• Aucun résultat trouvé

Polycyclic evolution of the Eastern Central-Asia orogenic belt : microtectonic analysis, geochronology and tectonics in central Inner Mongolia

N/A
N/A
Protected

Academic year: 2021

Partager "Polycyclic evolution of the Eastern Central-Asia orogenic belt : microtectonic analysis, geochronology and tectonics in central Inner Mongolia"

Copied!
203
0
0

Texte intégral

(1)Polycyclic evolution of the Eastern Central-Asia orogenic belt : microtectonic analysis, geochronology and tectonics in central Inner Mongolia Guanzhong Shi. To cite this version: Guanzhong Shi. Polycyclic evolution of the Eastern Central-Asia orogenic belt : microtectonic analysis, geochronology and tectonics in central Inner Mongolia. Earth Sciences. Université d’Orléans; Université de Pékin, 2013. Chinese. �NNT : 2013ORLE2060�. �tel-01022938�. HAL Id: tel-01022938 https://tel.archives-ouvertes.fr/tel-01022938 Submitted on 11 Jul 2014. HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés..

(2) ÉCOLE DOCTORALE [SCIENCE ET TECHNOLOGIE] INSTITUT DES SCIENCES DE LA TERRE D’ORLEANS SCHOOL OF EARTH AND SPACES SCIENCES, PEKING UNIVERSITY THÈSE EN COTUTELLE INTERNATIONALE présentée par : Guanzhong SHI soutenue le : 29 septembre 2013 pour obtenir le grade de : Docteur de l’Université d’Orléans et Peking Université Discipline : Sciences de la Terre et del’Univers. Polycyclic evolution of the Eastern Central-Asia Orogenic Belt Microtectonic analysis, geochronology and tectonics in Central Inner Mongolia. THÈSE dirigée par : M.Michel FAURE Professeur, ISTO, Université d’Orléans M.Bei XU Professeur, Université de Pékin M. Yan CHEN Professeur, Université d’Orléans RAPPORTEURS : M. Liangshu SHU Professeur, Nanjing University M. Wei LIN Professeur, Chinese Academy of Sciences IGG. JURY: M. Michel FAURE Professeur, Université d’Orléans – Directeur de thèse M. Yan CHEN Professeur, Université d’Orléans M. Bruno SCAILLET Directeur de Recherche, CNRS ISTO M. Bei XU Professeur, Peking University M. Liangshu SHU Professeur, Nanjing University M. Wei LIN Professeur, Chinese Academy of Sciences IGG M. Shihong ZHANG Professeur, China University of Geosciences M. Hongrui ZHOU Professeur, China University of Geosciences.

(3)

(4) Polycyclic evolution of the Eastern Central-Asia Orogenic Belt Microtectonic analysis, geochronology and tectonics in Central Inner Mongolia Guanzhong Shi (Major in Structural geology) Directed by: Prof. Faure Michel (University of Orléans, France) Prof. Bei Xu (Peking University, China) Prof. Yan Chen (University of Orléans, France). Abstracts The study region located at the southeast of Central Asian Orogenic Belt (CAOB) is the ideal area to research ancient accretionary orogen. It is hotly debated about the final closural time and position of the Paleo Asian Ocean. Some geologists advocated the “Solonker” suture marks the final closural zone. However, the basal geological materials are few reported. The tectonic evolution of our three study areas, the Hongqi, the Ondor Sum and the Mandula is essential and important to solve those controversies. The Mandula area as part of the “Solonker” suture plays a curial role for us to understand the Permian tectonic setting. We recognize several litho-tectonic units in the light of the theory of accretionary orogen belt in the Hongqi, the Ondor Sum and the Mandula areas. A multidisciplinary research including structural geology, sedimentology and geochronology make us propose a new possible Paleozoic tectonic evolutional model for the three study areas. This model reinterprets the available lithological and geochemical data. Combined with the precursors’ research data, we reevaluate the central Inner Mongolia regional tectonic evolutionary history. The litho-tectonic units recognized in the Hongqi-Ondor Sum area include the Hongqi-Ondor Sum mélange belt, the Bainaimiao arc belt, North China Craton and some post-orogenic unconformably sedimentary rocks. The matrix of the Hongqi-Ondor Sum mélange belt mainly consists of sericite-chlorite schists, chlorite-quartz schists, sericite-quartz schists, chlorite-epidote schists and tuffaceous I.

(5) sandstones. Various sized of blocks, for example, marble, sandstones, pillow basalt and blueschist are imbedded in the matrix. The Bainaimiao arc is composed of the Bulongshan Formation and the Hala Formation in Hongqi area, granitic plutons in the Bater Obo, and amphibolitic intrusions, plagiogranite, gabbro in the Tulinkai area. The Hongqi-Ondor Sum mélange belt experienced two phases’ ductile deformations and one phase ductile-brittle deformation. D1 is responsible for the regional greenschist foliation S1, elongated mineral lineation L1, and intrafolial fold F1. The kinematic criteria, such as sigmoidal object, oblique fabric, mica fish, shear band etc. indicates a top-to-the-NW shearing sense. D2 is characterized by various sized of unsymmetrical folds with nearly NE axis corresponding to the NW thrust shearing. D3 formed the regional framework in the Hongqi and the Ondor Sum areas. It developed typical SE trending upright fold in the Hongqi area whereas formed an E-W strike antiform structure in the Ondor Sum. The Devonian sediments are involved in the D3 deformation, confining a lower deforming time limit. We present a U-Pb zircon concordia age of 485±14Ma for a metavolcanic block in the mélange, suggesting it from the upper plate volcanic arc. The mélange belt contains Silurian fossiliferous limestone blocks, which is the youngest blocks in the mélange for current knowledge. The Early Devonian clastic sediments and fossiliferous carbonate rocks unconformably covering the Hongqi-Ondor Sum mélange belt and the Bainaimiao arc belt suggest a coastal sedimentary environment. All those geological data support that a broad ocean has disappeared; Oceanic crust subduction terminated by the arrival of a potential microcontinent during Late Silurian and Early Devonian. The Mandula area contains olistostrome sediments, turbiditic sediments and volcano-sedimentary rocks. The olistoliths including limestone, sandstone, volcanic blocks and siliceous mudstone are imbedded in the matrix of disordered or semi-continuous sandy and argillitic sedimentary beds. Turbidite developing typical Bouma sedimentary sequence is divided as coarse turbiditic sedimentary subunit and fine turbiditic sedimentary subunits. The Dashizhai Formation consisting of several II.

(6) sequences of volcano erupting, effusive sediments and intermittent sediments presents a littoral environment. The Zhesi Formation interpreted as alluvial environment features by upperward fining and thinning conglomerate, coarse grain sandstone and fine grain sandstone association. The basaltic lavas in Mandula give a U-Pb concordia age of 289 ± 4Ma. A group of zircon xenocrysts are detected with U-Pb average age of 434 ± 4 Ma. Those xenocrysts are well proved the Permian magmatism is contaminated or metasomatized by Early Paleozoic arc magmatic materials. Therefore the Permian magmatic rocks present some arc-like features geochemically. A gabbro vein with U-Pb concordia age of 257 ± 1Ma intrudes into the turbiditic sediments implying it not typical ophiolitic fragments. The xenocrysts of ca.1850Ma, 1600Maˈ1000Ma in the gabbro suggest a potential Precambrian crystalline basement in deep. The limestone olistolith possibly came from the southern the Amushan Formation in the Hongqi area due to similar fossil associations. Detrital zircon grains in sedimentary samples have two notable age peaks of ca.270-280Ma and ca.420-440Ma, and several grains of 700-1000Maǃ1800-2200Ma and 2300-2500Ma. These two grain peaks argue the Mandula study area received the southern Bainaimiao arc materials and coeval Permian volcanic erupting materials nearby. The 1800-2200Ma and 2300-2500Ma grains probably are related to the North China Craton whereas the grains of 700-1000Ma are common in the southern Mongolia. Therefore a microcontinent is deduced existing to the north of study area. The regional lithological and structural features, temporal and spacial distribution of these litho-tectonic units and available geochemical data lead us to conclude a rifting setting in Permian. The paleogeography features a deep water environment in the southern Mandula while shallow or littoral environment in the north on the basis of sedimentary facies analysis. The so called “Solonker” ophiolitic fragments indeed are olistostrome. Typical ophiolite components, for example, ultramafic blocks and cherts are not observed in the Mandula area.. III.

(7) The sediments and volcanic rocks in Mandula area subject a nearly NW-SE or N-S compressional shortening, which is named D4 following the order in the study region. D4 presents various types of folds in the turbiditic sediments with well developed cleavage, such as isoclinal folds, recumbent fold and overturned folds. The volcanic rocks and coarse grains deposits in the northern Mandula are characterized by E-W or ENE-WSW trending open folds. We argue that the folding in the Late Permian to Early Triassic finally leads to the rift closure. Key words: Central Inner Mongolia; Central Asian Orogenic Belt; Polyphase deformation; Sedimentary facies analysis; Tectonic evolution. IV.

(8) Contents Chapter 1 Introduction ......................................................................................................................1 Section 1.1 Research background .............................................................................................1 1.1.1 Accretionary orogens ...............................................................................................1 1.1.2 A brief introduction of Central Asian Orogenic Belt (CAOB) .................................3 1.1.3 Paleozoic tectonic evolution controversy and problems in Inner Mongolia ............5 1.2 Research contents and methods ..........................................................................................8 ㄀Ѡゴ ऎඳഄ䋼㚠᱃ ( Regional Geological Setting) ..............................................................10 ㄀Ѡ㡖 ⷨおऎഄ䋼㚠᱃(Geological background)...........................................................11  ढ࣫ᵓഫ( the North China Craton)...................................................................12  ⱑЗᑭቯᓻऩ‫ܗ‬ऎ(The Bainaimiao Arc Belt) .................................................13  ⏽䛑ᇨᑭ๲⫳ᴖችऎ(The Ondor Sum Subduction/Accretion Belt) ................14 Ā㋶Ӻ㓱ড়㒓āऩ‫ܗ‬ऎ(The “Solonker Suture” Suture) ..................................15 ᖂ䰚ഫ Microcontinents

(9) .................................................................................18 ㄀ϝゴ ᮽস⫳ҷ໻ഄᵘ䗴⡍ᕕ (The Early Paleozoic Tectonics ).............................................19 ㄀ϔ㡖 㑶᮫⠻എⷨおऎ˄The Hongqi area˅ ....................................................................19  ች⷇ᵘ䗴ऩ‫(ߚߦܗ‬The Litho-tectonic framwork)...........................................19 㑶᮫⠻എ⏋ᴖችবᔶߚᵤ(the structual and kinematic analysis) ...................38 ㄀Ѡ㡖⏽䛑ᇨᑭⷨおऎ(The Ondor Sum area).................................................................44 ች⷇ᵘ䗴ऩ‫(ߚߦܗ‬The litho-tectonic framwork) ...........................................44 ⏽䛑ᇨᑭഄऎবᔶߚᵤ (The Structural and kinematic analysis) ....................50 ㄀ϝ㡖ᇣ㒧(Summary) ......................................................................................................55 ㄀ಯゴᰮস⫳ҷᵘ䗴⡍ᕕ(The Late Paleozoic tectonics) ........................................................57 ㄀ϔ㡖 ⒵䛑ᢝഄऎᵘ䗴ऩ‫( ߚߦܗ‬the litho-tectonic framwork in the Mandula area)......57  ⒥ภේ⿃ऩ‫(ܗ‬the Olistostrome Unit)...............................................................58 ⌞⿃ችऩ‫(ܗ‬The Turbidite Unit) ....................................................................67 ૆ᮃ㒘≝⿃ऩ‫(ܗ‬The shallow water sediments, the Zhesi Formation)............73 ໻⷇ᆼ☿ቅችऩ‫(ܗ‬the Permian volvanic rocks, the Dashizhai Formation) ...77 ㄀Ѩゴ 䗴ቅᏺⱘᑈҷᄺ㑺ᴳ the Time Constraints

(10) ..............................................................88 ㄀ϔ㡖 䆩偠ᮍ⊩ (Analytical methods) ...............................................................................88  ḋક໘⧚ (Sample experiment process) .............................................................88 /$,&306 䫚⷇ 83E ᅮᑈ(LA-ICP-MS dating methods) ..............................89 ㄀Ѡ㡖⌟䆩㒧ᵰ(Dating results)........................................................................................90 ⏋ᴖᏺব☿ቅችഫԧ the metavocanite blocks in the Hongqi mélange Belt) 90  ⒵䛑ᢝ⥘℺ች(the basalt in the Mandula area) .................................................91  ⒵䛑ᢝ㱔ব䕝䭓ች(the altered gabbro in the Mandula area)............................92 ⒥ภේ⿃෎䋼(The matrix of olistostrome in the Mandula area).....................93 ㉫⌞⿃ች(the turbidite sandstones in the Mandula area)..................................96 ⸙䋼⊹ች(the silicified mudstones) ..................................................................96 ㄀ϝ㡖 ᑈҷᄺᛣНঞᇣ㒧 Summary

(11) ...........................................................................98 Chapter 6 The Paleozoic Tectonic evolution in Central Inner Mongolia ...................................102 Section 6.1 The Litho-geochronological Framwork .............................................................102 Section 6.2 Polyphase deformation and time constraints......................................................104. V.

(12) Section 6.3 A possible geodynamic evolutional modle.........................................................106 Section 6.4 Discussion .......................................................................................................110 6.4.1 The Palezoic tectonic evolution in Inner Mongolia ..........................................110 6.4.2 A doult to the “solonker” ophiolite ................................................................... 111 Chapter 7 Conclusion.................................................................................................................113 References.....................................................................................................................................115 Appendix table 1 The summary of the geochoronological data in the study areas .......................139 Appendix table 2 The magmatic zircon U-Pb dating data ............................................................140 Appendix table 3 The detrital zircon U-Pb dating data.................................................................141 Article 1: Structural and kinematic analysis of the Early Paleozoic Ondor Sum-Hongqi mélange belt, eastern part of the Altaids (CAOB) in Inner Mongolia, China ...............................150 Article 2: Late Paleozoic crustal evolution of the Mandula area, Inner Mongolia and a question to the Solonker suture .......................................................................................................................167. VI.

(13) Chapter 1 Introduction Section 1.1 Research background 1.1.1 Accretionary orogens Currently three end-member types of orogens are recognized namely, collisional, accretionary and intra-cartonic (Cawood et al., 2009, Fig.1-1-1). Collisional orogens related to continent-continent collision imply that the mountian building occupy the internal location among the assembled continents (Wilson, 1966; Dewey, 1969). However, this model can not explain the orogenic belts that lie at the plate margin characterized by continuing subduction and accretion. These belts are termed accretionary orogens, also refers as non-collisional or exterior orogens, Cordilleran-, Pacific-, Andean-, Miyashiro- and Altaid-type orogens, or zones of type B subduction (Matsuda and Uyeda 1971; Crook 1974; Bally 1981; Murphy and Nance 1991; Windley 1992; Sengor 1993; Sengor and Natal’in 1996; Maruyama 1997; Ernst 2005; Cawood; 2009).. Fig.1-1-1 Schematic cross-sections through (a) collisional, (b) accretionary and (c) intracratonic orogens (after Cawood et al., 2009). 1.

(14) Our understanding of the evolutional process for accretionary orogens is moderately well established in modern orogens such as the Andes, Japan, Indonesia and Alaska. The western and northern Pacific extending from Indonesia via the Philippines and Japan to Alaska, and the North and South American Cordillera are archetypical modern examples. The ancient examples, taking the Phanerozoic Terra Australis and Central Asian orogens for example, also contribute to the understanding of accretionary orogens (Windley 1992; Kroner et al., 2008; Cawood et al., 2009). Accretionary orogens include accretionary prism, island arcs, back-arcs, dismembered ophiolites, oceanic plateaux, old contienntal blocks, post-accretion granitic rocks, syn-deformation metamorphic rocks and clastic sedimentary basins (Cawood, 2009). The accretionary prism is usually associated with the offscraping and underplating of matrial from the downgoing plate to the upper plate in intraoceanic or continental subduction zones. High fluid pressure and shearing lead to a spectrum of strucutre within the prism ranging from discrete thrust imbrication of relatively coherent sedimentary packages to chaotic melange formation. Locally, the sequence displays a distinctive ocean plate stratigraphy consisting, from bottom to top, of a succession of mid-ocean ridge basalt (MORB), chert, hemipelagic mudstone, turbidite or sandstone and conglomerate. All these materials preserve a record of deformation and metamorphism during the burial in the lower plate, the accretion process at maximum depth, and exhumation in the upper plate (Kimura et al., 1996; Agard et al., 2001, 2009; Lister and Forster, 1996; Stanek et al., 2006). The high-P/Low-T metamorphism may occurred at both the wedge and/or in the subduction channel (Platt, 1993; Ring et al., 1999; Jolivet et al., 2003; Agard et al., 2009; Guillot et al., 2009). The downward migration of subducting materials creates a serieous of faults, including subduction thrust, later reverse faults, or out of sequence thrust, high-angle and detachment normal faults, and strike-slip fault systems which alter substantially their original architecture(Ring and Brandon, 1994; Ring et al., 1999; Ring and Layer, 2003; Mann, 2007). The arrive of the low-density continental material in the subduction channel is generally thought to be responsible for the choking of subduction and linking to ocean closure, which then stops or jumps outboard of the 2.

