• Aucun résultat trouvé

What are the traits of Phelipanche ramosa (L.) Pomel that contribute to the success of its biological cycle on its host Brassica napus L.?

N/A
N/A
Protected

Academic year: 2021

Partager "What are the traits of Phelipanche ramosa (L.) Pomel that contribute to the success of its biological cycle on its host Brassica napus L.?"

Copied!
11
0
0

Texte intégral

(1)

HAL Id: hal-01702104

https://hal.archives-ouvertes.fr/hal-01702104

Submitted on 28 May 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

What are the traits of Phelipanche ramosa (L.) Pomel that contribute to the success of its biological cycle on

its host Brassica napus L.?

Stéphanie Gibot-Leclerc, Georges Salle, Xavier Reboud, Delphine Moreau

To cite this version:

Stéphanie Gibot-Leclerc, Georges Salle, Xavier Reboud, Delphine Moreau. What are the traits of

Phelipanche ramosa (L.) Pomel that contribute to the success of its biological cycle on its host Brassica

napus L.?. Flora, Elsevier, 2012, 207 (7), pp.512–521. �10.1016/j.flora.2012.06.011�. �hal-01702104�

(2)

ContentslistsavailableatSciVerseScienceDirect

Flora

j ou rna l h o m e p a g e :w w w . e l s e v i e r . d e / f lo r a

What are the traits of Phelipanche ramosa (L.) Pomel that contribute to the success of its biological cycle on its host Brassica napus L.?

Stéphanie Gibot-Leclerc

a,∗

, Georges Sallé

b

, Xavier Reboud

c

, Delphine Moreau

c

aAgroSupDijon,UMR1347Agroécologie,BP86510,F-21000Dijon,France

bLaboratoiredeParasitologieVégétale,UPMCUnivParis06,F-75005Paris,France

cINRA,UMR1347Agroécologie,BP86510,F-21000Dijon,France

a r t i c l e i n f o

Articlehistory:

Received5December2011 Accepted23March2012

Keywords:

Phelipancheramosa(L.)Pomel=syn.

OrobancheramosaL.

BrassicanapusL.

Parasitism Biologicalcycle Trophicrelationships Competition

a b s t r a c t

InFrance,thefactthattheholoparasiticplantPhelipancheramosahasadaptedtooilseedrapeoverthe pasttwodecadesisdeeplyworrying,asitcancauseover80%yieldlosses.Itsdistributionareaand therangeofitshostplants,whethertheyarecultivatedplantsorweeds,areexpandingdramatically.

Asnonaturalregressionoftheinfestationhasbeenrecordedsofar,weundertookadetailedstudy ofthedifferentstepsofthebiologicalcycleoftheP.ramosa/oilseedrapepathosystemtodetermine theadaptivetraitsthatfavourtheparasite’ssuccess.Wecombinedexperimentalapproachesinvolving controlledconditionswithinvitroandinpotco-cultivationontheonehandandafieldtrialontheother hand.Theseexperimentsallowedustodeterminea4-mmzonearoundhostrootswithinwhichoilseed raperootexudatesstimulatethegerminationofP.ramosa,theearlyactionofhostrootexudatesand therapidfixationoftheparasiteonhostroots.WealsounveiledthatP.ramosawasabletotuneits biologicalcycletothatofoilseedrape.Theimportanttrophicrelationshipsbetweentheparasiteandits hostinducedphenotypic(dwarfism,leafchlorosis,siliqueabortion)aswellasagronomical(90%yield losses)consequencesonoilseedrape.Ourresultscanconstitutearelevantbasisforfurtherexperimental studies.Theresearchperspectivestheyopenwillfocusonkey-processesofthehost–parasiterelationship, andmoreparticularlyonthetrophicrelationshipsthataresetupasfarascarbonassimilatesandminerals suchasnitrogenareconcerned.

© 2012 Elsevier GmbH. All rights reserved.

Introduction

Amongcropbioagressors,thePhelipancheandOrobanchegenera areobligateparasitesofdicotyledonousrootsandareconsideredas oneofthemainbioticconstraintsoneconomicallyimportantcrops.

Theyarealsoknowntobethecauseofcroplossesrangingfrom5to 100%(Joeletal.,2007;Musselman,1980;ParkerandRiches,1993;

PressandGraves, 1995;Pressand Phoenix,2005; Schneeweiss, 2007).Phelipancheramosa(L.)Pomel(Joel,2009)ismostdevas- tatingand hasby farthe widestrange of hosts, among which Solanaceae,Brassicaceaeandlegumesareprominent(Buschmann etal.,2005;Haidaretal.,2003;Joeletal.,2007;ParkerandRiches, 1993).InFrance,P.ramosagotremarkablyadaptedtooilseedrape, causingdeeplyworryinglossesofabout80%,butalsotohempand tobacco.SofartheadaptationofP.ramosatooilseedrapeseemsto haveremainedlimitedtotheFrenchterritory.Thedistributionarea

Correspondingauthorat:AgroSupDijon,UMR1347Agroécologie,Département AgronomieAgroéquipementElevageEnvironnement,26BdDrPetitjean,BP87999, 21079DijonCedex,France.Tel.:+330380772803;fax:+330380772551.

E-mailaddress:stephanie.gibot-leclerc@dijon.inra.fr(S.Gibot-Leclerc).

oftheparasiteandtherangeofitshostplantsappeartohavedra- maticallyexpandedlately,withmorethan70weedspeciesasnew hosts(Bouletetal.,2007;Braultetal.,2007;Gibot-Leclercetal., 2003,2006,2009).

