• Aucun résultat trouvé

Development of ATTILHA - Experimental setup for high temperature investigations of U-containing systems (…soon)

N/A
N/A
Protected

Academic year: 2021

Partager "Development of ATTILHA - Experimental setup for high temperature investigations of U-containing systems (…soon)"

Copied!
29
0
0

Texte intégral

(1)

HAL Id: cea-02442338

https://hal-cea.archives-ouvertes.fr/cea-02442338

Submitted on 16 Jan 2020

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of sci-entific research documents, whether they are pub-lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Development of ATTILHA - Experimental setup for

high temperature investigations of U-containing systems

(…soon)

A. Quaini, S. Gosse, T. Alpettaz, E. Lizon a Lugrin, C. Gueneau, S. Poissonnet, P. Bonnaillie

To cite this version:

A. Quaini, S. Gosse, T. Alpettaz, E. Lizon a Lugrin, C. Gueneau, et al.. Development of ATTILHA - Experimental setup for high temperature investigations of U-containing systems (…soon). 11th International Workshop on Subsecond Thermophysics - 2016, Jun 2016, Cracovie, Poland. �cea-02442338�

(2)

Development of ATTILHA

Experimental setup for high

temperature investigation of

U-containing systems (…soon)

A. Quaini

1

, S. Gossé

1

, T. Alpettaz

1

,

E. Lizon A Lugrin

1

, C. Guéneau

1

, S. Poissonnet

2

,

P. Bonnaillie

2

1 DEN-SCCME, CEA, Université Paris-Saclay

F-91191, Gif-sur-Yvette, France

2 DEN-SRMP, CEA, Université Paris-Saclay

(3)

vessel (steel) fuel sheath (zircaloy) fuel pellet (UO2)

Context – PWR Severe Accident

PWR cross section

Out of nominal functioning of a Pressurized Water Reactor may lead to a nuclear accident

Severe accident (SA): the normal functioning of the nuclear reactor is not re-established

Fusion of the core and internal structure

Cladding (Zircaloy) Upper grid damage

Coating of previously molten material on bypass region interior surfaces

Hole in baffle plate

Ablated in-core instrument guide Cavity Loose core debris Previously molten material Lower plenum debris Possible region depleted in U Crust

TMI-2

Interactions:

MOx + Zircaloy + stainless steel + Inconel + B4C + Fission Products

In vessel corium composition:

U-Zr-O-Fe-Cr-Ni-Ag-Cd-In-B-C-FPs

“Prototypic” in-vessel corium system: U-Zr-Fe-O

(4)

In-vessel core Melt configuration

Degree of oxidation of zirconium U/Zr ratio

Amount of molten steel

 Enhanced focusing effect due to high radiative fluxes  Failure of the reactor vessel

Heavy metal layer below the oxidic pool

Seiler et al., Nucl. Eng. Des. 2007

ρ

metallic

<

ρ

oxide

ρ

heavy metallic

>

ρ

oxide

Knowledge of the chemical composition of liquids

Tsolidus and Tliquidus are paramount for density calculations

Max

heat flux

Decrease of the thickness of the upper metallic layer

ρ =density

(5)

Ex-vessel Core Melt configuration

Once the reactor vessel has failed…

Last retention option: the Ex-vessel relocation of the molten core in a lateral core catcher

The molten core (T≈2400°C) pours on the containment concrete The Molten Corium Concrete Interaction (MCCI) starts:

 The components of the concrete (CaO, SiO2, Al2O3, MgO, H2O, CO2) are added to the already complex in-vessel system (U-Zr-O-Fe)

 As a first approximation the Fe-U-Zr-Al-Ca-Si-O system is representative of an ex-vessel corium

Issue 2

: Ex-vessel core melt configuration

A better thermodynamic description of the ex-vessel corium sub-systems is needed to improve the thermal and thermo-hydraulics codes accuracy