(15) continental block (Ernst, 2005; Chopin, 2003; Stern, 2004). When a large buoyancy mass (e.g. continental plate, large sea mount) enters the subduction zone, after a restricted period of time of being dragged into subduction belt, the collision develops. Accretionary orogens usually are divided into two types, namely retreating and advancing based on the relative velocity of two plate and contrasting geological character(Royden 1993). Accretionary plate margins and orogenic systems can switch between phases of advance and retreat (e.g. the Lachlan segment of the Terra Australis orogen; Collins 2002), Also the accretionary orogen can undergo multiple cycles of tectonic mode switching that the dock of microcontinent at a convergent plate margin was followed by a stepping out of the subduction zone beyond the accreted terrane (Lister et al., 2001; Beltrando et al., 2007). Island arc accretion in the accretionary orogen is important, for example, Japan (Isozaki 1996; Maruyama 1997) and Alaska (Sisson et al., 2003). The magmatism of Accretionary orogens can range from mafic to silicic. Magmatic arc activity is characteristically calc-alkaline in composition but also contain components ranging from low-K tholeiite to shoshonitic which partly depends on the nature of the interaction of the magma with the arc substrate (Tatsumi and Eggins 1995). Arc magmatism within accretionary orogens is invoked as the major source of continental growth. Geochemical and isotopic data have shown that the composition of continental crust resembles subduction-related igneous rocks and suggest a progressive growth modle of continental crust through time (Taylor 1967; Taylor and McClennan 1985; McCullonch and Bennett 1994; Arculus 1999). Thus, research the accretionary orogen belt is critical to clarity plate tectonics and to. understand the. significant crustal growth process (Sasmon and Patchett 1991; Sengor and Natal’in 1996; Jahn et al., 2000; Wu et al., 2000; Jahn 2004). 1.1.2 A brief introduction of Central Asian Orogenic Belt (CAOB) The Central Asian Orogenic Belt (CAOB), also called Altaids (Altaid Tectonic Collage, Sengor et al., 1993; Sengor and Natal’in, 1996) is a complex collage of island arcs, micro-continental fragments and remnants of oceanic crust as well as 3.

(16) small forearc and backarc basins. It situated between the Siberian craton to the north and the Kazakhstan, North China and Tarim cratons in the south. To the east, the western margin of the Precambrian silvers of Mongolia and northeast China is a suggested border of the CAOB. To the south, the boundary follows the northern margin of the Karakum, Alai-Tarim, and North China cratonic blocks. In the west, the boundary starts near the Caspian Sea and then follows the Main Urals faults as a principal boundary between the non-oceanic and oceanic complexes (Fig.1-1-2, Sengor et al., 1993, Mossakovsky et al., 1994; Sengor and Natal’in, 1996; Yakubchuk et al., 2002; Jahn et al, 2000; Badarch et al., 2002; Jahn, 2004; Xiao et al., 2003, 2008; Windley et al., 2007).. Fig.1-1-2 the Central Asian Orogenic Belt and adjacent structures (modified after Alexander Yakubchuk, 2004). Sengor et al. (1993) and Sengor and Natal’in (1996) synthesize that the Central Asian Orogenic Belt formed from c.542Ma to 250Ma involving one main island arc (Kipchak-Tuva-Mongol arc) along the outboard marin of the Baikalides and Ore-Uralides orogen. This arc collaged to Siberia and Baltica by differential rotation, causing the arc duplication and oroclinal bending by the late Carboniferous. Some researchers enlightened by the geology and tectonics of the modern western Pacific. 4.

(17) suggested that island arcs, oceanic islands, seamounts, accretionary wedges formed in the Palaeo-Asian ocean and accreted to the margins of Siberia and Baltica. Simultaneously several Precambrian blocks were rifted off the margins of Gondwana and/or Siberia and drifted to dock with the growing accretionary margins (Zonenshain et al., 1990; Mossakovsky et al., 1993; Badarch et al., 2002; Khain et al., 2003).. 1.1.3 Paleozoic tectonic evolution controversy and problems in Inner Mongolia The vast territory of Central Inner Mongolia lies in the eastern part of the CAOB, also called Manchurides (Sengor and Natal’in, 1996; Fig.1-1-2). Numerous research have been carried out around the tectonic division and evolution, sedimentology, magmatism, structural deformation, paleobiogeography, and paleomagnetism of Inner Mongolia since several decades. However, there are markedly conflicting interpretations on some questions, such as the tectonic affiliation of the Permian marine basin in the eastern Paleo-Asian orogens, the postion and timing of the collision between the Sino-Korean and Siberian Paleoplates (Wang and liu 1986; Shao et al., 1991; Xiao et al., 2003; Zhang et al., 2008, 2011; Jian et al., 2008, 2010; Xu et al., 2012 ). The Solonker (also called Solon Obo) suture is considered by most of geologists as the major structure that delineates the final location of the Paleo-Asian Ocean (Sengör and Natal’in, 1996; Xiao et al., 2003; Windly et al., 2007; Chen et al., 2009; Jian et al., 2010). However, the exact position of the Solonker suture is still in controversy. Some geologists advocated that the suture line extends from Solon Obo to the Hegenshan (Shao 1991; Nozaka and Liu 2002). On the contrary, some believes that the suture extends from Solon Obo eastwards through the region of Linxi and XarMoron river (Wang and Liu 1986; Tang 1990, 1992; Sengor and Natal’in 1996; Xiao et al.2003). Several different models have been proposed to explain the tectonic evolution of Inner Mongolia involving closure of ocean basins by multiple/doule-opposite subduction, accretion and collision of island arcs and microcontinents, and formation of multiple suture zones. Here list the main models: 1) Xiao et al.(2003) proposed a model for the evolution of the CAOB with three 5.

(18) main stages that are related to progressive two-way subduction of the Paleo-Asian Ocean (Fig.1-3): 1) early to mid-Paleozoic Japanese-type subduction-accretion, 2) a Permian Andean-stage when the two opposing margins became sufficiently consolidated, and 3) continent-continent collision, leading to the formation of the Solonker suture zone at the end of the Permian during the final closure of the Paleo-Asian Ocean due to its coeval southward and northward subduction beneath the Tarim and North China cartons and Siberia, respectively. This process was accompanied by emplacement of immense volumes of mafic and granitic magmas (Chen et al., 2000; Jahn et al., 2000, 2004; Wu et al., 2002). 2) Jian et al. (2008, 2010) proposed two phases of orogenic cycles with a timporal gap of ca. 120Ma. The southeastern CAOB evloved in a progression from oceanic. subduction/arc. formation. (ca.500-438Ma),. to. ridge. subduction. (ca.451-434Ma), and microcontinent accretion/collision (ca.430-415Ma). The Permian-Triassic orogenic cycle is associated with pre-subduction extension (ca.299-290Ma),. subduction. initiation. (ca.294-280),. ridge-trench. collision. (ca.281-271Ma) and slab break-off (ca.255-248Ma). 3) Recently, Xu et al., (2012) recognized several litho-tectonic units in Inner Mongolia on the basis of regional lithological correlation and geochronology. It argued that during early Palezoic, a south-directed oceanic subduction below the North China Craton coeval with a north-directed oceanic subduction. Finally, the two opposite subduction systems ended around 420-380Ma. These numerous differing models are mostly based on various types of geological data such as regional stratigraphic correlation, paleomagnetism, paleontology, geochronology and geochemistry (Zhang and Tang, 1989; Tang, 1990; 1992; Shao, 1991; Ren et al., 1999; Nozaka and Liu, 2002, Chen et al., 2000, 2008;. 6.

(19) Fig.1-1-3 the exiting modles about the tectonic evolution of Inner Mongolia. Jian et al., 2008, 2010). However, none appears to account for all the geological data. Here we synthsis all these problems about several geodynamic scenarios: A) Although there were several models, the structure of this zone is poorly constrained, so that it is difficult to evaluate these models. B) It is widely regarded that the Solonker suture represents the final closure positon of CAOB. However, there is rare geological data are documented about the Solon Obo ophiolite and surrounding geology.. 7.

(20) C) The Permian tectonic affinity in Inner Mongolia is arc or rifting setting. It is still debated problem, even though plenty of geochemical data were reported. D) The feaures of microcontinent that involved in the evolution of CAOB is another problem. Rare existing evidences are reported, even though plenty of models mentioned the existence of a microcontinents titled the South Gobi microcontinent (Sengör and Natal’in, 1996; ), South Mongolia microcontinent (Xu et al., 2012) and Hutag Uul terrane (Badarch et al., 2002). Thus, the structural deformation data, new geological observation about the Solonker ophiolite and new age dating data are important and will be critical constraints about the eastern segment of the CAOB.. 1.2 Research contents and methods To solve the problems mentioned above, three research areas, Hongqi area, Onder Sum area and Mandula area respectively, are seleted to carry out detailed geological mapping about Paleozoic lithological and structural feasures. A multidisciplinary research was carried into execution in this project, including: 1) Differentiating the litho-tectonic units concerning the accretionary orogenic process on the basis of regional geological survey, lithological correlation and deformation features. Recognizing the relationship between the differing the litho-tectonic units. 2) Structral analysis: recording the geometric and kinematic characteristics, especially the mélange belt. Differentiating the successive deforming phases to discuss the relationship with the subduction-collision process. 3) Sedimentary facies analysis: analyzing the sedimentary facies and sedimentary environment on the basis of sedimentary stratigraphy geometry, thickness and distribution, sedimentary structure etc. Discussing the relationship between stratigraphic development and the collision and/or rifting phases. 4) Geochronology and provenace analysis: with the help of the detrital zircon dating method, creating the litho-geochronlogical framwork in the study area. comparing the age distribution with the regional particular tecotnic event to anaylize the sediementart provenace. 8.

(21) Finally, synthesizing our geological survey data and precursors’ research results, a tentative geodynamic evolution model was proposed about the Central Inner Mongolia to solve the problems mentioned above and to evaluate the existing geodynamic modles.. . 9.

(22) ㄀Ѡゴ ऎඳഄ䋼㚠᱃ ( Regional Geological Setting) ㄀ϔ㡖 ⷨ お ऎ ⱘ ഄ ⧚ Ϣ ᵘ 䗴 ԡ 㕂 (Geographic and Tectonic position) ⷨおऎ໘Ѣ៥೑‫ݙ‬㩭স㞾⊏ऎˈ▦ЈЁ㩭䖍⬠˄೒ ˅ˈफ䍋Ѣ੐੠⌽ ⡍ҹ࣫ˈ㑺࣫㒀 eˈҹ࣫㟇Ё㩭䖍⬠DŽϰ㽓䎼ᑺ䕗໻ˈ䎼䍞њ (e(e ᑓ໻ഄऎDŽഄ䉠ϞሲѢ㩭স催ॳϬ䱉ഄᏺˈ݊⃵Ўቅഄ੠ᑇॳˈᑇഛ⍋ᢨ೼  ㉇ᎺেDŽ໻݈ᅝኁǃ䰈ቅǃ䌎݄ቅ㴓㳦Ⳍ䖲ˈਜ 6 ᔶ䌃こܼऎDŽ῾Ѭ‫ݙ‬㩭সЁ䚼 ⱘ䰈ቅቅ㛝ˈ⬅໻䴦ቅǃРᢝቅǃ㡆ᇨ㝒ቅ੠⣐ቅ㒘៤ˈ㓉ᓊ NPˈ⍋ᢨ PDŽⷨおऎഄ㸼໮㹿ỡ㹿㽚Ⲫˈഄ䉠Ⳍᇍ催Ꮒ䕗ᇣˈ䴆༈ߎ䴆䕗Ꮒˈ㒭 ഄ䋼䇗ᶹᎹ԰ᏺᴹೄ䲒DŽ .  ೒ ‫ݙ‬㩭সഄऎऎඳԡ㕂೒˄᥂ KWWSZZZPDVWHUILOHFRPׂᬍ˅ . ໻ഄᵘ䗴ԡ㕂ϞˈⷨおऎሲѢЁѮ䗴ቅᏺ೼Ё೑๗‫ⱘݙ‬䚼ߚˈ৥㽓Ϣ㩭স๗ ‫ⱘݙ‬䗴ቅᏺᇍᑨDŽ䆹ऎᰃসѮ⌆ᵘ䗴ඳⱘ䞡㽕㒘៤䚼ߚˈ࣫Ϣ㩭সü䛖䳡㣼‫ܟ‬䗴 ቅᏺⳌ䚏ˈफ᥹ढ࣫‫ܟ‬ᢝ䗮˄೒ ˅DŽ៥೑ഄ䋼ᄺᆊ⿄݊Ў݈㩭䗴ቅᏺˈ݊ फջⱘढ࣫ᵓഫᰃ৩ṕ䖤ࡼৢᏆ෎ᴀ೎㒧ⱘ〇ᅮഫԧˈϸ㗙ҹ催ᆊづРᢝ⡍ৢ ᮫࣪ᖋ䌸ዄ⏅໻ᮁ㺖Ў⬠DŽ‫ݙ‬㩭সЁѮ䗴ቅᏺЏ㽕ࣙᣀࡴ䞠ϰ੠⍋㽓ㄝϡৠᯊ. 10.

(23) ᳳች⷇ഄሖऩ‫ৢˈܗ‬㹿Ёᮄ⫳ҷⲚഄ㽚Ⲫ˄‫ݙ‬㩭সऎඳഄ䋼ᖫˈ˅DŽ⬅Ѣ䆹 ऎ⍝ঞসѮ⌆⋟ᵘ䗴ඳ᳔㒜ᣐড়ⱘԡ㕂ঞᯊҷㄝ෎⸔ഄ䋼䯂乬ˈᰃⷨおЁѮ䗴ቅ ᏺস⫳ҷᵘ䗴ⓨ࣪ǃ⏅䚼ࡼ࡯ᄺ㚠᱃ⱘ⧚ᛇПഄˈ಴ℸফࠄ೑‫ݙ‬໪ഄ䋼ᄺᆊ᠔݇ ⊼DŽ. ೒ ЁѮ䗴ቅᏺ໻ഄᵘ䗴ᏺߦߚ˄᥂ $OH[DQGHU<DNXEFKXNˈ ׂᬍ˅.  ㄀Ѡ㡖 ⷨおऎഄ䋼㚠᱃(Geological background) 㑶᮫⠻എ⏽䛑ᇨᑭ⒵䛑ᢝഄऎ䎼䍞њढ࣫ᵓഫ੠݈㩭䗴ቅᏺϸ໻ᵘ䗴ऩ ‫ܗ‬DŽࠡҎḍ᥂ऎඳϞⱘᵘ䗴ች⷇⡍ᕕҹঞ᥹㾺݇㋏ˈᇚЁѮ䗴ቅᏺ‫ݙ‬㩭স↉ߚЎ फ࣫ϸϾ䗴ቅᏺ˄೒ ˈ:DQJDQG/LXHWDO˗;LDRHWDO˗ -LDQHWDO˗;XHWDO˅DŽ࣫䗴ቅᏺߚᏗѢ㢣ሐ⡍ Ꮊ᮫䫵ᵫ⌽⡍ϔ㒓ˈ⬅ϔ㋏߫ⱘ৥फӄ‫ⱘކ‬ᏺ㒘៤ˈࣙ৿Ԣ 37 ব䋼ᴖችǃ‫׃‬ ‫ކ‬๲⫳ᴖች੠։ܹች˄㚵偕ˈ˗;LDRˈ˗;XHWDOˈ˅DŽफ 䗴ቅᏺԡѢ⏽䛑ᇨᑭⱑѥ䛖मϔ㒓Џ㽕ࣙᣀ  Ͼᵘ䗴ች⷇ऩ‫ˈܗ‬Ңफ৥࣫ձ⃵ Ў˖ढ࣫ᵓഫ˄‫ܟ‬ᢝ䗮˅ǃⱑЗᑭቯᓻᏺǃ⏽䛑ᇨᑭ‫ކ׃‬๲⫳ᴖችǃ. 11.