Thebiologicalcycleofepirhizalparasitesisusuallycomposed of two distinct phases (Bouwmeester et al., 2003; Joel et al., 2007;Keyesetal.,2001;ParkerandRiches,1993;Rubiales,2003;

Sauerborn,1991;Yoder,2001).Underground,thefirstphaseisini- tiatedbyseedgerminationandgoesonwiththefixationonhost rootsandthepenetrationintohosttissuesalongwiththedevelop- mentofanabsorptionsystemcalledahaustorium.Aboveground, thesecondphasestartswiththeemergenceandthenthegrowthof floralscapesandendswithfloweringandfructification.Inrecent yearsseveralauthors(Buschmannetal.,2005;Echevarría-Zome ˜no etal.,2006;Goldwasseretal.,2001;Haidaretal.,2003;Kogan, 1994;Luetal.,2000;PérezdeLuqueetal.,2004;Salléetal.,2000) haveinsistedontheneedtoincreaseourknowledgeaboutparasitic plantbiologyinordertomakeiteasiertodevelopsuitableprotocols foranefficientcontrol.Theknowledgeacquiredaboutbroomrape sofardealswiththebiologyofthemainbroomrape/hostpathosys- tems, i.e. Orobanche cernua/sunflower, O. crenata/faba bean, O.

cumana/sunflower,Phelipancheramosa/potato,P.ramosa/tobacco, 0367-2530/$seefrontmatter© 2012 Elsevier GmbH. All rights reserved.

http://dx.doi.org/10.1016/j.flora.2012.06.011

(3)

P. ramosa/tomato. However, a detailed study of the biological cycleoftheP.ramosa/oilseedrapepathosystemhasneverbeen performed. Acquiring knowledge about the biology of the P.

ramosa/oilseedrapepathosystemisallthemorecrucialasrecent molecularbiologyworkshaveprovedthatthereexistatleasttwo differentP.ramosapathovarswithclearcuthostspecificities,which makesculturemanagementinseverelyinfestedplotsevenmore complicated.

Inordertodeterminetheadaptivetraitsthatfavourthepar- asite’s success, we characterized the biological cycle of the P.

ramosa/oilseedrapepathosystem.Moreprecisely,wedetermined (1)theextentofthezonewhereoilseedraperootexudatesstimu- lateP.ramosaseedgermination;(2)thesuccessrateofthefirst fixationstepsof P.ramosaonhostroots followingitsgermina- tion;(3)howthedifferentphasesoftheP.ramosadevelopment cycle tune in with the oilseed rape cycle; (4) the phenotypic andagronomicalconsequencesoftheparasitismofP.ramosaon oilseedrape.Inordertomakeiteasiertostudytheearlydevel- opment steps of P. ramosa, we decided to work with in vitro andsandwichco-cultivationmethods.Inparallel,afieldtrialwas

Fig.1.DevelopmentcycleofthePhelipancheramosa/oilseedrapepathosysteminCharente-Maritime(France).

(4)

performedtocharacterize the consequences ofP.ramosa para- sitismonoilseedrapeatthewholeplantlevelandatthecanopy level.

Materialsandmethods

Laboratory and field experiments were conducted between 2000and2004.

Seedorigin

The seeds were collected in 1999 from natural populations of P. ramosa that had severely infested fields of oilseed rape (BrassicanapusL.Brassicaceae)inSaint-Pierre-de-Juillers(Latitude 45,9333; Longitude −0.3667; Charente-Maritime, France). Once harvested,theseedsweresiftedtocleanthem.Oilseedrapeseeds (var.Zénith)wereprovidedbytheCETIOM(Centretechniquedes

Fig.2. (A)MorphologicalaspectofaPhelipancheramosaseedinSEM.Wecannotethewayalveoliarearranged(*)aswellaspunctuationdetails(arrows)ofthesurfacecell innerwalls.(B)LongitudinalsectionofaP.ramosagerminated8daysafterstartinginvitroco-cultivationwithoilseedrape.(C)Phelipancheramosagerminated11daysafter startingsandwichco-cultivationwithoilseedrape.(D)Phelipancheramosafixationonanoilseedraperoot,inthefield28DAE.(E)VeryyoungP.ramosatubercles2months afterstartinginvitroco-cultivationwithoilseedrape.(F)VeryyoungtubercleinSEM,inthefield28DAE.(G)Youngtuberclewithprotuberances(arrows)correspondingto theparasite’sfutureadventitiousroots,inthefield28DAE.(H)YoungtubercleinSEM,inthefield28DAE.al,albumen;ch,chalazazone;hlr,hostlateralroot;mi,micropyle;

ra,radicle;s,seed;tu,tubercle.

(5)

Table1

NumbersofPhelipancheramosaplantsforeachofthe5undergroundontogenicstagesobservedonall30infestedoilseedraperootsystemsinasoilthatisnaturallyinfested bybroomrapeinCharente-Maritime(France).

Samplingdate(daysafteroilseedrapeemergence(DAE)) Phelipancheramosaontogenicdevelopmentalstages

Fixation Youngtubercle Oldtubercle Bud Undergroundstem Total

7DAE 0 0 0 0 0 0

12DAE 0 0 0 0 0 0

19DAE 0 0 0 0 0 0

28DAE 8 46 0 0 0 54

49DAE 1 60 36 12 0 109

70DAE 0 218 368 21 128 735

97DAE 0 0 100 20 90 210

145DAE 0 0 417 267 257 941

194DAE 0 0 0 ++ +++ >1500

244DAE 0 0 0 0 +++ >1500

Whenthehostrootsystemwasinfestedbymorethan50broomrapes,theexactnumberofeachofthebroomrapedevelopmentalstagescouldnotbedetermined.Their relativefrequencyisindicatedbyplussigns:+,lownumbersoftheparasite’sdevelopmentalstage;++,averagenumbers;+++,highnumbers.

oléagineuxmétropolitainsetduchanvreindustriel,France).Phe- lipancheramosaaswellasoilseedrapeseedswerekeptinglass containersatroomtemperature.

Invitroexperiment

Afterdisinfection(70%ethanol,5min,and3%calciumhypochlo- rite solution, 10min), 15–25 seeds of P. ramosa were laid on WhatmanGF/Apaperdiscs(Ø12mm).Eightdiscspreparedthat way wereplaced on a Whatman GF/A paper sheet(Ø 90mm) at the bottom of a Petri dish (Ø 90mm), and then hydrated.

TwentyPetridishes,containing120–200seedseach,wereplaced indarknessat20Cfor14daystopre-conditiontheseeds(obli- gate hydrationperiod). Thereafter, one disinfectedoilseedrape seedwasplacedeachinarectangularplasticboxcontainingMS (1/2)(MurashigeandSkoog,1962)nutrientsolutionwith1%agar.

Twentyboxespreparedthatwaywereplacedinagrowthchamber, at23±1C(day)and18±1C(night),witha16-hphotoperiod, and70␮molm−2s−1 photosyntheticphotonfluxdensity(PPFD).

