6.1 Surface grid examples . . . 109

6.2 Unstructured grid examples . . . 114

6.3 Hybrid grid examples . . . 119

6.4 Validation . . . 122

7 Conclusions and perspectives 127 7.1 Conclusions . . . 127

7.2 Perspectives . . . 128

Bibliography 131

v

Références

Documents relatifs

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

from the main server pages and to luster only the researh teams topis for. theme 3

Hence, to have a representation of the power flow affinities of the grid power lines, we can play those perturbations on each line independently, one after the other. It can

Connected Power Converters Operating Under Grid Distortions,” IEEE Trans. Jasinski, “Direct power and torque control of AC-DC-AC converter–fed induction

ing degrees of texture were subjected to CCVD and three kinds of carbon filaments (few-wall CNTs bundles, individ- ual MWNTs and CNFs) were grown over these substrates depending on

Chapitre IV. 127) Nous synthétiserons ici les réponses obtenues au questionnaire. Cela nous amènera à décrire en un premier temps les caractéristiques sociodémographiques

The effective properties of the material strongly depend on them: when the elasticity coefficients in the fibers are of the same order of magnitude as in the matrix and when the

However, we have seen in Figure 8 that the shape of isometric ratio of attached heads differ slightly between the two models, which we interpret as a result of the competition