(24) ೒ ‫ݙ‬㩭সস⫳ҷЏ㽕ᵘ䗴ች⷇ऩ‫ ᥂˄ߚߦܗ‬%DGDUFKHWDO˗;LDRHWDO ˗;XHWDOˈׂᬍ˅1&& ढ࣫‫ܟ‬ᢝ䗮ˈ62% फ䗴ቅᏺˈ+% ⌥୘䖒‫ܟ‬䰚ഫˈ600 फ㩭সᖂ䰚ഫˈ12% ࣫䗴ቅᏺDŽ.  Ā㋶Ӻ㓱ড়ᏺāҹঞ࣫䚼ৃ㛑ᄬ೼ⱘᖂ䰚ഫDŽ೼䗴ቅᏺⱘⷨおЁˈ䗮䖛ߚᵤഄሖ ⱘ⠽䋼㒘៤ǃᯊぎߚᏗ㾘ᕟǃ៤಴⦃๗ҹঞϢች⌚⌏ࡼ݇㋏ˈ㛑໳ᇍ䗴ቅᏺⱘᔶ ៤ⓨ࣪䖯㸠㑺ᴳDŽᴀ᭛ⷨおऎЏ㽕䎼ඳњफ䗴ቅᏺᵘ䗴ऩ‫ˈܗ‬ϟ䴶ḍ᥂Џ㽕ഄሖ ⱘᯊҷ੠ߚᏗ⡍ᕕˈᇚࠡҎߦߚⱘች⷇㒧ᵘऩ‫߿ߚܗ‬䖯㸠ㅔ㽕ⱘҟ㒡DŽ .  ढ࣫ᵓഫ( the North China Craton) ढ࣫‫ܟ‬ᢝ䗮Џ㽕⬅໾সҷ㒧᱊෎ᑩ੠≝⿃Ⲫሖ㒘៤˄㙪㤷䯕ㄝˈ˗‫ݙ‬㩭 স㞾⊏ऎऎඳഄ䋼ᖫ ˅DŽ㒧᱊෎ᑩ⬅স໾স⬠݈੠ች㕸ǃЁ໾স⬠Рᢝቅች 㕸੠ᮄ໾স⬠㡆ᇨ㝒ቅች㕸㒘៤ˈ঺໪䖬ߚᏗ᳝໻䞣໾সҷⱘ 77* ች㋏ˈব䋼⿟ ᑺ䖒Ԣ㾦䮾ችⳌˉ咏㉦ችⳌDŽℸ໪೼Рᢝ⡍ৢ᮫ⱑѥ䛖मϔᏺߚᏗ᳝স‫ܗ‬স⬠ ᅱ䷇೒㕸ˈችᗻЎ⠛ችǃ⷇㣅ች੠໻⧚ችㄝˈЎϔ༫㾦䮾ችⳌব䋼ഄሖˈᯊҷЎ *D˄ᕤ໛ˈ˗ᓴ㞷ㄝˈ˗ᓴ⥝⏙੠㢣ᅣӳˈˈᓴ⥝⏙ˈ ˈ˗≜ᄬ߽ㄝˈ˅DŽЁᮄ‫ܗ‬স⬠ⱑѥ䛖म㕸੠⏷ᇨ⋄ቅ㕸ˈЎढ࣫ ഄৄᔶ៤ৢⱘ㄀ϔϾ˄‫Ⲫ˅ޚ‬ሖ≝⿃ˈᅗӀሲѢϸϾ䖥ᑇ㸠ⱘ㺖䈋ൟ≝⿃˄⥟Ἷ. 12.

(25) ㄝˈ˅DŽⱑѥ䛖म㕸Ўϔ༫⹢ሥችǃ⺇䝌Ⲥችᓎ䗴ˈ།᳝ᵓችঞᇥ䞣☿ቅችˈ ⌙ব䋼៪᳾ব䋼DŽ݊Ё෎ᗻ☿ቅችሖऩ乫㉦䫚⷇ 83E ᑈ啘 f0D˄⥟Ἷㄝˈ ˗&KDRHWDO˗ᓴᅫ⏙ㄝˈ˅ DŽ⏷ᇨ⋄ቅ㕸ᰃϔ༫⹢ሥችǃ⺇䝌 Ⲥችঞ咥㡆义ችᓎ䗴ˈ≝⿃ྟѢ 0D Ꮊে˄⥟Ἷˈ˗䰜Ңѥˈ˅DŽ೼ ढ࣫‫ܟ‬ᢝ䗮࣫㓬ˈⱑѥ䛖मഄऎߚᏗ䳛ᮺ㋏㝂ᵫ੐⋲㒘੠ᆦ℺㋏䰓⠭ⱏ㒘ˈЎϔ ༫⺇䝌Ⲥች།⹢ሥችᓎ䗴৿᳝㯏㉏ㄝᖂԧ࣪⷇ˈᑩ䚼Ϣⱑѥ䛖म㕸ਜᮁሖ᥹㾺ˈ 䚼ߚਜ亲ᴹዄᔶᓣߎ⦄˄ⱑѥ䛖मᐙ  ϛऎ䇗ˈ˅DŽϟѠ঴㒳㢣ঢ়㒘ˈਜ ࣫㽓৥ǃ䖥ϰ㽓৥ᏺ⢊ሩᏗѢⱑѥ䛖मᮁ㺖ҹफˈችᗻЎ䰚ⳌЁ䝌ᗻ☿ቅ⹢ሥችǃ ☿ቅ❨ችˈᑩ䚼ϡᭈড়೼ⱑѥ䛖म㕸੠䰓⠭ⱏ㒘ПϞˈ㹿ⱑൽ㋏ᴢϝ≳㒘ϡᭈড় 㽚ⲪDŽ䖭ѯ≝⿃ഄሖ᱂䘡㹿ᮽЁѠ঴Ϫǃϝ঴㑾㢅ቫች։ܹ ‫ݙ‬㩭সऎඳഄ䋼ᖫˈ ˗+VXHWDO˗=KDRHWDO

(26) DŽ⊓ⴔϰ㽓৥ሩᏗⱘⱑѥ䛖 म䌸ዄᮁሖ㹿䅸Ўढ࣫‫ܟ‬ᵓഫ੠ⱑЗᑭቯᓻⱘ䖍⬠㒓 䚉⌢ᅝˈ˗૤‫ܟ‬ϰˈ ˗7DQJHWDO˗;LDRHWDO

(27) DŽ .  ⱑЗᑭቯᓻऩ‫ܗ‬ऎ(The Bainaimiao Arc Belt) ⱑЗᑭቯᓻऩ‫ܗ‬ਜᴵᏺ⢊䖥ϰ㽓৥ሩᏗˈҢ㽓䚼ⱘ೒স᮹Ḑ㟇ϰ䚼䌸ዄᓊԌ 䖥ग݀䞠˄೒ ˅ˈЏ㽕⬅༹䱊㋏੠ᖫ⬭㋏☿ቅችǃ⹢ሥች੠⺇䝌Ⲥ㒘៤DŽ ೼ⱑѥ䛖मϰ࣫㟇䖒㣖᮫ҹ࣫ᑓ⊯ߚᏗ༹䱊㋏ࣙᇨ∝೒㕸੠ᖫ⬭㋏㽓߿⊇㒘DŽࣙ ᇨ∫೒㕸ߚϸϾች㒘ˈϟ䚼ЎᏗ啭ቅ㒘ˈϞ䚼Ўજᢝ㒘DŽᏗ啭ቅ㒘Џ㽕Ўᮽᳳ஋ ߎᢝᵓ⥘℺ችˈৢᳳ஋ߎ䩭⺅ᗻ㋏߫ⱘᅝቅችǃ㣅ᅝችঞ☿ቅ㾦⸒ችㄝˈҹঞ৿ ㉝ⷖ⸙⊹䋼ᵓችǃ৿⸒ⷖችǃ໻⧚ችǃ৿䪕⷇㣅ች㭘ሖˈ८ᑺ P˄‫ݙ‬㩭সऎ ඳഄ䋼ᖫˈ˅ DŽ೼Ꮧ啭ቅ㒘乊䚼ⱘ‫♄ޱ‬䋼㉝ⷖችЁ䞛ࠄヨ⷇˖&DOORJDSWXVVS 'HVPRJUDSWXVVS੠ 'LFW\RQHPDVS$VSLGRJUDSWXVVS'LFUDQRJUDSWXV"VS ᯊҷሲѢ༹䱊㑾˄૤‫ܟ‬ϰㄝˈ˅DŽજᢝ㒘߭Џ㽕ᰃϔ༫Ё෎ᗻ☿ቅ❨ችǃ☿ ቅ⹢ሥችˈᭈড়៪䗚‫ކ‬㽚ⲪѢᏗ啭ቅ㒘ПϞDŽϢ☿ቅችৠᯊѻߎ໻䞣ⱘ㢅ቫችˈ 㢅ቫ䮾䭓ች੠⷇㣅䮾䭓ችߚᏗѢᏈ⡍ᬪࣙϔᏺDŽ䮾䭓ች੠⷇㣅䮾䭓ችሲѢ催䪒 Ё䪒䩭⺅ᗻ㋏߫ˈഄ࣪⡍ᕕᰒ⼎ᔎ⚜ⱘ /,/( ᆠ䲚੠さߎⱘ 1E7D ੠ 7L 䋳ᓖᐌˈ 催 6Uǃ%D Ԣ <ǃ<E ⡍ᕕ‫݋‬᳝ DGDNLWH ⡍ᗻˈ/D<E ব࣪䕗໻ᑊԈ䱣ⴔԢ <E ⡍ᕕˈ ৃ㛑Ϣ䭓⷇੠㾦䮾⷇ⱘߚᓖ԰⫼᳝݇˄䆌ゟᴗㄝˈ˗䱊㒻䲘ㄝˈ˗-LDQ HWDO˅DŽ䆹ഄऎⱘ㢅ቫ䋼ች⷇㦋ᕫ䫚⷇ᑈҷ໮೼ 0D П䯈˄-LDQHW 13.

(28) DO˗ᴢᓎ䫟ㄝˈ˅DŽᏈ⡍ᬪࣙഄऎ㽓߿⊇㒘ϡᭈড়㽚Ⲫ༹䱊㑾㢅ቫች ПϞˈ≝⿃ᑈҷЎᰮᖫ⬭㑾˄-RKQVRQHWDO˅DŽ ೼ⱑЗᑭ੠⏽䛑ᇨᑭഄऎˈ༹䱊㋏ഄሖ⬅ⱑЗᑭ㕸㒘៤DŽⱑЗᑭ㕸ৃߚЎϝ Ͼ☿ቅ≝⿃ች㒘DŽϟ䚼Р剕Р㢣㒘Џ㽕⬅෎ᗻ☿ቅችঞ☿ቅ≝⿃ች㒘៤ˈϟ䚼 ҹ≝⿃ችЎЏˈ৥ϞЎ෎ᗻ❨ችˈ᳈Ϟߎ⦄ᅝቅ䋼☿ቅችˈ䆹ች㒘८ᑺ໻Ѣ P˗ ݊Ϟⱘ὚ᷥ≳㒘Ў঺ϔ☿ቅ஋থᮟಲѻ⠽ˈ䆹㒘ϟ䚼≝⿃ችЁ‫ي‬།໻⧚ች䗣䬰 ԧˈች㒘८㑺 PDŽ᳔Ϟ䚼ⱘᕤሐР㢣㒘Ϣ݊ϟⱘ☿ቅችሖᭈড়ѻߎˈЏ㽕⬅ ⹀ⷖች੠㉝ⷖች㒘៤ˈ८ P˄‫ݙ‬㩭সऎඳഄ䋼ᖫˈ˅DŽⱑЗᑭቯᓻϢढ ࣫ᵓഫᮁሖ᥹㾺ˈ㚵偕ㄝ˄˅೼ⱑЗᑭቯᓻⳌ݇≝⿃Ёথ⦄ヨ⷇࣪⷇ˈᯊҷ ᅮЎᮽЁ༹䱊㑾DŽ=KDQJHWDO 

(29) ೼ⱑЗᑭ㕸☿ቅችЁ㦋ᕫ 6+5,03 䫚⷇ᑈ . . 啘Ў 0DDŽⱑЗᑭ㕸☿ቅችৠԡ㋴ᰒ⼎催 6U ੠ 1G Ԣؐ˄ 6U 6U  İ1G f˅ ˈ䇈ᯢ᳝ഄ໇‫ܗ‬㋴ⱘ⏋ܹˈ㹿㾷䞞Ў໻䰚䖍㓬ᓻ⦃๗˄6KDR˗ 1LHDQG%M噌UO\NNHˈ˗;LDRHWDO˅DŽ .  ⏽䛑ᇨᑭ๲⫳ᴖችऎ(The Ondor Sum Subduction/Accretion Belt) ⏽䛑ᇨᑭ๲⫳ᴖችᏺϰ㽓ᓊԌ㑺 NPˈ῾䎼㽓䚼ⱘⱑѥ䛖म㟇ϰ䚼ⱘ㽓ᢝ ᳼Ӻ⊇ᑓ䯨ऎඳ˄:DQJDQG/LX˗;LDRHWDO˅DŽ೼‫ݙ‬㩭সЁ䚼䲚 Ѡ㒓ϸջ᳝䕗དⱘߎ䴆ˈ㹿ੑৡЎ⏽䛑ᇨᑭ㕸˄‫ݙ‬㩭সऎඳഄ䋼ᖫˈ˅ˈЏ 㽕⬅ϔ༫⍋Ⳍ☿ቅ≝⿃ⱘব䋼ች㋏㒘៤ˈࣙ৿᳝㪱⠛ች੠䍙෎ᗻችഫԧDŽ૤‫ܟ‬ ϰㄝҎ˄˅ᇚ⏽䛑ᇨᑭ㕸ߦߚЎ  ⾡ች⷇㒘ড়˖े⷇㣅⠛ች⷇㣅ች㒘ড়ǃ 㓓⠛ችᢝ᭥⥘℺ች㒘ড়ǃ໻⧚ች㒘ড়ǃ䕝䭓䕝㓓ች㒘ড়ˈ䍙෎ᗻች㒘ড়ঞ⠛咏 ⢊᭰䭓㢅ቫች㒘ড়DŽ⏽䛑ᇨᑭ㕸ᘏⱘ⡍⚍ᰃϔ༫ҹ㓓⠛ችЎЏⱘ☿ቅ⹢ሥች།Ё ෎ᗻ❨ች੠ℷᐌ⹢ሥ≝⿃ˈሲѢ⍋ᑩ஋থⱘѻ⠽DŽ㚵偕ㄝ˄˅ᑨ⫼ᮍ㾷㓓⊹ ⷇⠛ችǃ৿䪕ሖ੠ᴵᏺ⢊⷇㣅ችㄝᷛᖫˈ䞡ᓎњ⏽䛑ᇨᑭ㕸ⱘሖᑣˈЏ㽕⬅ḥ䖒 ᴹ䷇㒘㒚⹻㾦᭥ችǃજᇨજ䖒㒘䪕⸙䋼ች੠⏋ᴖԧ㒘៤DŽϟ䚼ḥ䖒ᴹ䷇㒘Џ㽕⬅ Ё෎ᗻ஋থችǃ❨ች㒘៤ˈ໻䚼ߚЎഫ⢊៪㗙⠛⧚࣪ⱘ㓓⊹㒚⹻ችǃ㒚⹻䋼‫♄ޱ‬ ች੠⥘℺ችǃᅝቅ⥘℺ችǃᅝቅ⥶ች੠䕝㓓ችঞ‫♄ޱ‬ች㒘៤ˈᐌ།㉫㉦໻⧚ች៪ ໻⧚ች࣪♄ችDŽች⷇ᐌ㾕ᔎ⚜ⱘ㓓⊹⷇࣪ǃ⺇䝌Ⲥ࣪੠⸙࣪DŽϞ䚼જᇨજ䖒㒘ች ᗻऩϔˈЏ㽕Ў⷇㣅ችǃ৿䪕⷇㣅ች੠㓓⊹㒶ѥ⷇㣅⠛ችˈॳችҹ⏅⍋Ⳍ⸙䋼࣪ ᄺ≝⿃ЎЏDŽ೼㓓⠛ች㋏Ё᱂䘡থ㚆㪱䮾⷇⠛ችˈ৿㪱䮾⷇ⱘች⷇㉏ൟ᳝䩴䭓㪱 14.