Oncetheoilseedraperoot systemhad developed (i.e. 2 weeks afterthebeginningoftheexperiment),the8discsbearingthepre- conditionedP.ramosaseedsweretransferredunderthehostroot system.TheP.ramosa/oilseedrapeco-cultivationwascarriedout inthesametemperatureandlightconditions.Thedevelopmentof theparasiteonoilseedraperootswasmonitoredfor12weeks.The observationswerecarriedoutunderastereomicroscopedailyfor 4weeks,andthenonceaweekforthefollowing8weeks.Foreach observation,thepercentageofP.ramosagerminationinducedby oilseedraperootexudateswascounted,andtheearlydevelopmen- talstagesoftheparasiteonitshostwererecorded.Ourobservations werealsocarriedoutinlightandscanningelectronmicroscopy (SEM).Thewholeexperimentwasperformedtwice.

Sandwichexperiment

Losner-Goshenandcollaborators’method(1998)wasapplied, withslightmodifications.Afterdisinfection(70%ethanol,5min, and3%calciumhypochloritesolution,10min),441mg-P.ramosa seedsamples(approximately350seedseach)weredriedunder a laminar flow at room temperature for 24h. Then each sam- plewassprinkledontoaGF/Asheet(Ø90mm)atthebottomof aPetri dish(Ø90mm),and thenhydrated.The 44Petri dishes wereplacedindarknessat20Cfor14daystoachieveseedpre- conditioning.Forty-fouroilseedrapeseedswerelaidindividually ontoGF/Asheets(Ø90mm)atthebottomofPetridishes(Ø90mm), andthenhydrated.Afteroilseedrapeseedgerminationindark- ness at 30C, each oilseedrape seedlingwas laid onto a GF/A sheet(Ø90mm)incontact withthepre-conditionedP.ramosa

seeds.Asecondsheetwasaddedtocoveralltheseeds.Thesand- wichedindividualoilseedrapeseedlingandbroomrapeseedswere placedonpiercedplasticPetridishes(Ø90mm)whosesideshad beennotched.Eachof the44 modified Petridishes wasplaced slantwiseinsideaterra-cottapot(Ø15cm)filledtwo-thirdsfull witha1vol:1volpottingsubstrateandplantingsubstratesoilmix.

TwentymlofMS(1/2)nutrientsolutionwasaddedtoeachpot.

Theco-cultivationoftheP.ramosa/oilseedrapepathosystemwas carriedoutinthegreenhouse[23±1C(day)and18±1C(night), and55%relativehumidity].Thenaturallightwascomplementedby artificiallight(100␮molm2s1PPFD)tohavea16-hphotoperiod.

Tenmlofnutrientsolutionwasaddeddaily.Phelipancheramosa developmentonoilseedrapewasassayedfor12weeks.Samples weretakendailyduringthefirstweek,every2daysforthenext 2weeks and thenoncea weekfor theremaining9weeks. For eachsampling,therootsystemof2oilseedrapeplantswastaken outandobservedundera stereomicroscope.Thepercentageof P.ramosagerminationinducedbyoilseedraperootexudateswas countedandtheearlydevelopmentalstagesoftheparasiteonits hostwererecorded.Ourobservationswerealsocarriedoutinlight microscopyandSEM.Thewholeexperimentwasperformedtwice.

Fieldtrial

On28thAugust2000,oilseedrapewassowedonasoil,con- sistingofsilt,clayandsand,severelyinfestedbyP.ramosaand locatedinVillemorin(Latitude:46.003887;Longitude:−0.296944, Charente-Maritime,France).The4-replicatetrialwascarriedoutin wholeFischerblocks.Theexperimentwasledthroughtilloilseed rapeharvest.Samplesweretakenat10differentdates,i.e.7,12, 19,28,49,70,97,145,194and244DAE(daysafteremergence).

Ateachsamplingdate,30oilseedrapeplantsweredugoutand observedundera stereo microscope.Oilseedrapedevelopmen- talstagesweredeterminedandinfestedhostrootswerecounted.

Infestationintensity wasestimated bycounting thenumber of P.ramosaontogeneticstagesfixedonhostroots asfollows: (a) fixation; (b) youngtubercle without adventitious roots;(c) old tuberclewithadventitiousroots;(d)budwithadventitiousroots butwithoutastem;(e)undergroundstem;(f)stememergence;(g) flowering;(h)fructification.Ourobservationswerealsocarriedout inlightmicroscopyandSEM.

Histologicalandcytologicalstudiesunderalightmicroscope andascanningelectronmicroscope(SEM)

Theparasiteonthehostplantwastaken atdifferentdevel- opmentstages,fixedina4%glutaraldehydesolutioninapH7.4 cacodylatebuffer for 24hand then post-fixed in a 1%osmium

(6)

tetroxide solution in the same buffer for 1h (Ledbetter and Porter, 1963).Afterthat, thesampleswere dehydratedbydip- pingthemintoethanolbathsofincreasingethanolconcentrations andaraldite-includedaccordingtoGlauertandGlauert’smethod (1958).Thentheincludedsampleswereslicedintosemi-thinsec- tionsforphotonmicroscopyandstainedwithtoluidineblue.

For SEM observations, samples first fixed in a glutaralde- hydesolutionforseveraldaysweredehydratedbydippingthem intobathsofincreasingethanol concentrations.Thentheywere CO2-treateduntilthecriticalpointandsputter-coatedwithgold (Guillaumin,1980).

Results

Fig.1givesacomprehensiveoverviewofallresultsdetailedin thefollowingandillustratesthedevelopmentalcycleoftheparasite anditshost.

UndergroundlifestageofPhelipancheramosa

Phelipancheramosaseedsareoval-shaped,350␮mlong,250␮m wide,andweigh3␮g.Theyarecoveredbyahardreticulatecoat.

Thenarrowestendcorrespondstothemicropylewhiletheround- estoppositeend correspondstothechalaza(Fig.2A).Thetesta containsalveolarcavitiesinit(Fig.2A,*)whicharecomposedof dehydratedcellsalignedalongthelongaxisoftheseed.Asthecyto- plasmiccontentofcellsisgone,theouterwallhascollapsedand followsthecircularpunctuationsoftheinnerwall(Fig.2A,arrows).

Thealbumen (Fig.2B)iscomposedof3or4layersofcells con- tainingnumerouslipidglobulesandstarchgranules.Itsurrounds theprimitiveembryodevoidofradicle,gemmuleorcotyledons.