Need of exp. data at very high temperatures

1500°C ≤ T ≤ 3200°C

Development of a specific exp. setup

Fukushima

(6)

EXPERIMENTAL TECHNIQUES

Development of ATTILHA Setup

IWSSTP 11 | 23rd June, 2016

(7)

ATTILHA Setup

Advanced Temperature and Thermodynamics Investigation by a Laser Heating Approach

ATTILHA: Development of a setup for high solid/liquid transitions

Contactless  Aerodynamic levitation

Containerless

Acquisition of data on corium systems

 Phase diagram data (liquidus, solidus)

 Thermo-radiative properties (IR emissivity)

2 different ATTILHA configurations:

All the instruments are synchronized

Validation on transitions in oxide systems

Al

2

O

3

(8)

ATTILHA setup

Aerodynamic levitation

Heating device: CO2 laser

Temperature measurement: HgCdTe IR detector (2 - 22 µm, filtered by narrow band filters) Bichromatic pyrometer (0.8-1.05 µm)

Image recording: High speed calibrated (300°C-1500°C) IR Camera (@ 3.99 µm)

Aerodynamic levitation configuration in a convergent/divergent nozzle

2 mm

Levitating liquid Al2O3 droplet in the nozzle

(9)

ATTILHA setup

Containerless

Heating device: CO2 laser

Temperature measurement: HgCdTe IR detector (2 - 22 µm, filtered by narrow band filters) Bichromatic pyrometer (0.8-1.05 µm)

Image recording: High speed calibrated (300°C-1500°C) IR Camera (@ 3.99 µm)

IWSSTP 11 | 23rd June, 2016 | PAGE 8

(10)

Development approach

 Optimisation of the instrumentation position on the optical table

CO

2

laser – HgCdTe detector – Rapid infrared camera – Pyrometer

 Calibration at 10 µm and 12.2 µm

Christiansen point Al

2

O

3

: 10 µm; ZrO

2

: 12.7 µm

 Error analysis (collaboration with Institut de Mathématiques de Toulouse)

5,0x107 1,0x108 1,5x108 2,0x108 2,5x108 3,0x108 3,5x108 500 1000 1500 2000 2500 3000 1373 K 1273 K 1173 K 873 K Voltag e / mV Radiance @ 12,2 m / W sr-1 m-3 V=8,90839x10-6L-73,45 673 K

@ 10 µm

@ 12,2 µm

(11)

Development approach

IWSSTP 11 | 23rd June, 2016

 Optimisation of the instrumentation position on the optical table

CO

2

laser – HgCdTe detector – Rapid infrared camera – Pyrometer

 Verification of the manufacturer calibration against a qualified black-body

 Python image processing routine for emissivity estimation (IMT-Toulouse)

(12)

10,0 12,5 15,0 17,5 20,0 22,5 25,0 1,0 1,5 2,0 2,5 HgCdT e sig na l / V time / s 1800 2000 2200 2400 2600 1,47 V T / K 2323 K

Development approach

 Optimisation of the instrumentation position on the optical table

CO

2

laser – HgCdTe detector – Rapid infrared camera – Pyrometer

 Validation of the setup

 Al

2

O

3

(T=2323±25 K)

Py

romter

(13)

EXPERIMENTAL RESULTS

Some Preliminary Results using

ATTILHA setup on the systems:

Al

2

O

3

-ZrO

2

IWSSTP 11 | 23rd June, 2016

(14)

Results: Al

2

O

3

-ZrO

2 0,0 1,5 3,0 4,5 6,0 7,5 9,0 10,5 12,0 13,5 1800 1900 2000 2100 2200 2300 2400 2500 2600 2700 2250 K T / K time / s T_bi-chromatic pyrometer T_MCT

89 mol% Al2O3 - 11 mol% ZrO2

2173 K

Tliquidus + Teutectic  good agreement with literature

Eutectic composition  good agreement with literature

liquidus

eutectic

(15)