(30) 䮾⷇⠛ችǃ䩴䭓㓓⊹㪱䮾⠛ችǃ㓓Ꮼ㓓⊹㪱䮾⠛ችǃ㪱䮾㓓Ꮼ໻⧚ችㄝˈ㪱⠛ች ਜ䗣䬰⢊੠ಶഫ⢊ᮁ㓁ߎ䴆DŽࠡҎᇍ⏽䛑ᇨᑭⱘ⏋ᴖች䖯㸠њ䆺㒚ⱘব䋼ች⷇ᄺ ⷨお˄:DQJDQG/LX˗<DQHWDO˗7DQJDQG<DQ˗'H-RQJ HWDO˅ˈ㪱⠛ች݅⫳ⱘⷓ⠽㒘ড়᳝˖㪱䮾⷇໮⸙ⱑѥ↡咥⹀㓓⊹⷇ ᭛⷇䩴䭓⷇⷇㣅ˈ㪱䮾⷇㕳⸙䬄䪕⷇䪕⒥⷇DŽব䋼෎ᗻ❨ችЁߎ⦄㪱⠛ችⳌ ⷓ⠽㒘ড়Ў⹀᷅⷇㓓⊹⷇䩴䭓⷇⷇㣅ˈ⹀᷅⷇㓓Ꮼ⷇㓓⊹⷇ὡ⷇DŽ⏽䛑ᇨ ᑭഄऎߚᏗⴔ䖥ⱒϾ䍙෎ᗻችԧˈਜϰ㽓৥ሩᏗˈϾԧ㾘῵ᇣˈችⳌㅔऩˈ㱔ব ᔎ⚜ˈ໮ਜ䗣䬰⢊ǃᴳ⢊៪ϡ㾘߭ⱘഫ⢊ǃ⠛⢊ѻߎDŽ ;LDRHWDO 

(31) ᡹䘧њР݄≳ഄऎഄ䋼㒘៤ˈࣙᣀϝϾ㒧ᵘऩ‫ܗ‬DŽ ˖݊ Ё⏋ᴖች⬅৿䞥ѥ↡⷇㣅㊰ễችǃ⷇㣅㒶ѥ⠛ችǃѥ↡⷇㣅⠛ችǃ㓓⊹㓓Ꮼ⠛ች ㄝᵘ៤ˈ⏋᳝໻ᇣϡㄝⱘব䋼⥘℺ችǃ⸙䋼ችǃ໻⧚ች੠㪱⠛ችㄝഫԧDŽ೼Р݄ ≳ϔᏺথ⦄ⱘ㪱⠛ችᮄ㦋ᕫⱘ $U$U ᑈ啘Ў f0D ੠ f0D˄'H -RQJHWDO˅f0D˄䚉⌢ᅝㄝˈ˅DŽ೒ᵫ߃ഄऎ㲛㓓⏋ᴖች ᏺ⬅ϔ㋏߫৥फӄ‫ⱘކ‬ᐁ⢊ԧᵘ៤ˈϰ㽓ᓊԌ NPˈᆑ NP ᎺেDŽ䆹⏋ᴖች ᑩ䚼Ў NP ⱘ㾦䮾ችⳌব䋼ऩ‫ˈܗ‬Ϟ䚼㹿ᖫ⬭㑾⸒ችǃ⹀ⷖች੠⺇䝌Ⲥᓎ䗴㽚Ⲫ ˄㚵偕ㄝˈ˗⥟㤗ㄝˈ˅ˈ݊Ё᠔৿ች⌚ችഫԧ㦋ᕫ 0D 䫚⷇ᑈ 啘˄߬ᬺϔㄝˈ˗-LDQHWDO˅DŽ . Ā㋶Ӻ㓱ড়㒓āऩ‫ܗ‬ऎ(The “Solonker Suture” Suture)  ᰮস⫳ҷഄሖ 䆹ऩ‫῾ܗ‬こњ㋶Ӻᬪࣙ㟇㽓ᢝ᳼Ӻ⊇ⱘᑓ䯨ऎඳˈϔѯഄ䋼ᄺ㗙䅸Ў㋶Ӻ㓱 ড়㒓ЎসѮ⌆⋟᳔㒜ⱘᣐড়ԡ㕂˄೒ ˗;LDRHWDO˗&KHQHW DO˗-LDQHWDO˅DŽ䆹ऩ‫ܗ‬Џ㽕ߎ䴆ᰮ⷇⚁㋏ᴀᏈ೒㒘ǃ 䰓᳼ቅ㒘੠Ѡ঴㋏ഄሖ ‫ݙ‬㩭স㞾⊏ऎऎඳഄ䋼ᖫˈ˗ᴢ᭛೑ㄝˈ

(32) DŽᴀ Ꮘ೒㒘Џ㽕ߚᏗ೼㢣ሐ⡍Ꮊ᮫ǃ䖒ᇨ㔩㣖ᯢᅝ㘨ড়᮫ϔᏺˈЎϔ༫⌙⍋Ⳍ⹢ሥች ㋏ˈች⷇㒘ড়Ўᴖⷖችǃ䭓⷇ⷖችǃ⷇㣅ⷖችǃব䋼㉝ⷖችঞ♄㡆ᵓችˈ།᳝♄ ች䗣䬰ԧ੠☿ቅ⹢ሥችDŽҢችᗻ㒘ড়ᴹⳟˈᴀᏈ೒㒘ᔶ៤Ѣ䕗Ўࡼ㤵ⱘ≝⿃⦃๗ ᴢ ᭛ ೑ ㄝ ˈ  ˗ 剡 ᑚ Ё ㄝ ˈ 

(33) DŽ ᴀ Ꮘ ೒ 㒘 ࣙ ৿  Ͼ ࣪ ⷇ 㒘 ড় ᏺ ˈ. (RVWDIIHOOD0LOOHUHOOD㒘ড়ᏺ੠ 7ULWLFLWHV3VHXGRVFKZDJHULQD㒘ড়ᏺˈ ᯊҷЎ⷇⚁㑾࿕ᅕϪ˄⒵䛑ᢝഄऎ  ϛऎ䇗ˈ˅DŽ䰓᳼ቅ㒘ߚᏗ㣗ೈϢᴀ 15.

(34) Ꮘ೒㒘ϔ㟈ˈ῾৥ϞϢᴀᏈ೒㒘ਜ䬃啓⢊䗦ব݇㋏ˈЎϔ༫ҹ⍋Ⳍ⺇䝌ⲤችЎЏ ⱘች⷇ഄሖᑣ߫ˈች⷇㒘ড়Ў⫳⠽♄ችǃⱑѥ䋼♄ችǃ㾦⸒⢊♄ች།䩭䋼ⷖችǃ ㉝ⷖችㄝˈ৿Єᆠⱘ⍋Ⳍࡼ⠽࣪⷇ˈ᳝㜩䎇㉏ǃ㝍䎇㉏ǃঠ໇㉏ǃ㢨㮧㰿ㄝ࣪⷇ ᴢ᭛೑ㄝˈ˗剡ᑚЁㄝˈ˗⒵䛑ᢝഄऎ  ϛऎ䇗ˈ

(35) DŽ ⷨおऎѠ঴㑾ഄሖߚᏗᑓ⊯ˈ㞾ϟ㗠Ϟձ⃵থ㚆໻⷇ᆼ㒘ǃ૆ᮃ㒘ˈ೼‫ݙ‬㩭 সᵫ㽓ഄऎЏ㽕থ㚆ᰮѠ঴Ϫᵫ㽓㒘ㄝഄሖऩ‫ݙ˄ܗ‬㩭স㞾⊏ऎች⷇ഄሖˈ ˅DŽ໻⷇ᆼ㒘☿ቅችߚᏗѢ㽓䚼ⱘ⒵䛑ᢝˈѠ䖲⌽⡍ǃ䫵ᵫ⌽⡍ҹঞϰ䚼ⱘ ᵫ㽓ㄝഄˈ஋থ⦃๗Ў⌙⍋Ⳍ੠Ⓖ⍋Ⳍˈ৿᳝ 'HUE\LDVS6WUHSWRUK\QFKXVVS ㄝ㜩䎇㉏࣪⷇˄ᴢ᭛೑ㄝˈ˅DŽ೼⒵䛑ᢝഄऎЏ㽕ߎ䴆Ё䝌ᗻ❨ች།☿ቅ⹢ ሥችঞℷᐌ≝⿃⹢ሥች˄㢣ᮄᯁㄝˈ˅DŽ೼䫵ᵫ⌽⡍ϔᏺˈ⬅⌕㒍㣅ᅝች੠ ⥘℺䋼ᅝቅችˈ‫݋‬᳝ঠዄ☿ቅችⱘ⡍ᕕˈᯊҷЎ 0D˄=KDQJHWDO˅DŽ ೼ᵫ㽓ഄऎ䆹☿ቅᑣ߫Џ㽕Ў⥘℺ችǃ⥘℺䋼ᅝቅችǃ㉫䴶ᅝቅች੠Ⳍ݇ⱘ‫♄ޱ‬ ችঞ☿ቅ⹢ሥ≝⿃ =KXHWDO

(36) DŽ㢣ሐ⡍Ꮊ᮫ഄऎˈ໻⷇ᆼ㒘㞾ϟ㗠Ϟ⬅Ꮌ ८ሖᅝቅ䋼⦏ሥ᱊ሥችሥ‫♄ޱ‬ች།ᅝቅች੠ᇥ䞣⥘℺䋼❨ች䖛⏵ࠄᅝቅች㣅 ᅝች⌕㒍ችЎЏⱘЁ䝌ᗻ஋ߎች㋏˄ᴢ䗄䴪ㄝˈ˗ᓴᰧᰪㄝˈ˅DŽ咘ቫ ṕᵫ㽓ഄऎˈ߭⬅ϟ䚼ⱘ㾦᭥ች⷇㣅㾦᭥ች⌕㒍ች㒘ড়ˈЁ䚼ᵩ⢊㒚⹻ች ⥘℺ች㒘ড়ˈϞ䚼⥘℺ችᅝቅ⥘℺ችЎЏⱘЁ෎ᗻ❨ች㒘៤˄䚉⌢ᅝˈ˗ ৩ᖫ៤ㄝˈ˗=KXHWDO˅DŽ૆ᮃ㒘ᰃⷨおऎ೼໻⷇ᆼ㒘☿ቅችПৢথ 㚆ⱘ᳔Ўᑓ⊯ⱘ≝⿃ഄሖˈᅗᰃϔ༫⌙⍋Ⳍⷖችǃ义ች੠⺇䝌Ⲥ㒘ড়ˈ䚼ߚഄऎ থ㚆᳝☿ቅ⹢ሥች੠⸙䋼ችˈѻ䴲ᐌЄᆠⱘ⍋Ⳍ⫳⠽࣪⷇˄⥟៤⑤ㄝˈ˅DŽ ᇍѢ૆ᮃ㒘᠔ҷ㸼ⱘ໻ഄᵘ䗴⦃๗ⷨおˈࠡҎ໮䅸Ў݊ҷ㸼њ⌙∈ⱘ≝⿃⦃๗ ˄‫ݙ‬㩭স㞾⊏ऎऎඳഄ䋼ᖫˈ˗催ᖋ㟏ㄝˈ˗⥟ᚴㄝˈ˅DŽԚ᳔䖥 ⱘⷨお೼⊹义ች≝⿃Ё㦋ᕫњᬒᇘ㰿ㄝ࣪⷇ˈᣛ⼎䕗⏅∈≝⿃⦃๗ˈ˄ᇮᑚढˈ ˅DŽϞѠ঴㒳ᵫ㽓㒘Џ㽕⬅ϔ༫咥㡆ᵓችǃ㉝ⷖችǃⷖች㒘৿Єᆠⱘ⎵∈⪷ 劗㉏੠ỡ⠽࣪⷇DŽᴢ⽣ᴹㄝ˄˅ᑨ⫼ഄ⧗࣪ᄺᮍ⊩ᇍ‫ݙ‬㩭সϞѠ঴㒳ᵫ㽓 㒘ⱘ≝⿃⦃๗䖯㸠њⷨおˈ䗮䖛≝⿃⦃๗߸߿ᣛᷛⱘߚᵤ⹂ᅮᵫ㽓㒘Ўᓔ䯨ⱘ ⎵∈⦃๗Џ㽕Ў䰚Ⳍ≝⿃ԧ㋏೼݊≝⿃߱ᳳЎ⍋䰚ѸѦ⦃๗DŽ  䬕䪕䍙䬕䪕䋼ች ㋶Ӻഄऎ˖㋶Ӻቅ㲛㓓ች⊓Ё㩭䖍⬠ߚᏗˈ೼៥೑๗‫ߎݙ‬䴆䭓㑺 NPˈᆑ ᇣѢ NPDŽࣙᣀ᭄ⱒϾ㲛㓓ችഫˈ໻㗙䖒Ϟⱒᑇᮍ݀䞠ˈᇣ㗙᭄ᑇᮍ㉇ˈਜ᠕䈚 16.

(37) ⢊੠䗣䬰⢊ⱘഫԧ៪⣁䭓ⱘᮁ⠛ѻߎѢЁϞ⷇⚁㒳੠ϟѠ঴㒳ഄሖЁDŽഫԧЏ㽕 ⬅ব䋼‘὘ችǃ䕝䭓ችǃ᭰䭓㢅ቫች੠䕝㓓ችች๭㕸ಯ䚼ߚ㒘៤DŽ䞢໪㾕ࠄ㲛㓓 ችഫԧᗻ㛚㗠⸈㺖ˈ㡖⧚থ㚆DŽ䪏᥶੠⠽᥶䌘᭭䆕ᯢᅗӀᰃ᮴ḍⱘˈ㋶Ӻችԧ৥ ϟᓊ㓁 P ৢˈ֓䗤⏤ᇪ♁˄䚉⌢ᅝㄝˈ˅DŽഄ㸼⅟⬭ⱘ䍙䬕䪕䋼ች⷇ 㸼䴶ᕔᕔৃҹ㾕ࠄ亢࣪ᬷ㨑ⱘ㑶㡆䪕⹻⥝ችችഫ៪㗙䍁㡆ⱘ⸙䋼亢࣪໇˄૤‫ܟ‬ϰ ㄝˈ˗䚉⌢ᅝㄝˈ˅DŽ ⒵䛑ᢝഄऎ˖೼䖒㣖᮫࣫䚼ⱘ⒵䛑ᢝഄऎˈ䍙෎ᗻü෎ᗻችഫਜᵘ䗴։ԡ˄㢣 ᮄᯁㄝˈ˅៪亲ᴹዄ˄䱊㒻䲘ㄝˈ˅ᔶᓣѻѢ⷇⚁㋏ᴀᏈ೒㒘ЁDŽችഫ Џ㽕Ў໻ᇣϡㄝⱘᔶᗕ৘ᓖⱘ䍙䬕䪕䋼ችǃ䕝䭓䋼ችǃ䬕䪕䋼☿ቅችǃ⸙䋼ችㄝ ችഫˈ೼෎䋼Ёⱘ৿䞣㑺ऴ ˈ㲛㓓ችҹᵘ䗴⹢ഫᔶᓣߎ⦄ˈѻߎ⢊ᗕ੠ ᵘ䗴⡍ᕕഛ㸼ᯢᅗӀᰃᓖഄ⅟⬭ⱘস⋟໇⹢ഫ˄㢣ᮄᯁㄝˈ˗䱊㒻䲘ㄝˈˈ ˅DŽϔѯഄ䋼ᄺᆊⷨお䅸Ўˈᮽ⷇⚁Ϫৢ⬅Ϟ䗄෎ᗻü䍙෎ᗻችҷ㸼ⱘ⋟໇ ৥࣫‫ˈކ׃‬ᔶ៤ᰮ⷇⚁ϪüᮽѠ঴Ϫቯᓻᏺ੠ᵘ䗴⏋ᴖᏺˈ಴ℸ⒵䛑ᢝഄऎ㲛㓓 ችᏺҷ㸼ᰮস⫳ҷ㓱ড়ᏺ˄㢣ᮄᯁㄝˈ˗-LDQHWDO˅DŽ೼⸙䋼ችЁ ᮄথ⦄ⱘЁѠ঴㑾ᬒᇘ㰿˄⥟ᚴㄝ ˗ᇮᑚढˈ˅ˈ䆹㲛㓓ችᏺ㹿䅸Ўҷ 㸼ЁѠ঴Ϫᮽᳳⱘস⋟ⲚDŽ䱊㒻䲘ㄝ˄˅ḍ᥂ব䋼䕝䭓ችⱘऩ乫㉦䫚⷇ᑈ 啘˄f0D˅੠䰘䖥᳝স㗕ഄഫⱘ⡍ᕕ䅸Ў䆹㲛㓓ችᏺৃ㛑ҷ㸼Ёস⫳ҷ ⱘ䰚䯈ᇣ⋟ⲚDŽ Ѡ䘧ѩᴖች˖೼Ѡ䘧ѩഄऎҹ࣫ϰϰफ㽓㽓৥ᓊԌ㑺 NPˈᆑ㑺 NPˈ ⬅বᔶϡഛϔⱘ෎䋼੠৘㉏ችഫ㒘៤DŽችഫⱘ㉏ൟҹⱑѥች᳔໮ˈ݊⃵Ў⷇㣅ች ੠⷇㣅⠛ችǃ䍙䬕䪕䋼੠䬕䪕䋼ች⷇ǃ໻⧚ችǃ♄ችǃ⸒ች੠㪱⠛ችDŽ෎䋼⬅ব 䋼ⷖችǃব䋼☿ቅች੠ѥ↡⷇㣅⠛ች㒘៤ˈ䙁ফ㓓⠛ችⳌব䋼԰⫼˄ᕤ໛੠䰜᭠ˈ ˗ᓴ㞷੠ਈ⋄✊ˈ˅DŽ㲛㓓⏋ᴖች㹿ᰮ⊹ⲚϪ㡆᮹Ꮘᔺᬪࣙ㒘⹢ሥችϡ ᭈড়㽚Ⲫ˄ᕤ໛ㄝˈ˅ˈ݊Ё᠔৿㪱⠛ችችഫⱘ $U$U ᑈҷЎ f0D˄ᕤ ໛ㄝˈ˅DŽḍ᥂㪱⠛ችᑈ啘੠ϡᭈড়݇㋏ˈ䖭ᴵ⏋ᴖችᏺ㹿䅸ЎሲЁস⫳ҷ 䗴ቅᏺⱘ⏋ᴖේ⿃ᏺDŽԚ ;LDRHWDO ˅䅸Ў䆹ᏺሲѢᰮস⫳ҷ⏋ᴖේ⿃ ⱘϟ䚼㒘ড়ˈϞ䗄㪱⠛ችᑈ啘ҙҷ㸼‫ކ׃‬ᏺ催य़ች⷇‫ैދ‬੠Ϟछᑈ啘DŽ 㽓ᢝ᳼Ӻ⊇ഄऎ˖㽓ᢝ᳼Ӻ⊇࣫ջˈᮁ㓁ߎ䴆ϔѯ㲛㓓ች⹢ഫDŽ᷃ऩቅ㲛㓓 ችᵘ䗴։ԡѢѠ঴㋏ഄሖЁˈϢೈችਜᮁሖ᥹㾺݇㋏ˈ㹿Ёգ㔫㒳☿ቅ≝⿃ች㽚. 17.