Afterpre-conditioning,onlytheP.ramosaseedssituated nearby theoilseedraperoots(lessthan4mminourconditions)wereable togerminate.TheradicleofP.ramosajutsout ofthemicropyle region(Fig.2B)andgrowstowardsthehostroot(Fig.2C).Inthe absenceoffixationonoilseedraperoots,P.ramosaseedsdegen- eratedanddiedinlessthan3or4days.Intheinvitromethod,P.

ramosaseedgerminationoccurred3days(61growingday-degrees, base0)afterstartingtheco-cultivation.Onthe8thday,P.ramosa germinationpercentagewas50%anditreached95%3dayslater.

Withthesandwichmethod,thelag-timewaslonger(7days),the germinationpercentagewas50%onthe11thdayanditreached 90%onthe15thday.Takingintoaccountthedifferentlag-times probablyduetotheageoftheoilseedrapeseedlingswhenparasite andhostwereputtogether,wecanconsiderthatP.ramosager- minationoccurredwhenoilseedrapeseedlingswere11–14days old,whilethemaximalgerminationpercentagewasreachedwhen theywere21daysold(Fig.1).

Inthefield,oilseedrapeemergenceoccurred9daysaftersow- ing(Fig.1).Whenthefirstsamplesweretaken7,12and19DAE, hostrootswerenotyetinfectedbyP.ramosa(Table1).Yet,the resultsobtainedwiththeinvitroandsandwichmethodsindicate thatthemaximalgerminationpercentagefor P.ramosaseedsis reachedwhenoilseedrapeis21daysold.Wecanthereforehypoth- esizethatthe21-day-old-oilseedraperootexudates(B6,i.e.6-leaf stage)didinducethegerminationofnumerousP.ramosaseeds, butthesegerminationswereverylikelylostduetotheuproot- ingandwashingstepsoftherootsystems.Parasitefixationsand youngtubercleswereobservedfromthe4thsamplingdateonward (Fig.1,B8,i.e.8-leafstage,28 DAE).Itisimportanttonotethat P.ramosa only fixed itself onthe lateral roots of oilseed rape.

Atthat time, youngtubercles werealready 5 times as numer- ousasfixations(Table1).Fieldresultswereinaccordance with thoseobtainedwiththeinvitroandsandwichmethods.Phelipanche ramosafixationsweredetectedwhenoilseedrapewas30daysold

andyoungtuberclesonlydeveloped1monthlater.Inthesecon- trolledconditions,P.ramosadevelopmentdidnotgofurtherthan theyoung-tuberclestagethroughoutthe3-monthlongexperiment (Fig.2D–H).

WhenP.ramosafirstpenetratedintooilseedraperoots,meris- tematiccellproliferationallowedthehaustorium,whichatthat stagewasnotyetfunctional,tomake itswaythroughthehost tissues(Fig.3A).Lateron,onlyapicalcellsremainedabletopro- liferatewhereasdistalcellsgotorganizedintoaparenchymaand xylem elements differentiated. Once haustorialapical cells had madecontactwiththehost’svascularsystemcells,theystopped dividingandmigratingintothehost.Theystucktothehostvessel cells withoutperforatingthem.Thecontinuity betweenbroom- rape haustorium vessels and the host xylem is clearly visible (Fig.3B).

Oldtuberclesandbudswereobservedwhenoilseedrapewas 49daysoldorolder(Fig.1,B12,i.e.12-leafstage).Theprolifera- tionofcellslocatedaroundthecaulinarymeristem,attheorigin ofthefloralscape,ledtotheformationofawreathofadventi- tious roots (Fig.4A, arrows) whichin somecases wereable to makecontactwithotherhostrootsandproducedsecondaryhaus- toria.Onceadventitiousroots wereformed,thetuberclerapidly turnedintoa bud thankstoits apicalcells.Insidethebud, the caulinarymeristemwasprotectedbyscales(Fig.4B).Itisimpor- tanttonotethatat49DAEonlyonenewfixationwasdetected, whileyoungandoldtuberclesweremuchmorenumerousthan buds(Table1).Fromthatpointonwardthebudsgrewverticallyand formedyoungundergroundstemswhichmadetheirwaythrough thesoiltowardsthesurface.Thefirstundergroundstems(Fig.4C) wereobserved70DAE(Fig.1,rosettestage).Atthattimefixations hadalldisappearedwhereasallotherstagesexceptthebudstage wereinconstantlyincreasingnumbers(Table1).Atthefollow- ingsampling date(97DAE, rosettestage), youngtubercleshad disappeared.Till145DAE(C1,i.e.boltingstage),thenumbersof oldtubercles,budsandundergroundstemsincreasedconsiderably.

Conversely,nonewfixationoryoungtuberclewasdetected.During thatperiod,oilseedrapestoppeditsvegetativedevelopment,and nonewP.ramosaseedgerminationleadingtothedevelopmentof newyoungparasiticdevelopmentalstagesappearedtohavebeen induced.At194DAE(E-stage,i.e.separate-flower-budstage),old tubercleswerenotvisibleanymorewhileeachrootsystemcarried morethan50budsandundergroundstems(Table1).

AerialphaseofP.ramosa

Phelipancheramosaemergedatthesoilsurface205daysafter oilseedrapeemergence(Fig.1,F1,i.e.earlyfloweringstage).The short, frail, rather hairy, branchedstem bulged out at its base (Fig.4D). It had leavesthat containedno chlorophyllpigments andwerereducedto6-to12mmlongthick,acuminate,alternate scales.Thisnon-chlorophyllic,scalyaxisthenturnedintoafloral scape244DAE(G1/G2,i.e.earlyfructificationstage).Theflowers were1–1.5cmlong.Theywereinsertedindividuallyattheaxils ofscalybracts.Theyhadanirregular,curvedshape,andablue- tintedmauvecolour.Theydidnothavedistinctpedunclesandthey weregroupedinratherlongfloralscapeswhenfloweringwaswell advanced(Fig.5AandB).Itisimportanttonotethatatthatlast time-pointbudscouldnolongerbefoundwhilelargenumbers ofundergroundstemswithsurroundingbunchesofadventitious rootsremainedreadytoemerge(Table1).Oncefecundationhad takenplace,eachpollinatedflowerturnedintoacapsulecontaining approximately600–800seedseach (Fig.5C).Phelipancheramosa started fructifying 273DAE (Fig.1, G4,i.e. end-of-fructification stage)andthefloralscapesofbroomrapewereripeafewdaysafter thoseofoilseedrape(Fig.5D).