EXPERIMENTAL RESULTS

Some Preliminary Results using

ATTILHA setup on the systems:

Al

2

O

3

-CaO-ZrO

2

IWSSTP 11 | 23rd June, 2016

(16)

Samples are made from sintered pellets of raw oxide powders:

Al2O3/CaO/ZrO2 (52-41-07 in mol %) + ≈ 1% mass. Of Zinc Stearate

No mass loss during sintering for Al2O3-CaO-ZrO2

Preparation of the samples Al

2

O

3

-CaO-ZrO

2

After sintering

After laser melting

(17)

Al

2

O

3

-CaO-ZrO

2

– Radiance results

Radiance Temperature (TL) scale

(at 3.99 µm)

Calibrated from 300°C to 1500°C

Extrapolated above 1500°C

Temperature (T)

Real speed: 250 Hz

Development of a Python code for image processing and emissivity estimation

COMMENTS

High temperature (1500°C-2500°C) calibration of the camera will be performed soon  FLIR®

HgCdTe detector  cooling system KO

8 10 12 14 1400 1500 1600 1700 1800 1900 2000 2100 2200 20 22 24 26 28 1400 1500 1600 1700 1800 1900 2000 2100 2200 3 4 5 6 7 8 9 10 11 1400 1500 1600 1700 1800 1900 2000 2100 2200 10 11 12 13 14 15 16 17 18 19 20 21 22 1400 1500 1600 1700 1800 1900 2000 2100 2200 Run 3 Run 3 Temperature (°C) Temperature (°C) Time (second) Run 4 Time (second) Run 5 Thermal arrest

(18)

Al

2

O

3

-CaO-ZrO

2

– Thermal arrests

Liquid drop Crust Formation Closing of the Crust Quenching Thermal Arrest Thermal Arrest Thermal Arrest Gas bubble Closing of the Crust Closing of the Crust Quenching Crust Formation

(19)

EXPERIMENTAL RESULTS

Miscibility gap in the Fe-Zr-O system

IWSSTP 11 | 23rd June, 2016

(20)

Miscibility gap in the Fe-Zr-O system

T=3073 K

Starting composition: Fe0.85Zr0.15

Composition moved into the ternary Fe-Zr- system

tie-line: Fe0.97O0.03 – Fe0.05Zr0.32O0.63

Levitation gas: He

O

Observation of dynamic phenomena:

 Formation of 2 liquids in-situ

Estimation of the emissivity ratio between the two liquids

 εoxide~ 2εmetal

Infrared camera footage

Real speed 200 Hz Video player 12.5 Hz

Digital level

(21)

Miscibility gap

| PAGE 20 IWSSTP 11 | 23rd June, 2016

(22)

CONTAINERLESS CONFIGURATION

IWSSTP 11 | 23rd June, 2016

(23)

Al

2

O

3

melting/solidification results

| PAGE 22 IWSSTP 11 | 23rd June, 2016 18,0 18,2 18,4 18,6 18,8 19,0 19,2 19,4 19,6 19,8 20,0 1800 1900 2000 2100 2200 T (°C) time (s) 2047 °C Al2O3

Before

After

1

2

3

4

2 1 3 4 Liquid Solidification front Solid germs

Solid crust almost formed Liquid

Thermal gradients

Solidification front progression

Semi-transparency

(24)

Conclusion and Perspectives

Future developments

Nuclearisation of the setup  investigation of

Uranium

containing samples

Ultra rapid camera (5 kHz)  viscosity and density measurement

Validation on oxide systems Al2O3 & Al2O3-ZrO2

Preliminary results on the corium sub-systems Fe-Zr-O

Al2O3-CaO-ZrO2 Al2O3-SiO2-ZrO2

ATTILHA a laser heating setup at CEA Saclay

• Aerodynamic levitation / containerless

 Rapid measurements: Fast heating/quenching  High temperature

 Levitation gas  Reducing or oxidizing conditions  Gas flow in the experimental vessel  Red/Ox

High temperature dynamic phenomena

- Solid/liquid transitions in Ex-vessel coria - Miscibility gap in Fe-Zr-O

Open questions

- Very high temperature references?