(38) ⲪDŽࣙ৿ഫԧ᳝᭰䕝䕝‘ችˈ䕝‘ችㄝˈᔎ⚜㲛㒍ች࣪੠⺇䝌Ⲥ࣪ˈਜೳ咘㡆˄䚉 ⌢ᅝㄝˈ˅DŽ೼ᴣᷥ⌐ϔᏺˈ㲛㓓ችᵘ䗴։ԡѢϞᖫ⬭㒳ˈች⷇㱔ব੠⸈⹢ ᔎ⚜ˈᔎ⚜⠛⧚࣪˄䚉⌢ᅝㄝˈ˗⥟㤗ㄝˈ˅DŽ  ᖂ䰚ഫ 0LFURFRQWLQHQWV

(39)  ⷨおऎ⍝ঞࠄⱘস㗕ഫԧা㽕᳝फ㩭ᖂ໻䰚˄600˅੠⌥୘䖒‫ܟ‬䰚ഫ˄+%˅ DŽ फ㩭সᖂ䰚ഫজ⿄Ў +XWDJ8XO ៪㗙 7RWRVKDQ8ODQXO˄%DGDUFKHWDO˗ 'HPRX[HWDO˅ ˈ⊓ϰ㽓৥ᓊԌ䖥 NPˈ೼Ё೑๗‫ݙ‬ҹ㡒࡯Ḑᑭ㕸Ўҷ 㸼DŽ㡒࡯Ḑᑭ㕸ߚᏗ೼Ѡ䖲⌽⡍㽓फ㡒࡯ḐᑭഄऎˈЏ㽕⬅ϔ༫Ёㄝব䋼ⱘ໻⧚ ችǃ㒧᱊♄ችǃ⷇㣅ችঞ㒶ѥ⷇㣅⠛ች㒘៤DŽ८ᑺ໻Ѣ  ㉇DŽ೼䆹㕸᠔䞛㯏㉏ ࣪⷇᳝ 9HUPLFXOLWHVFIWRUWXRVXV5HLWOOLQJHU ঞ 9HUPLFXOLWHVLUUHJXODULV. 5HLWOLQJHU 2VDJLD FIOLELGLQRVD =KXUDYOHYD ˈ  5DGLRVXV FI EDGLXV =KXUDYOHYD ㄝ݊ᯊҷⳌᔧѢᰮ‫ܗ‬সҷ˄0D˅˄㡒࡯Ḑᑭ  ϛऎ䇗ˈ ˅DŽ ೼ᠬᠬᇮቅϰ䚼ˈफ㩭সᖂ䰚ഫ⬅ᠬ䳋ࡾ࡯ᮃ㕸㒘៤ˈϟ䚼Ў໻⧚⷇࣪♄ችˈ ᕔᕔ‫݋‬᳝䩭⊹䋼㛊㒧ⱘ㾦⸒⢊♄ችˈϞ䚼Ў⎵♄㡆ǃ⥿⩄♄㡆੠♄㓓㡆⌕㒍䋼᭥ ችˈ᳝ᯊЎ䳣㒚᭥ች˗乊䚼Ў⺇䝌Ⲥች㟇⹢ሥችሖDŽ೼ᠬ䳋Рᢝቅϰ NP ໘ⱘ䆹 㕸Ϟ䚼ሖԡЁ䞛ࠄ㯏㉏࣪⷇˖9HVLFXODULWHVFRQFUHWXV=KXU9FRQJHUPDXV =KXU 1XEHFXODULWHV DEXVWXV =KXU ৿ ࣪ ⷇ ሖ ԡ ᯊ ҷ ᔦ ሲ Ѣ ᭛ ᖋ 䰊 ˄ 㑺 0D˅ ˄㡒࡯Ḑᑭ  ϛऎ䇗ˈ˅DŽ ໻䞣ⱘ⠛咏ች䫚⷇ᅮᑈᰒ⼎Ёǃफ㩭সࠡᆦ℺㑾ഄԧⱘᄬ೼˄$QWRLQH 'HPRX[ˈ˗+DUJURYHHWDO˗.URQHUHWDO

(40) DŽ$'HPRX[ ೼ %DJD%RJG˄फ㩭স˅㢅ቫ䋼⠛咏ችЁ㦋ᕫ䫚⷇ 6+5,03 ᑈҷ f0D ੠㒻ᡓ 䫚⷇ᑈҷ 0Dˈ䇈ᯢफ㩭স %DJD%RJG ഄऎস‫ܗ‬সҷЁ‫ܗ‬সҷഄ໇ⱘᄬ೼ˈ ։ܹ䆹⠛咏䋼ች⷇ⱘ㢅ቫችԧ㦋ᕫ䫚⷇ 6+5,03ᑈ啘Ў fˈf ੠  f0Dˈ㗠೼ᠬᠬᇮቅ WRWRVKDQ8ODQXO

(41) ഫԧˈ㢅ቫ䋼⠛咏ች㦋ᕫ f0D ᑈ啘ؐ˄83E ऩ乫㉦䫚⷇⊩˅ <DUPRO\XNHWDO

(42) DŽ ;XHWDO 

(43) 䗮䖛ⷨお⏽䛑ᇨᑭ㕸ⱘ⹢ሥ䫚⷇ᑈ啘ߚᏗˈߚᵤ݊৿᳝ⱘ 0D ੠ 0D ⱘᑈ啘䈅ዄϢढ࣫‫ܟ‬ᢝ䗮⠽⑤੠࣫䚼㩭সഄऎϡϔ㟈ˈ ᥼ᮁ೼⌥୘䖒‫⓴≭ܟ‬ϟ䴶ᄬ೼ᖂᇣ䰚ഫDŽ. 18.

(44) ㄀ϝゴ ᮽস⫳ҷ໻ഄᵘ䗴⡍ᕕ (The Early Paleozoic Tectonics ) ᴀ᭛䗝ᢽⱑѥ䛖मഄऎ㑶᮫⠻എⷨおऎ੠䭊咘᮫⏽䛑ᇨᑭⷨおऎ䖯㸠䞡⚍ ߚᵤˈ䗮䖛䞢໪ഄ䋼㗗ᆳˈᇍⷨおऎ䖯㸠њ䗴ቅᏺ⃵㑻ᵘ䗴ऩ‫ߚߦܗ‬੠ᵘ䗴বᔶ ߚᵤDŽ. ㄀ϔ㡖 㑶᮫⠻എⷨおऎ˄The Hongqi area˅ 㑶᮫⠻എⷨおऎԡѢⱑѥ䛖म࣫䚼ˈ݊ϰջⱘᏈ⡍ᬪࣙഄऎߎ䴆໻䞣ⱘ㢅ቫ ችǃ㢅ቫ䮾䭓ችˈᰃफ䗴ቅᏺЏ㽕㒘៤䚼ߚDŽḍ᥂ഄ䋼㒘៤⡍ᕕǃᇚ㑶᮫⠻എⷨ おऎҢफ৥࣫ߦߚЎಯϾ⃵㑻ᵘ䗴ᏺˈߚ߿Ўढ࣫ᵓഫ˄ࠡᆦ℺㋏˅ǃⱑЗᑭቯ ᓻᏺǃ㑶᮫⠻എ⏋ᴖችᏺ੠ᰮ⊹Ⲛ㋏⷇⚁㑾Ⓖ⌙⍋Ⳍⱘ⺇䝌Ⲥች੠䰚㓬⹢ሥች ≝⿃DŽϟ䴶ߚ߿䖯㸠䆎䗄˖   ች⷇ᵘ䗴ऩ‫(ߚߦܗ‬The Litho-tectonic framwork)  ढ࣫ᵓഫ(The North China Craton) ᴀ⃵ⷨおᇚস‫ܗ‬স⬠ᅱ䷇೒ች㕸੠Ёᮄ‫ܗ‬সҷⱑѥ䛖म㕸԰Ўढ࣫ᵓഫⱘ ෎ᑩˈЏ㽕ߚᏗ೼Рᢝ⡍ৢ᮫ⱑѥ䛖मϔᏺDŽᅱ䷇೒ች㕸Ўϔ༫催㓓⠛ችüԢ 㾦䮾ችⳌⱘব䋼ችˈϟ䚼Џ㽕Ў⷇㣅ችǃ໻⧚ች㒘ড়ˈϞ䚼Џ㽕Ўϔ༫⷇㣅⠛ች །⷇㣅ችǃ㭘ሖ⢊໻⧚ች䗣䬰ԧ੠䰇䍋⠛ች䗣䬰ԧˈᯊҷЎ *D˄ᕤ໛ˈ ˗ᓴ㞷ㄝˈ˗ᓴ⥝⏙ㄝˈˈᓴ⥝⏙ˈ˗≜ᄬ߽ㄝˈ˅DŽⱑ ѥ䛖म㕸ਜ䖥ϰ㽓৥ሩᏗЏ㽕ߚᏗ೼Рᢝ⡍Ё᮫ǃⱑѥ䛖मǃ䖒㣖᮫ǃಯᄤ⥟ ᮫ ㄝ ഄ  ᰃ Ё ü ᮄ ‫ ܗ‬স ҷ ढ ࣫ ഄ ৄ ࣫ 㓬 㹿 ࡼ ໻ 䰚 䖍 㓬 ≝ ⿃ ѻ ⠽ ˄ &KDR HW DO˗ᓴᅫ⏙ㄝˈ˅DŽⱑѥ䛖म㕸ϟ䚼⬅ⷖ⸒ች↉ǃ⷇㣅ች↉ǃ咥㡆ᵓ ችǃⱑѥች៪♄ች᠔㒘៤˗Ϟ䚼ЎⒼ⌙⍋⺇䝌Ⲥৄഄ㟇䕗⏅∈䰚വ⒥ภේ⿃Ϣ⌞ ⿃ች˄‫ݙ‬㩭স㞾⊏ऎऎඳഄ䋼ᖫˈ˅ˈ݊Ё෎ᗻ☿ቅችऩ乫㉦䫚⷇ 83E ᑈ啘 f0D˄⥟Ἷㄝˈ˅DŽ    19.

(45) ⱑЗᑭቯᓻᏺ(The Bainaimiao Arc Belt in Hongqi area) 䞢໪⡍ᕕ ☿ቅቯᓻЏ㽕⬅Ёϟ༹䱊㒳ࣙᇨ∫೒㕸☿ቅችǃ☿ቅ⹢ሥችঞ⏅៤ች㒘៤DŽ☿ቅ ችᵘ៤ቯᓻЏԧቯᓻች⌚ች։ܹ݊ЁDŽ೼ⱑѥ䛖मഄऎˈࣙᇨ∝೒㕸Џ㽕ߚᏗ.  ೒ 㑶᮫⠻എഄऎ䗴ቅᏺች⷇ᵘ䗴ऩ‫ ߚߦܗ‬ᑈҷ᭄᥂ঞᴹ⑤㾕䰘ӊ 

(46)  . ೼ⱑѥ䛖म࣫  ݀䞠ḐᇥᑭϔᏺˈৃߚϸϾች㒘ˈϟ䚼ЎᏗ啭ቅ㒘ˈϞ䚼Ўજ ᢝ㒘DŽᏗ啭ቅ㒘Џ㽕Ў‫♄ޱ‬䋼㉝ⷖችǃ৿⸒ⷖችˈ݊Ё།᭄ሖ☿ቅችሖˈҢᢝ᭥ ⥘℺ች䗤⏤䖛⏵ࠄᅝቅች੠ᇥ䞣㣅ᅝችˈৠᯊѻߎ᳝໻䞣☿ቅ㾦⸒ች੠‫♄ޱ‬ችDŽ જᢝ㒘Ўϔ༫Ё෎ᗻ☿ቅ❨ችǃ☿ቅ⹢ሥችDŽЎњ᳈དഄᦣ䗄Ꮧ啭ቅ㒘ⱘഄ䋼㒘 ៤੠ሖᑣ⡍ᕕˈ៥Ӏ೼Ḑᇥᑭҹϰ㑺 NP ໘⌟ᅮњ㊒㒚ⱘࠪ䴶ˈᦣ䗄བϟ˖. 20.

(47)  ೒ ḐᇥᑭഄऎᏗ啭ቅ㒘ᅲ⌟ࠪ䴶 , . รߎՄ ݇৓ౄౖ̝ཛP ᆌ‫܃‬ౄͪЊᅱၲ৐ી݇ཛP ݇৓ౄ༩๓ཛ୷ࣄ‫ٲ‬ႏۤ໾అ‫ٲ‬ႏࠀ֟၂P ஽݇ౄͪЊᅱી݇ཛP ᆌ‫܃‬ౄͪЊᅱၲ৐౉ཛP ᆌ‫܃‬ౄ݇͂ౄͪЊᅱၲ৐຅౉ཛēՄϦ‫ྡྷۃ‬Њ݇͂ᆌ‫܃‬ౄ‫܈‬Њҹ౉ཛP ݇͂ౄͪЊᅱી݇ᄩ౉ཛēՄϦน݇৓ౄ୷ࣄᅱౖ̝ཛP ݇͂ౄౖ̝᝻ཛēՄϦนᆌ‫܃‬ౄҹ౉ཛۤͪЊી݇ཛP ͪЊᅱၲ৐‫౉౉ט‬ཛP ݇͂ౄ‫ౖݥ‬ാ໧ཛۤ݇৓ౄ‫౉ॄۃ‬ཛēॄದю‫ॄౖݥྻד‬cી݇ཛนᅖēӖ໌ၟPP ‫ۃ‬२ၟ P ᆌ‫܃‬ౄ౉ॄཛē‫͂݇ۃ‬ౄ౉ཛ෉ࡄ඘P รߎԘ .  . ೒ ḐᇥᑭഄऎᏗ啭ቅ㒘ᅲ⌟ࠪ䴶 ,, รߎՄ ౖ̝ཛP ͪЊᅱၲ৐ી݇ᄩ‫౉ט‬ཛP ౖ̝ཛ‫ޣ‬ЊP 21.