(7)

Fig.3. (A)LongitudinalsectionofanearlypenetrationstageofP.ramosa.Theoilseedraperootiscuttransversely.(B)Xylemlinks(arrows)inalongitudinalsectionofthe baseofaP.ramosatubercle.hlr,hostlateralroot;hx,host’sxylem;ic,intrusivecells;p,parasite;pc,parenchymacells;px,parasite’sxylem.

Fig.4. (A)Oldtuberclewithyoungroots(arrows)whichhidethecaulinarymeristeminSEM,inthefield49DAE.(B)Phelipancheramosabudwithnumerouslongadventitious roots(arrows)inthefield49DAE.(C)BunchofP.ramosaundergroundstems,inthefield70DAE.(D)Phelipancheramosaemergence,inthefield205DAE.b,bud;hlr,host lateralroot;us,undergroundstem.

Phenotypicandagronomicalconsequencesonoilseedrape

Duringtheautumn–winterphaseofoilseedrape,theshootpart ofthehostplantshowednovisibleparasitism-relatedsymptoms.

Itwasonlybydiggingoutrootsystemsandexaminingthemclosely

thatwedetectedthepresenceofP.ramosa.Butinthespringphase, thefirstsymptomsbecamevisiblewhenoilseedrapefloralpedun- clesstartedgrowing(Fig.1,Estage).Parasiticattackinducedoilseed rapedwarfism,whichwasvisibleasadepressivezoneatthefield level(Fig.6A,arrows)andleafchlorosis(Fig.6B,arrows).OnceP.

(8)

Fig.5.(A)Phelipancheramosaflowering,inthefield244DAE.(B)DetailofaP.ramosaflower.(C)YoungP.ramosacapsule.Immatureseedsformayellowcompactbulk (arrow).(D)FructifiedP.ramosa,inthefield273DAE.

ramosahademerged,itsbranchedfloralscapeswereeasilyiden- tifiable.Themostseverelyinfestedpartswereusuallythose on theoutskirtsof thefields(Fig.6C). Inthe case ofsevere infes- tations,eachoilseedrapeplantcouldharbourasmanyas15–20 floralscapes;theinfestedzoneappearedthentobefullycovered byP.ramosa(Fig.6D).Whenoilseedraperipened,thesizeofthe depressivezoneincreasedwhilethelowdensityofthecropmadeit possibleforweedstodevelop.Infestedoilseedrapesproducedfew siliquesandmanyofthemaborted(Fig.6E,arrows).Yieldlosses weresignificant:fromanaverage38qha−1whenoilseedrapewas healthy,theywentdownto4qha1inthemostseverelyinfested fields.Afteroilseedrapeharvest,onlywiltedP.ramosafloralscapes remained(Fig.6F),perfectlyalignedwiththesowinglines.

Discussion

Acombinationoffieldandcontrolledexperimentalapproaches allowedustocharacterizeprecisely thedifferentstepsoftheP.

ramosacycle,atthecelllevelaswellasatthewholeplantlevel.To ourknowledge,thisisthefirstsuchstudytobecarriedoutabout thispathosystem.

BiologicaltraitsofP.ramosacontributingtothesuccessofits biologicalcycle

Phelipanche ramosa as a parasite of oilseed rape possesses differentspecifictraitsthatcontributetothesuccessofitscycle.

Thefirst traitconcerns itsdispersion: itproduces light, minute seedsin huge numbers. Thus its seedsare easily dispersed by

wind, waters, animals, farming machinery, and contaminated seedtransport(Berneretal.,1994;ParkerandRiches,1993).The secondtraitisthetoughnessofitsseedcoat.Thistraitiscommon toOrobancheandStrigaseedsandcouldexplainwhytheirseeds canretaintheirgerminatingcapacityinthesoilforseveralyears (Parker and Riches, 1993;Worsham, 1987).The third traitlies in theneed forseedgerminationtobestimulatedby hostroot exudates.WeobservedthatP.ramosaseedgerminationcouldonly occurwithinashortdistancefromoilseedraperoots.Wefound thatdistancetobe4mm.Oilseedraperootexudatesthusappear tohaveastimulatingeffectwithinalimitedzonearoundtheroots comparedtothe10mmwiththefababean/O.crenatapathosystem (Salléetal.,1984).Suchasystemcouldpreventtheseedsfrom germinating inthe absenceof ahost andavoid P.ramosaseed germinationattoogreatadistancefromoilseedraperoots.

ThethreebiologicaltraitsofP.ramosaasaparasiteofoilseed rapementionedabovecompleteothertraitsalreadymentionedin theliterature,namely:theabsenceofaprimarydormancy,oravery earlybreakofprimarydormancy,asP.ramosaseedscangerminate asearlyasharvesttime.Apartfromtheindispensablepresence ofasusceptible hostplant,P.ramosaseedpre-conditioningand germinationdonotrequireanyspecificenvironmentalconditions (Gibot-Leclercetal.,2004,2006).

EarlyefficacyofrootexudatesonP.ramosagermination

Ourresultsshowthatwhicheverco-cultivationtechniquewas used,P.ramosaseedgerminationwasmassivelyinduced21DAE, whileoilseedrapehadonlyreachedthe6-leafstage.Oilseedrape

(9)

Fig.6.(A)Depressivezone(arrows)duetoslowedgrowthofinfestedoilseedrape.(B)Chlorosisintheleavesofinfestedoilseedrape(arrows).(C)Phelipancheramosafloral scapeslocatedontheoutskirtofanoilseedrapeplot.(D)VeryhighP.ramosadensityinaseverelyinfestedoilseedrapeplot.(E)Toppartofaninfestedoilseedrapeflower bunchwithabortedsiliques(arrows).(F)Harvestedinfestedoilseedrapeplot.

rootexudatesthereforeappeartobeeffectiveintheearlystages ofitsgrowth.ForP.ramosa,suchearlinesshasbeenshownwith tobacco(Labrada,1994).Itisnoteworthythatnonewfixationor youngtuberclewasobservedwhileoilseedrapewasbetweenthe

rosettestage(97DAE)andtheshootingstage(145DAE).Taken together, theseresults suggest a tight correlation betweenthe developmentalstagereachedbythehostand theefficacyofits rootexudates.