- Supplementary T monitoring?

- Thermodynamic equilibrium?

- Influence of P(O

2

)?

(25)

IWSSTP 11 | 23rd June, 2016

Dr Andrea Quaini

Commissariat à l’énergie atomique et aux énergies alternatives Centre de Saclay| 91191 Gif-sur-Yvette Cedex

T. +33 (0)1 69 08 21 70 |F. +33 (0)1 69 08 92 21

Etablissement public à caractère industriel et commercial |RCS Paris B 775 685 019

Direction de l’Energie Nucléaire Département de Physico-Chimie SCCME

Laboratoire de Modélisation Thermodynamique et Thermochimie CEA de Saclay

THANK YOU FOR YOUR ATTENTION

(26)
(27)

SEM observations and EDS analyses (Secondary and Back Scattered)

Analyses Al

2

O

3

-CaO-ZrO

2 (Al0.28,Ca0.13,Zr0.59)O2 Al2O3-CaO (+ ε Zr) ≈Al21.88 Ca14.00 Zr1.92 O62.20 Al2CaO4 + ε CaZrO3 ???

Oxygen is only estimated from EDS

(28)

Error analysis

Error analysis (collaboration with Institut de Mathématiques de Toulouse)

@ 10 µm                  1 3 1 2 1 3 1 2 ( ' 2 ) 2 , ˆ ( ' 2 ) 2 ˆ K K e K K T K K e K K T T

For example, the true temperature of a sample with an estimated emissivity 0.9±0.045 and an estimated radiance temperature of 2000 K is 2158±98 K with a probability of 0.9025. It must be pointed out that 86 % of the reported error bar is due to the estimated emissivity.

(29)

Error analysis

Error analysis (collaboration with Institut de Mathématiques de Toulouse)

IWSSTP 11 | 23rd June, 2016 | PAGE 28

K e b cT e T T ' 4.2 2 ˆ min     

Maximum deterministic error on T

λ

Tˆ e'2 ,Tˆ e'2

T

With a probability of 95 % and

considering the most conservative case

                 1 3 1 2 1 3 1 2 2 ) 2 ' ( ˆ , 2 ) 2 ' ( ˆ K K e K K T K K e K K T T     ˆ ˆ ˆ 1 3 1 2      K K T T K K T T             2 max 3 max , 2 min 1 2 ) 2 ( ˆ cT bT a K cT b K cT b K ùax  

With a probability of 90.25 %

Références

Documents relatifs

This photo (Figure 1) shows the arrest of Victor Vassiliev, known to mathematicians for Vassiliev invariants in knot theory, by Moscow riot police on February 24, 2014..

The difference of thermal diffusivity between the as-deposited and the aged coatings tends to decrease at high temperature (above 800°C).. 14 Figure 12 – a)

Figure 1.2: (a) Comb gap-closing and (b) overlap electrostatic energy harvester [17]. There are two types of electrostatic energy harvesting devices: electret-free and electret-based

The solar wind pressure increase caused a brightening of the dayside auroral oval, and poleward moving au- roral forms (rayed arcs) developed in the pre-noon sec- tor at 74–76 ◦

In the literature, it was proved by Williams [41], Bertoin [1, 2, 3], Bertoin and Doney [4], Kersting and Memişoˇ glu [28] that if the random walk is split at its local minimum, the

Table 5 gives the results of the effects of gaps in revealed environmental policies (domestic effort for environmental protection) between partner countries on

This paper aims to decipher the thermal evolution of the Montagne Noire Axial Zone (southern French Massif Central) gneiss core and its metasedimentary cover

c The values indicated are the minimum offset between the predicted density of the bulk- silicate mantle derived from the core size and density calculated by mass balance, and