(48) ᆌ‫܃‬ౄၲ৐ી݇ᄩ౉ཛP ݇৓ౄౖ̝ཛP ᆌ‫܃‬ౄၲ৐ᅱી݇ᄩ‫౉ט‬ཛP ᆌ‫܃‬ౄ‫܈‬Њᅱҹ౉ཛP ஽݇ౄͪЊᅱၲ৐ી݇ཛēࡥϦ‫ౖ̝ۃ‬ཛ‫ޣ‬ЊP ිܻౄౖ̝ཛP ஽݇ౄ‫܈‬Њᅱ຅౉ཛēՄϦนͪЊၲ৐ી݇ᄩ‫౉ט‬ཛP ݇͂ౄҹ౉ཛူͪЊᅱၲ৐ી݇ᄩ‫౉ט‬ཛ‫ܚ‬ЊP ᆌ‫܃‬ౄၲ৐ી݇ᄩ‫౉ט‬ཛP ܻౄිܻౄౖ̝ཛ‫ޣ‬ЊP ᆌ‫͂݇܃‬ౄၲ৐ી݇ᄩ౉ཛ‫౉ט‬ཛP ᆌ‫܃‬ౄҹ౉ཛē‫ۃ‬ી݇ཛॄದॄࡅၟ PPP รߎԘ . ᴀⷨおऎᏗ啭ቅ㒘Џ㽕Ў৿⸒ⷖችǃ‫♄ޱ‬䋼ⷖችǃ㉝ⷖች੠‫♄ޱ‬ች㭘ሖˈ݊ Ё།᭄ሖ☿ቅችሖ˄೒ $˅ˈሔ䚼ߎ䴆ᅝቅ⥶ችˈᘏԧϞৃߚЎ᭄Ͼᅝቅ䋼 ៪⥘℺䋼☿ቅች੠㒚⹢ሥ≝⿃ᮟಲˈҷ㸼њ໮⃵☿ቅ஋থ䯈ℛ≝⿃԰⫼DŽ☿ቅ ஋থ≝⿃ᮟಲDŽࠪ䴶ᑩ䚼⥘℺ችЏ㽕Ўഫ⢊❨ችˈথ㚆໻䞣ⱘᴣҕԧˈ㹿ᮍ㾷 ⷇‫ܙ‬฿DŽ⥘℺ችПϞⱘ☿ቅ⹢ሥችЏ㽕Ў☿ቅ㾦⸒ችˈ❨㒧‫♄ޱ‬ችㄝˈ㋿㑶㡆ˈ ഫ⢊ᵘ䗴ˈ㾦⸒໻ᇣϡㄝˈ៤ߚҹ⇨ᄨ៪ᴣҕ⢊⥘℺ችЎЏˈ෎䋼Ўễ㾦⢊䭓⷇ ᱊ሥ੠㓓⊹⷇࣪☿ቅ♄ˈ乊䚼ৃ㾕ᇥ䞣ⱘ‫♄ޱ‬ች ೒ %

(49) DŽ䆹ᮟಲПϞߎ䴆 ᅝቅችˈҷ㸼ⴔজϔ⃵☿ቅ஋থ⌏ࡼᓔྟDŽ☿ቅችЁ໻䞣ⱘᴣҕԧᄬ೼ৃ㛑Ϣ☿ ቅ஋থᯊ∈ԧ䕗⌙᳝݇DŽࠪ䴶Ϟ䚼ሖԡߎ⦄ᄤ㋿㑶㡆䴦♄㡆‫ⷖ♄ޱ‬ችˈⷖችЁ ৿䴦♄㡆‫♄ޱ‬䋼㉝ⷖች㭘ሖ䗣䬰ԧˈⷖች៤ӑҹ䭓⷇ǃ☿ቅ⹢ሥЎЏˈথ⫳㓓⊹ ⷇㱔বˈ㛊㒧⠽Ў‫♄ޱ‬䋼៪⊹䋼DŽ৥ϞবЎ䕗㒚ⱘ㋿㑶㡆‫♄ޱ‬䋼㉝ⷖችⷖች䷉ᕟ ˄೒ &˅ˈথ㚆∈ᑇሖ⧚ˈᣛ⼎њⳌᇍ䕗⏅ˈ∈ࡼ࡯䕗ᔅⱘ≝⿃⦃๗DŽ೼ᴀ ⷨ お ऎ Ⳍ ᔧ Ѣ Ꮧ 啭 ቅ 㒘 ‫ ♄ ޱ‬䋼 ㉝ ⷖ ች Ё ˄ ࠪ 䴶 ,, ሖ  ˅ থ ⦄ ヨ ⷇ ࣪ ⷇. &DOORJUDWXVVS'HVPRJUDSWXVVS੠'LFW\RQHPDVSᯊҷᅮЎ༹䱊㑾˄‫ݙ‬ 㩭সऎඳഄ䋼ᖫˈ˅DŽ. 22.

(50)  ೒ ḐᇥᑭഄऎᏗ啭ቅ㒘☿ቅች䞢໪䴆༈⡍ᕕ೒⠛ $˖⥘℺䋼☿ቅችሖϢ‫♄ޱ‬䋼ⷖችǃ㉝ⷖች≝⿃Ѧሖ˗%˖☿ቅች⹢ሥች乊䚼ⱘ‫♄ޱ‬ች།ሖ˗ &˖㭘ሖ⊹䋼㉝ⷖችϢ⊹ችᔶ៤ⱘ䷉ᕟሖ. જᢝ㒘೼Ḑᇥᑭϰफϔᏺߎ䴆䕗དˈች⷇㉏ൟЏ㽕Ўᅝቅችǃ⌕㒍ችǃ☿ ቅ⹢ሥች੠ⷖችˈ䖭ѯች⷇ഛ䙁ফϡৠ⿟ᑺⱘ㱔বDŽ⬅Ѣ䴆༈䖲㓁ᗻ䕗Ꮒ˄೒ $˅ˈᴀ᭛ҙ䗮䖛 *36 ᅮԡˈߦߚњ݊☿ቅችሖᑣˈᦣ䗄བϟ˖ รߎՄ ݇͂ౄࣖᅱࠒ‫ౖ̝ٲ‬ཛ ܻ݇ౄಫέ‫ౖݥ‬ཛ  ݇৓ౄᄡੁࣖᅱಫέౖ̝ཛ‫ౖݥ‬ཛ ݇৓ౄ൯ശབྷ‫ܤ‬໾అᅱౖ̝ཛēࡥϦ‫ౖ̝ޣ‬ᄩ‫ࣖނ‬ఖཛ  ಇ݇৓ౄಫέ໾అᅱౖ̝ཛē໾అ඘ᅖྑนЩ࿧ᄩ࣠๞  ஐ݇ౄౖ̝ཛē୷ࣄ‫ٲ‬ႏ֟၂  ᆌ‫܃‬஽݇ౄͪЊᅱી݇ᄩ౉ཛē֟ಓࡽၩ੻ಫέ  ݇͂ౄᄡੁࣖᅱࠒ‫ٲ‬ঠีཛ รߎԘ. જᢝ㒘Ё❨ችҹᅝቅችЎЏˈ঺᳝ᇥ䞣⥘℺ችDŽᴣҕᵘ䗴ᰃᴀࠪ䴶ᅝቅችⱘ. 23.

(51) ϔϾ⡍⚍ˈ⇨ᄨⳈᕘϔ㠀 PPˈ໮㹿ᮍ㾷⷇៪䭓㣅䋼ⷓ⠽฿‫˄ܙ‬೒ %˅ DŽ ᅝቅ䋼䲚ഫ❨ች⬅໻ᇣϡㄝⱘ☿ቅഫԧ㒘៤ˈᔶᗕ໮Ўễ㾦⢊ǃἁ⧗⢊ˈথ⫳䕗 ᔎⱘลᗻবᔶˈ㛊㒧⠽Ў㻤㓓㡆⠽䋼ˈথ⫳㓓⊹⷇࣪㱔ব˄೒ &˅DŽ䆹ࠪ䴶 ᑩ䚼ҹ⌕㒍ችЎЏˈ৥Ϟߎ⦄ⷖች≝⿃˗Пৢᰃߎ䴆໻䞣ⱘᅝቅችˈҷ㸼њ঺ϔ ᳳⱘ☿ቅ⌏ࡼDŽ. . ೒ Ḑᇥᑭഄऎજᢝ㒘☿ቅችሖᑣᅲ⌟ࠪ䴶. ቯᓻ⏅៤ች೼Ꮘ⡍ᬪࣙഄऎ໻䴶⿃ߎ䴆ˈЏ㽕⬅䮾䭓ችǃ⷇㣅䮾䭓ችǃ㣅 ѥ䮾䭓ችǃ㢅ቫ䮾䭓ችಯϾች⷇ऩ‫ܗ‬㒘៤Ⳍᇍᯊᑣ⬅ᮽࠄᰮߚ߿Ў Ё㒚㉦䮾 䭓ችǃ㒚㉦咥ѥ⷇㣅䮾䭓ችǃЁ㒚㉦㣅ѥ䮾䭓ችǃ㢅ቫ䮾䭓ች˄䱊㒻䲘ㄝˈ˅DŽ ࠡҎᇍ݊䖯㸠њ䆺㒚ⱘች⷇ᄺǃഄ⧗࣪ᄺ੠ᑈҷᄺⷨおˈች⷇ഄ⧗࣪ᄺ⡍ᕕϢ‫݌‬ ൟⱘ☿ቅቯᓻⳌԐˈ݊ᑈ啘೼ 0D П䯈˄䆌ゟᴗㄝˈ˗䱊㒻䲘ㄝˈ˗ -LDQHWDO˗ᴢࠥ䫟ㄝˈ˅DŽ . ☿ቅች⷇ᄺ⡍ᕕ ࣙᇨ∫೒㕸☿ቅችҹ❨ች㉏ЎЏЏ㽕Ўᴣҕ⢊⥘℺ችǃ㟈ᆚഫ⢊ᅝቅችǃ ᴣҕ⢊㱔বᅝቅችǃ㱔ব㾦䮾ᅝቅችǃᅝቅ⥶ችㄝDŽ☿ቅ⹢ሥች㉏᳝ᅝቅ䋼‫♄ޱ‬ ች☿ቅ䲚ഫችˈᅝቅ䋼᱊ሥ‫♄ޱ‬ችㄝ໮ЎЁᗻ☿ቅ⹢ሥች㉏DŽ ᴣҕ⢊⥘℺ች˄೒ $˅ ˖♄㓓㡆ˈ᭥⢊㒧ᵘǃ෎䋼䯈㉦㒧ᵘ៪䯈䱤㒧ᵘˈ ᴣҕ⢊ᵘ䗴DŽ᭥᱊Џ㽕⬅᭰䭓⷇੠䕝⷇㒘៤ˈ৿䞣㑺 DŽ᭰䭓⷇Ў PPˈ 㞾ᔶञ㞾ᔶᵓ⢊DŽ䕝⷇᭥᱊໻ᇣ㑺 PPˈᐌ㹿⃵䮾⷇ǃ㓓⊹⷇ǃ㓓Ꮼ⷇㱔 বDŽ෎䋼⬅ᖂ᱊ᵓᴵ⢊᭰䭓⷇˄㑺 ˅੠㑸⢊៪⦏⩗䋼⠽䋼㒘៤ˈ৿ᇥ䞣⺕䪕 ⷓˈ㉦ᑺᇣѢ PPDŽ⇨ᄨǃᴣҕԧথ㚆ˈ䬰ϟᐌ㾕 PP ⱘ⧗㉦ᵘ䗴ˈ⧗ ㉦㹿⦏⩗䋼៪䭓㣅䋼ᖂ᱊㒘៤໪໇ˈ⧗㉦‫ݙ‬䚼⬅㑸㓈⢊ⱘ㓓⊹⷇ᬒᇘ䲚ড়ԧ㒘 ៤ˈᴣҕԧ‫ݙ‬䚼໮㹿ᮍ㾷⷇฿‫ܙ‬DŽ 㟈ᆚഫ⢊ᅝቅች˄೒ %˅˖♄㓓㡆ˈ᭥⢊㒧ᵘˈ෎䋼‫݋‬Ѹ㒛㒧ᵘ៪䯈㉦. 24.

(52) 䯈䱤㒧ᵘˈഫ⢊ᵘ䗴DŽ᭥᱊Џ㽕Ў᭰䭓⷇ˈ৿䞣㑺 Ꮊেˈ໻ᇣ೼ PP П䯈ˈ㞾㸠ᵓ⢊㒧ᵘˈᐌথ⫳㒶ѥ↡੠㉬ೳ㱔বDŽ෎䋼Џ㽕⬅⦏⩗䋼៪᭰䭓⷇䲣 ᱊㒘៤DŽ৿ᇥ䞣⺕䪕ⷓDŽ.  ೒  ḐᇥᑭഄऎᏗજᢝ㒘☿ቅች䞢໪䴆༈⡍ᕕ೒⠛ $˖જᢝ㒘☿ቅች䞢໪ᅣ㾖䴆༈⡍ᕕˈ໮㹿ỡ㹿㽚Ⲫϡ䖲㓁˗%˖⇨ᄨ⢊ᅝቅችˈ᳝ⱘ㹿ᮍ㾷 ⷇៪䭓㣅䋼ⷓ⠽฿‫˖&˗ܙ‬ᅝቅ䋼䲚ഫ❨ችˈᔶᗕ໮Ўễ㾦⢊ǃἁ⧗⢊থ⫳㓓⊹⷇࣪㱔ব . ᴣҕ⢊ᅝቅች˄೒ &˅˖⌙♄㓓㡆ˈ‫݋‬᭥⢊㒧ᵘǃᴣҕ⢊ᵘ䗴DŽ᭥᱊Ё ᭰䭓⷇ ˈ㉦ᑺ PPˈ㞾ᔶञ㞾ᔶ㒧ᵘˈᔎ⚜㒶ѥ↡࣪˗෎䋼‫݋‬䱤᱊䋼㒧 ᵘˈᇥ䞣᭰䭓⷇䲣᱊ᔅᅮ৥ᥦ߫DŽᴣҕԧ໮᭄Ў PPˈ⌥೚⢊ǃἁ೚⢊ঞϡ 㾘߭⢊ˈ៤ӑЎᮍ㾷⷇ǃ⷇㣅ㄝDŽ ᅝቅ䋼⥶ችᰃ⌙։☿ቅችˈ‫݋‬᳝᭥⢊㒧ᵘ៪Ԑ᭥⢊㒧ᵘˈ᭥᱊Џ㽕Ў᭰䭓⷇ˈ 㞾ᔶञ㞾ᔶ㒧ᵘˈ᭰䭓⷇ᕔᕔ㱔বЎ㓓⊹⷇ǃ㓓Ꮼ⷇ǃ催ኁ⷇ㄝDŽ ⌕㒍ች˄೒ '˅˖㻤♄㡆ೳ咘㡆ˈᇥ᭥⢊㒧ᵘǃ⌕㒍ᵘ䗴DŽ᭥᱊৿䞣 㑺 ˈ៤ӑЏ㽕Ў᭰䭓⷇ˈ㉦ᑺ PP ϡㄝˈਜᵓᴵ⢊ˈञ㞾ᔶ㒧ᵘˈ‫ي‬㾕 㘮⠛ঠ᱊˗⷇㣅㑺 ˈ㉦ᑺ PPˈᅗᔶ㉦⢊㒧ᵘ˗෎䋼৿䞣㑺 ˈ䱤᱊ 䋼ˈ䳣㒚㒧ᵘˈ⬅⷇㣅ǃ䭓⷇ঞ⦏⩗䋼㒘៤DŽ  . . 25.

(53)  ೒㑶᮫⠻എഄऎࣙᇨ∝೒㕸☿ቅች䬰ϟ⡍ᕕ೒ $˖ᴣҕ⢊⥘℺ችˈ᭥⢊㒧ᵘˈ෎䋼䯈䱤㒧ᵘDŽ᭥᱊৿䞣㑺 ˈ෎䋼⬅ᖂ᱊ᵓᴵ⢊᭰䭓 ⷇੠㑸⢊៪⦏⩗䋼⠽䋼㒘៤ˈ৿ᇥ䞣⺕䪕ⷓDŽ⇨ᄨǃᴣҕԧ㹿⦏⩗䋼៪㑸㓈⢊ⱘ㓓⊹⷇ᬒᇘ 䲚ড়ԧ฿‫˗ܙ‬ℷѸ䬰ϟ˗%˖ഫ⢊ᅝቅች᭥⢊㒧ᵘˈ෎䋼‫݋‬䯈㉦䯈䱤㒧ᵘˈ᭥᱊৿䞣㑺  Ꮊেˈথ⫳㒶ѥ↡੠㉬ೳ㱔বDŽ෎䋼⬅⦏⩗䋼៪᭰䭓⷇䲣᱊㒘៤৿ᇥ䞣⺕䪕ⷓ˗ऩ‫ܝأ‬䬰 ϟ˗&ᴣҕ⢊ᅝቅችˈ᭥⢊㒧ᵘǃᴣҕ⢊ᵘ䗴DŽ᭥᱊৿䞣 ˈ㒶ѥ↡࣪㱔ব˗ᴣҕԧ⌥ ೚⢊ǃἁ೚⢊ˈ‫ݙ‬䚼៤ӑЎᮍ㾷⷇ǃ⷇㣅ㄝ˗ऩ‫ܝأ‬䬰ϟ˗'˖⌕㒍ችˈᇥ᭥㒧ᵘǃ⌕㒍ᵘ 䗴DŽ෎䋼䱤᱊䋼ǃ䳣㒚㒧ᵘˈ⬅⷇㣅ǃ䭓⷇ᖂ᱊ঞ⦏⩗䋼㒘៤˗ऩ‫ܝأ‬䬰ϟDŽ . ‫♄ޱ‬ች˖⏅♄ǃ♄㓓㡆ˈ⇻࣪㡆Ў㋿㑶㡆ˈ☿ቅ‫♄ޱ‬㒧ᵘǃഫ⢊ᵘ䗴DŽች⷇ ⬅᱊ሥ ǃችሥ ˈঞᇥ䞣⦏ሥ㒘៤DŽችሥ៤ߚ໮Ўᅝቅችǃ㉦ᑺ PPDŽ ᱊ሥЏ㽕Ў᭰䭓⷇ˈ‫ي‬㾕⷇㣅ˈᔶ⢊ਜ䬃啓⢊ǃϡ㾘߭⢊ˈ㉦ᑺ˘PPDŽ⦏ሥ ਜᩩ㺖⢊ˈ໮Ꮖ㜅⦏࣪Ў㉬ೳⷓ⠽ঞ䳣㒚⢊䭓㣅䋼DŽ㛊㒧⠽Ў☿ቅ♄ ˈᏆ䞡 㒧᱊Ў㉬ೳⷓ⠽DŽ ᇣ㒧 Ꮧ啭ቅ㒘⬅஋ߎች੠‫♄ޱ‬䋼≝⿃ች㒘៤ˈᮽᳳ஋ߎᢝ᭥⥘℺ችˈৢᳳ஋ߎ䩭 ⺅ᗻ㋏߫ⱘᅝቅችǃ㣅ᅝችঞ☿ቅ㾦⸒ችˈ‫♄ޱ‬䋼≝⿃ችऴ䕗໻↨՟˄ᴀࠪ䴶㑺 ˅ ˈ䖭ѯড᯴њ‫݌‬ൟቯᓻ☿ቅች஋থᓎ䗴⡍⚍DŽ⥘℺ችЁ☿ቅ⹢ሥች੠䲚ഫች থ㚆ˈ䇈ᯢ㒣ग़њ䕗ᔎ⚜ⱘ⟚থ䰊↉ˈ㒚⹢ሥች੠‫♄ޱ‬䋼㉝ⷖች∈ᑇ㒍ሖकߚথ 26.