(10)

Fixation,afundamentalprocessforresourceacquisitionbyP.

ramosa

Onceithasgerminated,P.ramosaveryquicklyfixesitself(28 days)onoilseedrapehostroots.Asimilarprecocitywaspreviously reportedonhempandtobaccoroots(Braultetal.,2007;Labrada, 1994).Broomrapefixationhastobecompletedfortheparasite tobeabletopenetrate hosttissueslater and drawthecarbon, mineralandwaterresourcesneededforitsgrowth.Acontinuum betweenoilseedrapeandP.ramosaxylemswashighlighted.Such xylem-to-xylemcontactshavealsobeenevidencedinthecaseof theP.ramosa/carrotpathosystem(Zehharetal.,2003).Ourlight- microscopyobservationsdidnotallowustodeterminewhether hostandparasitexylemvesselsweresimplyadjacentorhadmade directlumencontact(HibberdandJeschke,2001).

Xylem-mediatedsolutesupplytotheparasiteislikelytobelow duetothelowtranspirationrateoftheparasitethatgeneratesonly aweakdrivingforceforthesolutefluxwithinthexylem(Hibberd etal.,1999).Yetwedidnotobserveanyphloem-to-phloemconnex- ions.Butphloemtissuesarefoundinbroomrapehaustoria(Dörr andKollmann,1975;HibberdandJeschke,2001).Thehostphloem isknowntoprovidealmostallsugars(>99%)andmostminerals suchasnitrogen,magnesiumandpotassium(Abbesetal.,2009;

HibberdandJeschke,2001;Hibberdetal.,1999).

Tuningofthehostandparasitedevelopmentcycles

Phelipancheramosa tightlytunes theduration of its biologi- calcycle toits host’s(273 days).Such tuning wasfoundfor P.

ramosaparasitingdifferentspecies(Braultetal.,2007;Kogan,1994;

Neumannand Sallé,2000), witha biological cyclethat canlast 45–150days accordingto thespeciesconsidered. Inourstudy, P.ramosaemerged,i.e.startedtheaerialphaseofitscycle,when oilseedrapestartedflowering,inaccordancewithcommonobser- vationsondifferenthostplants,suchashemp,eggplant,tobacco, tomatoorwatermelon(Braultetal.,2007;Kogan,1994;Labrada, 1994).AnotheraspectofcycletuningwaswhenP.ramosafloral scapesstartedgrowingatthesametime asoilseedrapestarted formingitssiliques.SuchtuningisbelievedtoenableP.ramosato deprivethehostofnutrientsasoptimallyaspossiblebydiverting waterandnutrientsfromthehostforitsownuse.

Consequencesofnutrientdiversiononthegrowthand agronomicalperformancesofoilseedrape

The broomrape biological cycle phase that occurs between seedgerminationandhaustoriumpenetrationtakesplaceexclu- sivelyunderground,soitcannotbedetectedbyoutsiders.Besides, thesymptoms of P.ramosa parasitism onoilseedrapebecome detectablelateintheoilseedrapelifecycle,i.e.onlyonceitsflo- ralpedunclesstartelongating.Anoverallslowergrowthofoilseed rapecouldbeobserved,alongwithleafchlorosis,lowsiliquepro- duction,andnumerousabortions.Suchsymptomsareoftenseen inhost/parasiterelationships(Salléetal.,1995).

Bydevelopingonhostroots,theparasitecompeteswiththehost forwater,mineralsandsugars.Sometimes,thedecreaseinhost biomassisnotfullycompensatedforbyparasitebiomass(Grenz etal.,2008).Inthiscase,photosyntheticproteindiversionislikely topreventthehostfrommaintainingitsphotosyntheticlevel.This phenomenoncouldbeattheoriginoftheoilseedrapeleafchloro- sisandbiomassdropobservedinourstudy.Besides,followingthe source-sinkconcept,Manschadietal.(2001)proposedthatthepar- asitecouldbeaprioritysinkcomparedtohostvegetativeorgans andnewlyformedpods,whereaspodsinthefillingstagecouldbe prioritysinkscomparedtotheparasite.Thiscouldaccountforthe lownumbersofsiliquesandthenumerousabortionsobservedin

ourstudy.Thehighyieldlossesofoilseedrapethatweobservedare inaccordancewithotherstudies(Bernhardetal.,1998;Manschadi etal.,2001;Mesa-GarcíaandGarcía-Torres,1986).

Lastofall,hormonalimbalance,characterizedbyadecreasein gibberellinandcytokininecontentandanincreaseinabscisicacid content,couldcausethegrowthdelayattheoriginoftheinfested plants’dwarfism.Theimbalancecouldalsoresultfromwoundsand waterstresscausedbytheparasite’ssettingin(WatlingandPress, 1997).

Conclusion

The highly specialized parasitic way of life set up by Pheli- pancheramosaonoilseedrapehighlightsdifferentadaptivetraits thatfavouritssuccess.ThesetraitsconcernP.ramosagermination andfixation,withthedeterminationofa4-mminfluencezoneof oilseedraperootexudatesonparasiticseedgerminationandan earlyeffectof exudatesfollowedbyavery rapidfixationofthe parasiteonhostroots.Consequently,anever-increasingparasitic seedbankismaintained.Thesetraitsaremoregloballyrelatedto thewholebiologicalcycleofP.ramosasincethedifferentstepsof itscycledependlittleonweather conditionsbutcompletelyon thepresenceofahost.Ourstudyevidencedafinetuningbetween oilseedrapeandP.ramosacyclephases,whichledtoasynchro- nizationoftheirfructificationstages.AlthoughthewayP.ramosa germinatesandfixesitselfonhostrootsiswellcharacterized,the physiologicalresponsesthatinducethefinetuningofthepara- site’scyclephasestoitshost’sremaintobeelucidated.Besides,the fulfilmentofP.ramosa’sbiologicalcycleinducesconsequenceson oilseedrape,atthephenotypicandtheagronomicallevels.

Ourstudycanconstitutearelevantbasisforfutureexperimental studies.KnowingthenumberofdaysneededforP.ramosatoreach itsearlydevelopmentalstages,whichtakeplaceundergroundand arethusinvisibletooutsiders,willmakeitpossibletobetterplan oilseedraperootsamplinginordertogetP.ramosaplantsatthe wantedstage.ConcerningP.ramosaemergence,itwillbepossi- bletoplanobservationsfromoilseedrapephenologyonceithas reachedtheearlyfloweringstage.Asfortheparasite’slaterdevel- opmentalstages,theyarevisibletothenakedeye,whichsolvesthe problem.Inadditiontothesepracticalapplications,ourworkopens ontonewresearchperspectivesthatcanfocusonkey-processesof thehost–parasiterelationship.Inparticular,thetrophicrelation- shipsconcerningcarbonassimilatesandmineralssuchasnitrogen needtobefurtherinvestigatedinordertobetterunderstandthe competitionthat takes placebetween hostand parasitein this pathosystem.

Acknowledgements

ThepresentworkwasfinancedjointlybytheCETIOMandthe Poitou-Charentesregion.WethanktheCETIOM(experimentalsta- tionofSurgères,France)fortechnicalsupportatharvesttime.

References

Abbes,Z.,Kharrat,M.,Delavault,P.,Chaïbi,W.,Simier,P.,2009.Nitrogenandcarbon relationshipsbetweentheparasiticweedOrobanchefoetidaandsusceptibleand tolerantfababeanlines.PlantPhysiol.Biochem.47,153–159.

Berner,D.K.,Cardwell,K.F.,Faturoti,B.O.,Ikie,F.O.,Williams,O.A.,1994.Relative rolesofwind,cropseeds,andcattleindispersalofStrigaspp.PlantDis.78, 402–406.

Bernhard,R.H.,Jensen,J.E.,Andreasen,C.,1998.Predictionofyieldlosscausedby Orobanchespp.incarrotandpeacropsbasedonsoilseedbank.WeedRes.38, 191–197.

Boulet,C.,Pineault,D.,Benharrat,H.,Simier,P.,Delavault,P.,2007.Adventices ducolzaetorobancherameuse.In:AFPP-VingtièmeconférenceduCOLUMA:

Journéeinternationalesurlaluttecontrelesmauvaisesherbes,Fontenay-Le- Compte,France,pp.326–345.

(11)

Bouwmeester,H.J.,Matusova,R.,Zhongkui,S.,Beale,M.H.,2003.Secondarymetabo- litesignallinginhost–parasiticplantinteractions.Curr.Opin.PlantBiol.6, 358–364.

Brault,M.,Betsou,F.,Jeune,B.,Tuquet,C.,Sallé,G.,2007.VariabilityofOrobanche ramosapopulationsinFranceasrevealedbycrossinfestationsandmolecular markers.Environ.Exp.Bot.67,271–280.

Buschmann,H.,Gonsior,G.,Sauerborn,J.,2005.Pathogenecityofbranchedbroom- rape(Orobancheramosa)populationsontobaccocultivars.PlantPathol.54, 650–656.

Dörr,I.,Kollmann,R.,1975.StrukturelleGrundlagendesParasitismusbeiOrobanche.

II.DieDifferenzierungderAssimilat-LeitungsbahnimHaustorialgewebe.Proto- plasma83,185–199.

Echevarría-Zome ˜no, S., Pérez de Luque, A., Jorrín, J., Maldonado, A.M., 2006.

Pre-haustorial resistance to broomrape (Orobanche cumana) in sunflower (Helianthusannuus):cytochemicalstudies.J.Exp.Bot.57,4189–4200.

Gibot-Leclerc,S.,Brault,M.,Pinochet,X.,Sallé,G.,2003.Potentialroleofwinter rapeweedsintheextensionofbroomrapeinPoitou-Charentes.C.R.Biol.326, 645–658.

Gibot-Leclerc,S.,Corbineau,F.,Sallé,G.,Côme,D.,2004.ResponsivenessofOrobanche ramosaL.seedstoGR24asrelatedtotemperature,oxygenavailabilityandwater potentialduringpreconditioningandsubsequentgermination.PlantGrowth Regul.43,63–71.

Gibot-Leclerc,S.,Pinochet,X.,Sallé,G.,2006.Orobancherameuse(Orobancheramosa L.)ducolza:unrisqueémergentsoussurveillance.OléagineuxCorpsGrasLipides 13,200–205.

Gibot-Leclerc,S.,Charles,J.,Dessaint,F.,2009.Potentialhostplantsusceptibilityto twoOrobancheramosaL.races.In:XIIIeColloqueInternationalsurlaBiologie desMauvaisesHerbes,Dijon,France,pp.446–456.

Glauert,A.M.,Glauert,R.H.,1958.Aralditeasanembeddingmediumforelectron microscopy.J.Biophys.Biochem.Cytol.4,191–195.

Goldwasser,Y.,etal.,2001.ControlofOrobancheaegyptiacaandOrobancheramosa inpotato.CropProt.20,403–410.

Grenz,J.H.,Is¸toc,V.A.,Manschadi,A.M.,Sauerborn,J.,2008.Interactionsofsun- flower(Helianthusannuus)andsunflowerbroomrape(Orobanchecumana)as affectedbysowingdate,resourcesupplyandinfestationlevel.FieldCropsRes.

107,170–179.

Guillaumin,D.,1980.Lapratiquedumicroscopeélectroniqueàbalayageenbiologie.

EditionMasson,Paris.

Haidar,M.A.,Bibi,W.,Sidahmed,M.M.,2003.Responseofbranchedbroomrape (Orobancheramosa)growthanddevelopmenttovarioussoilamendmentsin potato.CropProt.22,291–294.

Hibberd,J.M.,Jeschke,W.D.,2001.Solutefluxintoparasiticplants.J.Exp.Bot.52, 2043–2049.

Hibberd,J.M.,Quick,W.P.,Press,M.C.,Scholes,J.D.,Jeschke,W.D.,1999.Solutefluxes fromtobaccototheparasiticangiospermOrobanchecernuaandtheinfluenceof infectiononhostcarbonandnitrogenrelations.PlantCellEnviron.22,937–947.

Joel,D.M.,2009.ThenewnomenclatureofOrobancheandPhelipanche.WeedRes.

49,1–6.

Joel,D.M.,Hershenhorn,Y.,Eizenberg,H.,2007.Biologyandmanagementofweedy rootparasites.Hort.Rev.(Am.Soc.Hortic.Sci.)38,267–349.

Keyes,W.J.,Taylor,J.V.,Apkarian,R.P.,Lynn,D.G.,2001.Dancingtogether.Social controlsinparasiticplantdevelopment.PlantPhysiol.127,1508–1512.