(54) 㚆ˈ৿᳝䮼㉏ऩ䇗ⱘヨ⷇࣪⷇ˈᣛ⼎䴭∈Ԣ㛑⦃๗ˈ䰚⑤կ㒭ϡ‫ߚܙ‬DŽજᢝ㒘ߎ 䴆໻䞣ⱘᅝቅች੠⌕㒍ችDŽᏗ啭ቅ㒘㟇જᢝ㒘☿ቅች㒣ग़њ⥘℺䋼☿ቅች㟇ЁϞ 䚼ⱘЁЁ䝌ᗻ☿ቅችˈᵘ៤ϔϾᅠᭈⱘቯᓻ☿ቅችⓨ࣪ᑣ߫DŽࠡҎ䖯㸠њ䆺㒚 ⱘഄ⧗࣪ᄺⷨおˈ䅸Ўࣙᇨ∝೒㕸☿ቅችҢԢ䪒ࠄ催䪒⥘℺ችǃᅝቅች䛑᳝ߎ䴆ˈ ሲѢ䩭⺅ᗻ㋏߫ˈᆠ䲚໻⾏ᄤ҆⷇‫ܗ‬㋴ 5Eǃ%Dǃ7Kǃ. ㄝˈⳌᇍѣᤳ 1Eǃ=Uǃ 7L ㄝ催എᔎ‫ܗ‬㋴ˈᰒ⼎Ўቯᓻ☿ቅች⡍ᕕ˄䚉⌢ᅝ˗ᇮᘦ㚰ㄝˈ˗䆌 ゟᴗㄝˈ˅DŽ.  ⏋ᴖᏺ(The Hongqi melange belt) ⏋ᴖᏺԡѢቯᓻᏺ㽓࣫ջˈߚᏗѢРᖋϔᏺ⊓࣫ϰफ㽓ሩᏗᆑ໘ৃ䖒  NPˈじ໘᳝ⱒԭ㉇DŽ࣫䚼㹿Ё⫳ҷѠ䖲Ⲛഄ≝⿃⠽㽚Ⲫˈफ䚼㹿Ѡ঴㑾ች⌚ች։ ܹDŽ⏋ᴖᏺ㹿ϟ⊹Ⲛ㒳ᶹᑆજᏗ㒘ϡᭈড়㽚Ⲫˈϰ㽓ᘏ䭓ᑺ㑺 NP˄೒ $˅DŽ ⏋ᴖᏺ㹿㢣ঢ়ᮁሖߚЎϰ࣫ǃ㽓फϸ䚼ߚˈ㽓फ䚼Џ㽕⬅⷇㣅ችǃѥ↡⠛ችǃ㒶 ѥ↡ᵓችǃगᵮችǃ৿䪕⷇㣅ችǃব䋼ⷖችㄝ㒘៤ˈ৿᳝ᇥ䞣♄ችഫԧDŽሔ䚼ৃ 㾕㒚㉦⷇㣅ⷖች੠ব⊹䋼䷉ᕟѦሖˈֱ⬭ॳྟሖ⧚ˈৃ㛑Ϣᓻࠡ⌞⌕≝⿃ᵘ䗴⅟ ⠛᳝݇DŽ㢣ঢ়ᮁሖϰ࣫䚼⏋ᴖᏺ‫݋‬᳝‫݌‬ൟⱘᴖхේ⿃㒧ᵘˈЏ㽕⬅ѥ↡㓓⊹⠛ችǃ 㓓⊹⷇㣅⠛ችǃ䩭䋼ᵓችǃ⸙䋼ችǃ‫♄ޱ‬䋼㉝ⷖችǃҹঞᇥ䞣ᴖⷖችㄝ㒘៤DŽ⏋ ᴖችഫ໻ᇣ৘ᓖˈ໻㗙ৃ䖒᭄݀䞠ˈ䭊ጠ೼Ϟ䗄෎䋼Ё˄೒ $˅DŽችഫ㉏ൟ ৃҹߚЎᓖഄችഫ੠ॳഄችഫDŽᓖഄችഫЏ㽕Ў‫݋‬㒧᱊෎ᑩᗻ䋼ⱘস‫ܗ‬স⬠ᅱ䷇ ೒ች㕸ⱘ໻⧚ችǃ᭰䭓㾦䮾ች੠‫໇⋟݋‬ᗻ䋼ⱘ㲛㒍ችˈ㲛㒍⷇࣪‘὘ችˈᵩ⢊⥘ ℺ችǃ⸙䋼ችDŽߎ䴆㲛㒍ችǃ㲛㒍ች࣪‘὘ች੠ব䋼䕝䭓ችˈԚᰃᅗӀϡ‫݋‬᳝‫݌‬ ൟⱘ㲛㓓ችሖᑣˈ㸼⦄Ў㹿㙶㾷ⱘ⹢ഫ˄೒ %˅ DŽॳഄഫԧЏ㽕Ў☿ቅቯᓻ Ⳍ݇ⱘ☿ቅችഫԧǃ৿࣪⷇♄ችㄝDŽ䖭ѯችഫ㒣ग़њᔎ⚜ⱘࡼ࡯ᬍ䗴থ⫳䶻ᗻ বᔶᅗӀҹᶨ⌕ⱘᔶᓣਜϡ㾘߭⢊ǃ䗣䬰⢊ǃᴵᏺ⢊䭊ጠ෎䋼ЁDŽ᳝ᯊ೼क޴ ᑇᮍ㉇ⱘ㣗ೈ‫ৃݙ‬㾕ࠄ޴⾡ϡৠᯊҷⱘች⷇ ഫ

(55) ⏋ᴖ೼ϔ䍋DŽ ᵩ⢊⥘℺ችഫԧਜ๼㓓㡆ˈऩᵩ㾘῵೼ P Ꮊেˈችᵩⱘᔶᗕϡ㾘߭ˈ ᳝䙁य़᠕বᔶ⦄䈵˄೒ &˅ˈ䚼ߚ❨ች‫⇨݋‬ᄨǃᴣҕᵘ䗴ˈ⇨ᄨǃᴣҕЁ‫ܙ‬ ฿ৢᳳ⷇㣅䲚ড়ԧǃᮍ㾷⷇㛝DŽ䬰ϟЎ劲⠛㉦⢊ব᱊㒧ᵘˈ⬅ᖂ᱊咥ѥ↡ǃ䰇䍋 ⷇ǃ㓓⊹⷇ㄝᱫ㡆ⷓ⠽੠⌙㡆䭓㣅ᴵᏺ⢊䲚ড়ԧ᠔㒘៤DŽችᵩП䯈฿‫ܙ‬⠽Џ㽕Ў 㓓⊹⠛ችDŽ 27.

(56) ⷇㣅㾦䮾⠛ችഫԧˈ⷇㣅ǃ᭰䭓⷇ᵘ៤⌙㡆ᴵᏺϢ⠛⧚࣪㾦䮾⷇ᵘ៤ⱘᱫ㡆 ᴵᏺⳌ䯈ᥦ߫˄೒ '˅ˈ㾦䮾⷇৿䞣 ˈ⷇㣅৿䞣 ˈ᭰䭓⷇ ˈ䖬᳝ ᇥ䞣⺕䪕ⷓDŽ ব⌕㒍ችഫԧЎ♄ⱑ⌙♄㓓㡆ˈ䞢໪ᐌᐌਜᎼ໻ⱘቅϬѻߎˈ⬅Ѣফࠄࡼ ࡯᣸य़԰⫼⷇㣅乫㉦˄䲚ড়ԧ˅ᅮ৥ᢝ䭓˄೒ (˅DŽ䬰ϟ䡈ᅮˈ݊㒘៤ⷓ⠽ Џ㽕Ў㒚㉦䭓㣅䋼䲚ড়ԧ˄˅੠᭥⢊᭰䭓⷇˄˅ ˈᰒ⼎ᅮ৥ᵘ䗴ˈᰒᖂ㉦ ⢊ব᱊㒧ᵘDŽ.  ೒ 㑶᮫⠻എഄऎ⏋ᴖᏺഄ䋼ㅔ೒˄$˅ǃࠪ䴶˄%˅ǃ੠ᵘ䗴᭄᥂ߚᵤ˄')˅ . ⸙䋼ች੠໻⧚ችഫԧᐌᐌਜሖ⢊䭊ጠѢ෎䋼Ёˈሖ⧚Ϣ෎䋼⠛⧚ᑇ㸠ˈᓊԌ. 28.

(57)  ೒㑶᮫⠻എഄऎ⏋ᴖᏺ䞢໪⡍ᕕ೒⠛ $˖᭄݀䞠㾘῵ⱘ♄ችഫԧĀ᥽ඟā೼෎䋼Ёˈ♄ችഫԧջ৥ϡ䖲㓁˗%˖㹿㙶㾷ⱘ㲛㒍ችǃ 㲛㒍ች࣪‘὘ች੠ব䋼䕝䭓ች⹢ഫˈ⬅Ѣ㱔বਜೳ咘㡆੠⏅㓓㡆˗&˖ᵩ⢊⥘℺ችഫԧችᵩ ⱘᔶᗕ䙁य़᠕বᔶ˗'˖⷇㣅㾦䮾ችഫԧˈ⷇㣅ǃ᭰䭓⷇ᵘ៤⌙㡆ᴵᏺϢ㾦䮾⷇ᵘ៤ⱘᱫ㡆 ᴵᏺⳌ䯈ᥦ߫˗(˖ব䋼☿ቅችഫԧˈ⷇㣅ㄝ乫㉦ফ࠾ߛ԰⫼ᅮ৥ᢝ䭓˗)˖৿࣪⷇♄ችഫԧˈ ⦞⨮ˈ⍋ⱒড়㣢࣪⷇ᅮ৥ᢝ䭓៪ᡃᮁ˗*˖ব䋼⷇㣅ⷖች੠गᵮችѦሖˈॳችЎ⌞⌕≝⿃˗+˖ ⸙䋼ᴵᏺ♄ችˈᔎ⚜࠾ߛՓ‫ ݋‬6& 㒘ᵘ⡍ᕕ . 29.

(58) . 䕗䖰ˈৃ䖒᭄ⱒ㉇DŽ᳝ᯊৃ㾕໻⧚ችЁ৿咥㡆⸙䋼ᴵᏺˈবᔶᔎ⚜ˈሔ䚼ৃ㾕᮴ ḍ㼊ⲅDŽ೼⏋ᴖᏺफ䚼ˈᖫ⬭㑾৿࣪⷇♄ች੠ⷖችഫԧ⦞⨮࣪⷇ᅮ৥ᢝ䭓៪ᡃᮁ ˄೒ )˅DŽ䖭ѯ৿♄ችഫԧҷ㸼њ⏋ᴖᏺⱘ᳔ᑈ䕏ᑈ啘DŽ 㢣ঢ়ᮁሖ㽓फ䚼ሔ䚼ߎ䴆ব⌞⿃ች˄೒ *˅ˈ८ᑺ䕗໻DŽችᗻЏ㽕ҹग ᵮችǃⷖ䋼गᵮችЎЏˈሔ䚼།᳝৿䪕⷇㣅ችᴵᏺDŽⷖ䋼ऩ‫ܗ‬Џ㽕Ўবԭ⷇㣅ⷖ ችˈবԭ䭓⷇⷇㣅ⷖችˈথ㚆ഫ⢊ሖ⧚DŽगᵮችऩ‫ݙܗ‬থ㚆㭘ሖ㉝ⷖ䋼गᵮችϢ ⊹䋼गᵮች㒘៤ⱘ㭘Ѧሖ∈ᑇሖ⧚DŽⷖ䋼गᵮች♄㓓㡆ˈবԭⷖ⢊㒧ᵘˈगᵮ⢊ ᵘ䗴ˈ䬰ϟਜ㑸⢊ব᱊㒧ᵘˈ⬅ⷖሥ䭓⷇੠㒶ϔⱑѥ↡ǃ⷇㣅㒘៤ˈ䭓⷇Ꮖ㓓Ꮼ ⷇࣪ǃѥ↡࣪㱔বDŽ೼ⷖችЁ᳝ᯊৃ㾕♄ችഫԧˈ⬅Ѣᔎ⚜࠾ߛ԰⫼ਜ 6& 㒘ᵘ ˄೒ +˅DŽᭈϾ⏋ᴖᏺҹ㓓⠛ችব䋼ЎЏˈব⊹䋼ችЏ㽕ⷓ⠽㒘ড়Ў㓓⊹⷇ǃ ⱑѥ↡ǃ咥ѥ↡ǃ᭰䭓⷇੠⷇㣅DŽ།ᴖ݊Ёⱘ㾦䮾ችഫԧЏ㽕ⷓ⠽㒘ড়Ў㾦䮾⷇ǃ ᭰䭓⷇ǃ㓓Ꮼ⷇੠⷇㣅DŽ .  ৢ䗴ቅ≝⿃ऩ‫(ܗ‬The overlying sedimentary succession) 㑶᮫⠻എഄऎⱘ≝⿃ഄሖЏ㽕ࣙᣀϞᖫ⬭㒳㽓߿⊇㒘ǃϟ⊹Ⲛ㒳ᶹᑆજᏗ㒘 ੠Ϟ⷇⚁㒳䰓᳼ቅ㒘DŽ䖭ѯ≝⿃ഄሖϡᭈড়㽚Ⲫ೼Ϟ䗄ች⷇ഄሖऩ‫ܗ‬ПϞˈ䰸ᇥ ᭄㽓߿⊇㒘৿࣪⷇♄ችഫԧ㒣ग़䶻ᗻবᔶ໪ˈ݊ᅗഄሖ᳾ᰒ⼎㒣ग़ᔎ⚜ⱘ䶻ᗻব ᔶ੠ব䋼DŽ Ϟᖫ⬭㒳㽓߿⊇㒘 㽓߿⊇㒘೼Ꮘ⡍ᬪࣙഄऎߎ䴆䕗དˈЏ㽕⬅ϝ䚼ߚ㒘៤˖ϟ䚼⸒ችǃⷖ⸒ችǃ ৿⸒㉫ⷖችǃЁ㒚㉦ⷖችǃ㉝ⷖች།♄ች㭘ሖ៪䗣䬰ԧ˗Ё䚼Ў⏅♄㡆㭘ሖ⢊⫳ ⠽⹢ሥ⊹᱊♄ችˈ⌙♄㡆Ё८ሖ⢊৿⸒ሥ⫳⠽♄ችঞⷖሥ♄ችˈሔ䚼៤⻕DŽ♄ች Ёᆠ৿⦞⨮ǃሖᄨ㰿੠㢨㮧ㄝ䗴⻕⫳⠽䌟⻕⫳⠽Ў⍋ⱒড়㣢ǃ㜩䎇ㄝ˗Ϟ䚼Ў ♄㡆㉝ⷖች།६㉇㑻♄ች੠ⷖች䗣䬰ԧˈሔ䚼Ў৿⸒Ё㉫㉦ችሥ䭓⷇ⷖችDŽ ᴀ⃵ⷨおߚ߿೼Ḑᇥᑭഄऎ⌟㒬њ໻↨՟ࠪ䴶˄೒ ˅ˈᦣ䗄བϟ˖ 9 ͪЊಓ๞‫ܤ‬ದ݇ཛ 8 ිܻౄͪЊᅱ‫ء‬ᄩ຅౉ཛ 14.5m 7 ͪЊᅱಓ๞‫ܤ‬ದ݇ཛēࡥϦ‫ܻිޣ‬ౄͪЊ‫ء‬ᄩ౉ཛ 26.2m 6 ිܻౄ‫ء‬ᄩದ࿧౉ཛۤͪЊ‫ء‬ᄩ຅౉ཛē֟၂Ӗ२ໜЊस 17.1m. 30.