Kogan,M.,1994.OrobancheinChile:aresearchreport.In:Pieterse,A.H.,Verkleij, J.A.C.,terBorg,S.J.(Eds.),BiologyandManagementofOrobanche.Proc.3rdInt.

WorkshoponOrobancheandrelatedStrigaRes.,Roy.Trop.Inst.Amsterdam,pp.

599–603.

Labrada,R.,1994.OccurrenceandcontrolofOrobancheramosaL.inCuba.In:Pieterse, A.H.,Verkleij,J.A.C.,terBorg,S.J.(Eds.),BiologyandManagementofOrobanche.

Proc.3rdInt.WorkshoponOrobancheandrelatedStrigaRes.,Roy.Trop.Inst.

Amsterdam,pp.604–610.

Ledbetter,M.C.,Porter,K.R.,1963.A“microtubule”inplantcellfinestructure.J.Cell Biol.19,239–250.

Losner-Goshen,D.,Portnoy,V.H.,Mayer,A.M.,Joel,D.M.,1998.Pectolyticactivity bythehaustoriumoftheparasiticplantOrobancheL.(Orobanchaceae)inhost roots.Ann.Bot.81,319–326.

Lu,Y.H.,Melero-Vara,J.M.,García-Tejada,J.A.,Blanchard,P.,2000.Development ofSCARmarkerslinkedtothegeneOr5conferringresistancetobroomrape (OrobanchecumanaWallr.)insunflower.Theor.Appl.Genet.100,625–632.

Manschadi,A.M.,Sauerborn,J.,Stützel,H.,2001.QuantitativeaspectsofOrobanche crenatainfestationinfababeansasaffectedbyabioticfactorsandparasitesoil seedbank.WeedRes.41,311–324.

Mesa-García,J.,García-Torres,I.,1986.Effectofplantingdateonparasitismof broadbean(Viciafaba)bycrenatebroomrape(Orobanchecrenata).WeedSci.

34,544–550.

Murashige,T.,Skoog,F.,1962.Arevisedmediumforrapidgrowthandbioassays withtobaccotissuecultures.Physiol.Plant15,473–497.

Musselman,L.J.,1980.ThebiologyofStriga,Orobancheandotherroot-parastitic weeds.Annu.Rev.Phytopathol.18,463–489.

Neumann, U.,Sallé,G.,2000. Defencemechanisms ofplants againstparasitic angiosperms.C.R.Acad.Agric.France86,85–96.

Parker,C.,Riches,C.R.,1993.ParasiticWeedsoftheWorld:BiologyandControl.CAB International,Wallingford.

PérezdeLuque,A.,Siliero,J.C.,Moral,A.,Cubero,J.I.,Rubiales,D.,2004.Effect of sowing date and host resistance on the establishment and develop- mentofOrobanchecrenatainfababeanandcommonvetch.WeedRes.44, 282–288.

Press,M.C.,Graves,J.D.,1995.ParasiticPlants.ChapmanandHall,London.

Press,M.C.,Phoenix,G.K.,2005.Impactsofparasiticplantsonnaturalcommunities.

NewPhytol.166,737–751.

Rubiales,D.,2003.Parasiticplants,wildrelativesandthenatureofresistance.New Phytol.160,459–461.

Sallé,G.,Aber,M.,LeCoz,S.,1984.Comparativehisto-physiologicalstudyofthe germinationandestablishmentofthreemajorparasites:Viscum,Orobancheand Cuscuta.In:Parker,C.,Musselman,L.J.,Polhill,R.M.,Wilson,A.K.(Eds.),3rdInt.

Symp.onParasiticWeeds.ICARDA/InternationalParasiticSeedPlantResearch Group.Aleppo,Syria,pp.10–21.

Sallé,G.,Raynal-Roques,A.,Tuquet,C.,1995.UnfléauenAfrique,lesStriga.LaVie Sci.12,27–46.

Sallé,G.,Tuquet,C.,Neumann,U.,2000.Parasiticangiosperms:biologyandmethods ofcontrol.C.R.Acad.Agric.France86,59–67.

Sauerborn,J.,1991.ParasiticFloweringPlants,EcologyandManagement.Verlag JosefMargraf,Weickersheim.

Schneeweiss,G.M.,2007.Correlatedevolutionoflifehistoryandhostrangein thenonphotosyntheticparasiticfloweringplantsOrobancheandPhelipanche (Orobanchaceae).J.Evol.Biol.20,471–478.

Watling, J.R., Press, M.C., 1997. How is the relationship between the C4

cereal Sorghum bicolour and the C3 root-hemiparasites Striga hermonth- ica and Striga asiaticaaffected by elevated CO2? Plant Cell Environ. 20, 1292–1300.

Worsham,A.D.,1987.Germinationofwitchweedseeds.In:Musselman,L.J.(Ed.), ParasiticWeedsinAgriculture,vol.1.CRCPress,BocaRaton,pp.45–61.

Yoder,J.I.,2001.Host-plantrecognitionbyparasiticScrophulariaceae.Curr.Opin.

Plant.Biol.4,359–365.

Zehhar,N.,Labrousse,P.,Arnaud,M.C.,Boulet,C.,Bouya,D.,Fer,A.,2003.Studyof resistancetoOrobancheramosainhost(oilseedrapeandcarrot)andnon-host (maize)plants.Eur.J.PlantPathol.109,75–82.

Références

Documents relatifs

Brunel-Muguet S, D’Hooghe P, Bataillé M-P, Larré C, Kim T-H, Trouverie J, Avice J-C, Etienne P and Dürr C (2016) Corrigendum: Heat Stress during Seed Filling Interferes with

Low S (LS), 8.7 µM SO 2− 4 ] during seed filling on (i) yield components [seed number, seed dry weight (SDW) and seed yield], (ii) grain composition [nitrogen (N) and S contents]

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

Figure 4.8: Adjusted model and measurements for the number of ovules per flower (A), number of seeds per pod (B), the estimation for the distribution number of pollen grains per

Polymorphic microsatellites displayed 8 different multilocus genotypes in the population collected on tobacco, four multilocus genotypes in the population collected on hemp and

We first presented the stochastic model of the distribution of the number of seeds per pod by considering the processes of flower fertility, which include ovule distribution,

However, screenings were limited to late flowering plants because early flowering genotypes can escape from pollen beetle infestation by flowering before

Therefore, the aims of this study were to determine the effects of different S fertilization management strategies (i) on interactions with different levels of N fertilization and