(59) 5 ݇͂ౄᄯͪЊᅱಓ๞‫ܤ‬ದ݇ཛē‫ءޣ‬ᄩಓ๞ാ໧౉ཛē֟၂໌໸ໜЊस 14.5m 4 ݇͂ౄ-ᆌ‫܃‬ౄᄯ‫܈‬Њᅱದ࿧Щದ౉ཛēࡥϦ‫ܤۃ‬ದ݇ཛ෉ࡄ඘ēՄϦน݇͂ౄ‫܈‬Њದ࿧ ҹ౉ཛ 16.7m 3 ݇ౄ-݇͂ౄͪЊᅱಓ๞‫ܤ‬ದ݇ཛēᄯ޷‫ܻිޣ‬ౄ‫ء‬ᄩ຅౉ཛͪЊۤણᄩ‫౉ט‬ཛē‫౉ט‬ཛ ᄯ‫݇ۃ‬ཛ෉ࡄ඘ĢՄϦนͪЊ‫ܤ‬ದ݇ཛۤ‫ء‬ᄩ຅౉ཛ‫ܚ‬Њē‫܎౓ۃ‬फԉ‫ܤ‬ದ 26.4m 2 ԘϦนॄཛc‫ॄۃ‬ದ࿧ҹ౉ཛཛē຿౨έนිܻౄᄯЊᅱ‫ء‬ᄩ౉ཛ‫ͪޣ‬Њᅱ‫ء‬ᄩ຅౉ཛc ‫౉ט‬ཛĢ‫ء‬ᄩ౉ཛю‫ד‬ᅖྑนದ࿧ē‫ד‬༪ࠀЕē‫ޣ‬౲२݇ཛ෉ࡄ඘. 16.3m. kkϢჼ‫آ؍ۦ‬kk 1 ౖ̝ཛ kkรߎՄkk. ೒ 㑶᮫⠻എḐᇥᑭഄऎϞᖫ⬭㒳㽓߿⊇㒘≝⿃ሖᑣᅲ⌟ࠪ䴶 , . 䆹ࠪ䴶ҷ㸼㽓߿⊇㒘ᑩ䚼ሖᑣˈϡᭈড়䆹೼Ѣ༹䱊㑾ᅝቅችПϞ˄೒ $˅ˈᑩ䚼⸒ች८㑺 Pˈ⸒⷇৿䞣㑺 ˈ៤ӑЏ㽕Ў☿ቅችǃⷖች੠ ⷇㣅ች˄೒ %˅ ˈ໻ᇣ೼ FP П䯈ˈ໻ᇣ⏋ᴖDŽ৥Ϟ⏤বЎЎ㭘ሖ⢊⷇ 㣅㉫ⷖችǃ䩭䋼ⷖችǃ⫳⠽࣪⷇♄ች੠⫳ሥ♄ችDŽЁ䚼ⱘ⷇㣅㉫ⷖችˈথ㚆໻䞣 ∈ᑇሖ⧚੠᭰ሖ⧚˄೒ &˅ˈ݊‫ݙ‬།᳝ᇥ䞣♄ች䗣䬰ԧˈҷ㸼∈ࡼ࡯䕗ᔎ ⱘ╂䯈ᏺ⦃๗DŽ♄ችЏ㽕Ў♄㡆ǃ⏅♄㡆८ሖ㒧᱊♄ች੠⫳⠽⹢ሥ♄ች♄ችЁ ᆠ৿⦞⨮ǃሖᄨ㰿ㄝ࣪⷇ˈ݊䯈།㋿㑶㡆㉫㉦䭓⷇⷇㣅ⷖችǃ⊹䋼㉝ⷖችㄝˈ८ ᑺ೼ FP П䯈ˈ៤ሖᗻ䕗དˈջ৥ᓊԌ䕗䖰DŽⷖ⊹ች།ሖ៤ሖᗻདЎᓔ䯨 ৄഄⳌⱘѻ⠽䇈ᯢ∈ԧ䕗⏅⍋ᑇ䴶Ⳍᇍ〇ᅮЎ╂ϟԢ㛑⦃๗DŽ ៥Ӏৠᯊ೼೼Ꮘ⡍ᬪࣙഄऎ㒬ࠊњ㽓߿⊇㒘≝⿃ࠪ䴶˄೒ ˅ˈᦣ䗄བ ϟ˖ kkรߎՄkk 10 ܻ৓ౄ‫܈‬Њᅱ‫ॄۃ‬ҹ౉ཛē‫ޣ‬౲२ͪЊ‫౉ט‬ཛ > 42m 9 ݇ౄᄯͪЊᅱಓ๞ാ໧݇ཛēࡥϦࢶߎણᄩූࣖ 16.8m 31.

(60) kkծЊkk 8 ಓ๞ാ໧݇ཛē‫܎౓ۃ‬cคᆠफ‫ܤ‬ದ, ՄϦน݇͂ౄ‫܈‬Њᅱ‫ܤ‬ದ݇ཛ 7 ݇͂ౄ‫܈‬Њᅱҹ౉ཛē౉ᄩю‫ך‬ᅖྑนದ࿧ۤЩದēࢶߎܻත࣠ĢՄϦέน຅౉ཛ 47.4m 6 ݇͂ౄᄯЊᅱಓ๞ാ໧݇ཛ. 19.4m. 5 ܻ৓ౄ‫ॄۃ‬ҹ౉ཛēॄದ‫ۃ‬२ၟ 10%ēӖ໌ၟ 2mmē‫ד‬༪ۤ੨ၕ࢈ࠀۚēю‫ך‬ᅖྑนದ ࿧ۤ‫ౖݥ‬ཛē֟၂଼໻ЊसēՄϦέนҹ౉ཛ 22.5m 4 ஽݇ౄ‫܈‬Њᅱᄯ౉ཛ 49.6m 3 ஽݇ౄ‫౉ॄۃ‬ཛēՄϦนણᄩ‫౉ט‬ཛē֟၂ഃ଼Њस 8.7m 2 ஽݇ౄ‫܈‬Њᅱ຅-ᄯ౉ཛē౉ᄩю‫ך‬ᅖྑนದ࿧ۤЩದē֟၂৽ᅱЊस 12.3m 1 ຏϦนͪЊ‫ء‬ᄩ‫౉ט‬ཛē‫ޣ‬౲२ᄯͪЊᅱ‫ܤ‬ದ݇ཛ‫ܤݧ‬ದ݇ཛ෉ࡄ඘ē‫ܤ‬ದน౓܎ۤؔᆠ फ 17.4m kkรߎԘkk.  ೒ 㑶᮫⠻എᏈ⡍ᬪࣙഄऎϞᖫ⬭㒳㽓߿⊇㒘≝⿃ሖᑣᅲ⌟ࠪ䴶 ,, . 䆹ࠪ䴶ҷ㸼㽓߿⊇㒘ЁϞ䚼ሖᑣˈ⹢ሥችϢ⺇䝌ⲤችѸѦߎ⦄DŽ䆹ࠪ䴶Џ㽕 ⬅⫳⠽࣪⷇♄ችǃ⫳⠽⹢ሥ♄ችǃⷖ⸒ችǃ䩭䋼ⷖች੠㭘ሖ⢊㉝ⷖች㒘៤DŽࠪ䴶 ϟ䚼㉫㉦䭓⷇ⷖች੠䩭䋼㉝ⷖች㒘៤ˈሔ䚼ৃ㾕㛝⢊ሖ⧚ˈডᑨ∈ࡼ࡯ЁㄝDŽⷖ ⸒ችሖП䯈ᐌথ㚆ᮁ㓁៤ሖⱘ↿㉇㑻⊹䋼ᴵᏺ੠ᴵ㒍ˈ৥Ϟ⊹ች䗤⏤๲८㟇᭄६ ㉇ˈথ㚆∈ᑇሖ⧚੠䗣䬰⢊ሖ⧚˄೒ '˅ˈ݊‫ݙ‬ᐌ།᳝ⷖ⸒ች䗣䬰ԧDŽϞ 䚼⫳⠽⹢ሥ♄ችЁ৿⫳⠽⹢⠛᳾㾕ᅠᭈ࣪⷇ড᯴∈ࡼ࡯䕗ᔎDŽⷖ䋼៤ߚЏ㽕Ў 䭓⷇੠⷇㣅ˈߚ䗝੠⺼೚䕗དˈ៤ߚ៤❳ᑺ䕗Ԣˈ㒧ᵘ៤❳ᑺ䕗催ˈ䖭ড᯴䰚⑤. 32.

(61) ⹢ሥկᑨ‫ˈߚܙ‬ЎЁㄝᔎ⚜ࡼ㤵∈⦃๗DŽ㓐Ϟߚᵤˈ㽓߿⊇㒘ЁϞ䚼ҷ㸼њЎ ∈ԧࡼ㤵ⱘ╂䯈╂ϟᏺ≝⿃⦃๗DŽ  ϟ⊹Ⲛ㒳ᶹᑆજᏗ㒘. ᶹᑆજᏗ㒘ߚᏗⷨおऎϰ䚼੠फ䚼ˈ೼Рᖋϔᏺϡᭈড়㽚Ⲫ೼⏋ᴖᏺऩ‫ܗ‬П Ϟˈ೼Ꮘ⡍ᬪࣙϔᏺˈҹ㾦ᑺϡᭈড়㽚Ⲫ೼㽓߿⊇㒘ПϞ˄ᓴ⥝⏙ㄝˈ˅DŽ.  ೒ 㑶᮫⠻എഄऎϞᖫ⬭㒳㽓߿⊇㒘≝⿃⡍ᕕ䞢໪೒⠛ $˖㽓߿⊇㒘≝⿃ችϢ༹䱊㑾☿ቅችϡᭈড়᥹㾺೒⠛˗%˖㽓߿⊇㒘ᑩ䚼⸒ችˈ৿໻䞣ϟӣ☿ ቅች㾦⸒⢊⸒⷇˗&˖㽓߿⊇㒘ᑩ䚼≝⿃ሖᑣЁথ㚆ⱘῑ⢊᭰ሖ⧚˗'˖㽓߿⊇㒘乊䚼ሖᑣЁ থ㚆䗣䬰⢊ሖ⧚ . ᶹᑆજᏗ㒘ࣙ৿㋿㑶㡆ᑩ⸒ችǃ㋿㑶㡆ⷖችǃ♄ⱑ㡆䭓⷇⷇㣅ⷖችҹঞ⫳⠽⻕♄ ችˈ⫳⠽⹢ሥ⊹᱊♄ች੠㉝ⷖች≝⿃८ᑺ໻Ѣ NPˈ৿᳝໻䞣㜩䎇ǃ⦞⨮ǃ㢨 㮧㰿੠ሖᄨ㰿ㄝ⫳⠽࣪⷇DŽ䞢໪䇗ᶹ㸼ᯢˈ೼РᖋഄऎᶹᑆજᏗ㒘Џ㽕ࣙᣀϸϾ ≝⿃㒘ড়ˈϟ䚼㒘ড়Ў⬅ᑩ䚼㋿㑶㡆⸒ችǃⷖች੠⺇䝌Ⲥች㒘៤ˈ৿⫳⠽࣪⷇˄೒ ˅DŽϞ䚼㒘ড়Ў㋿㑶㡆䰚⑤⹢ሥች㒘៤˄೒ ˅ˈথ㚆໻䞣ॳ⫳≝⿃ ᵘ䗴˄೒ ˅DŽ೼Рᖋϔᏺᅲ⌟ࠪ䴶བϟ˖ 13 ݇ౄಓ๞ാ໧݇ཛ 12 ᆌ‫܃‬ౄᄯЊᅱ຅౉ཛ. 33.

(62) 11 ݇͂ౄͪЊᅱણᄩ‫౉ט‬ཛ‫ͪޣ‬Њણᄩ݇ཛ 10 ݇ౄ݇ཛēՄϦนᆌ‫܃‬ౄҹ౉ཛ 9 ݇͂ౄણᄩ݇ཛ 8 ݇ౄಓ๞ാ໧݇ཛ 7 ݇ౄᄯ-ͪЊᅱಓ๞ാ໧݇ཛۤ‫܈‬Њᅱ‫ॄۃ‬ҹ౉ཛ‫ܚ‬Њ kkծЊkk 6 ᆌ‫܃‬ౄ‫܈‬Њᅱ‫ܤۃ‬ದ݇ཛ 5 ݇ౄᄯ‫܈‬Њᅱ‫ܤ‬ದ݇ཛēՄϦน‫ڡۃ‬ᄩඨӛ݇ཛē‫ڡ‬ᄩඨӛࣚၟ 1cm ᆰဗ 4 ᆌ‫܃‬ౄ‫ܤۃ‬ದ݇ཛ 3 ݇۱ౄᄯͪЊᅱ४࠶݇ཛ 2 ॄཛЊēॄದ‫ۃ‬२ၟ 30%ē‫ד‬ϣၽၶ౉ཛ‫ݮ‬ᄩᄯdॄದю‫؏ך‬ၶēᅖྑน‫ڡ‬ᄩཛcದ࿧ ཛc‫ౖݥ‬ཛۤ݇ཛē‫ד‬༪ࠀЕď4-7cmĐē੨ၕࠀۚē৛࡮Շ຿໿ēՄϦนҹ౉ཛ kkϢჼ‫ۦ‬kk 1 ݇͂ౄଫस‫݇ܤ‬ཛēဎဟю‫דך‬࿓֗໹юஐܻౄۤ݇͂ౄອ޷‫ד‬ϣ. ೒ 㑶᮫⠻എРᖋഄऎϟ⊹Ⲛ㒳ᶹᑆજᏗ㒘ᑩ䚼≝⿃ሖᑣᅲ⌟ࠪ䴶 , . ⬅Ѣ䴆༈ߎ䴆䖲㓁ˈ೼ᬍࠪ䴶㽓फ㑺 NP ໘ˈ៥Ӏ䖲㓁㾖⌟њᶹᑆજᏗ㒘≝⿃ഄ ሖˈ݊≝⿃ሖᑣᦣ䗄བϟ˖ kkรߎՄkk 13 ᆌ‫܃‬ౄᄯͪЊ౉ཛē౲२‫ॄۃ‬ē֟၂ഃ଼Њस 12 ᆌ‫܃‬ౄ-ஐܻౄᄯͪЊᅱ຅౉ཛē‫ד‬༪ࠀۚēՄϦέน‫܈‬ၟ 1m ԅҹौၶ౉ཛ 11 ᆌ‫܃‬ౄᄯͪЊᅱ‫౉ॄۃ‬ཛcၶ౉ཛēॄದю‫ך‬ᅖྑนದ࿧cЩದc‫ౖݥ‬ാ໧ēॄࡅӖ໌ ၟ 3cm 10 ᆌ‫܃‬ౄͪЊᅱҹ౉ཛ. 34.

Références

Documents relatifs

The purpose of the RCCS is to transfer to the sea (or to the atmosphere, when the sea water system is not available), the heat from the reactor cavity during all

They accommodate up to 3 meters of displacement on thickness of 30 cm when they are not faulted and, precisely, often display faults (trough-going slip-surface)

To better constrain the Early Paleozoic tectonic evolution of the southwestern Arigin Sum-Xilinhot- Xing’an Block, we applied detrital zircon U-Pb dating on the

Structural and kinematic analysis of the Early Paleozoic Ondor Sum-Hongqi mélange belt, eastern part of the Altaids (CAOB) in Inner Mongolia, China... Structural and kinematic

A revised oxygen barometry in sulfide-saturated magmas and application to the Permian magmatic Ni–Cu deposits in the southern Central Asian Orogenic Belt3. Ya–jing Mao, Ke–zhang

Based mainly on field geological observation and geochronologic data, six tectonic units have been recognized in western Inner Mongolia (China), including, from south to north: North

Mais la place de Genève et la Suisse restent leaders dans le domaine du fait que les métiers liés au Trading sont aussi ici (Banques, shipping co, assurances, inspection), de plus

The aim of the work supported by the Sylvester‑Bradley Award was to produce a digital record of the Glen Rose trackways that could be used not only for my own research on