• Aucun résultat trouvé

Direct sensitivity computation for the Saint-Venant equations with hydraulic jumps

N/A
N/A
Protected

Academic year: 2021

Partager "Direct sensitivity computation for the Saint-Venant equations with hydraulic jumps"

Copied!
7
0
0

Texte intégral

(1)

HAL Id: hal-01196906

https://hal.archives-ouvertes.fr/hal-01196906

Submitted on 10 Sep 2015

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

Direct sensitivity computation for the Saint-Venant

equations with hydraulic jumps

Carole Delenne, Vincent Guinot, Bernard Cappelaere

To cite this version:

Carole Delenne, Vincent Guinot, Bernard Cappelaere. Direct sensitivity computation for the

Saint-Venant equations with hydraulic jumps. Comptes Rendus Mécanique, Elsevier Masson, 2008, 336

(10), pp.766-771. �10.1016/j.crme.2008.09.006�. �hal-01196906�

(2)

with hydraulic jumps. CaroleDELENNE

a

,Vincent GUINOT

a

,Bernard CAPPELAERE

a

a

HydroSciencesUMR5569(CNRS,IRD,UM1,UM2),AvenueJeanbrau 34090Montpellier

Abstract

ThispaperpresentsanewRiemannsolvertosolvetheSaint-Venantequationsinconjunctionwiththesensitivity problemwhenthesolutions arediscontinuous.Thesolveris basedontheaprioriassumptionoftworarefaction waves. The presence of shocks is detected a posteriori and an extra sensitivity term in the form of a Dirac sourcetermis accountedfor inthe sensitivity balanceequations.Tocite this article: C.Delenne,V.Guinot,B. Cappelaere,C.R. Mecanique??(2008).

Résumé

CalculdirectdesensibilitépourleséquationsdeSaint-Venantavecressautshydrauliques.Onpropose iciunsolveurdeRiemannpourrésoudreleséquationsdesensibilitéconjointementàlaprojectionsurunedimension deséquationsdeSaint-Venantdanslecasdesolutionsdiscontinues.Lesolveurestbasésurlasuppositionapriori dedeuxondesderaréfaction.La présencedechocsestdétectéeaposteriorietuntermesupplémentaire,sous la formed'untermesourcedeDirac,estintroduitdansl'équilibredeséquationsdesensibilité.Pourcitercetarticle: C.Delenne,V.Guinot,B.Cappelaere,C.R.Mecanique??(2008).

Keywords: Computationaluidmechanics;Sensitivity;Hyperbolicconservationlaws;shocks Mots-clés:Mécaniquedesuidesnumérique;Sensibilités;Loisdeconservationhyperboliques;Chocs

Versionfrançaiseabrégée

Onchercheàrésoudreleséquationsdesensibilitéconjointementàlaprojectionsurunedimensiondes équations deSaint Venantdans le cas desolutionsdiscontinues.Dans ce cas, en eet,les équations en sensibilité ne peuvent pas être obtenues par une simple dérivation des équations hydrodynamiques de base etunterme sourcedeDiracapparaîtauniveaudeschocs.On proposeiciune méthodenumérique

Emailaddresses:delenne@msem.univ-montp2. fr (CaroleDELENNE),guinot@msem.univ-montp2.f r(Vincent GUINOT),cappelaere@msem.univ-mont p2. fr (BernardCAPPELAERE).

(3)

deux cellules

i

et

j

(issues d'une discrétisation de l'espace) avec des états gauche et droit dénis par ces deux cellules respectivement; (ii) déterminerles valeurs dela variable d'écoulementet/ou des ux dansles régionsd'étatsconstantsen utilisant lesinvariantsdeRiemann, (iii) déterminerlesvitesses de propagationdesdiérentesondeset lalocalisationdediscontinuitéparrapportàcesondes;(iv)calculer les ux nécessaires pour équilibrer l'équation entre les cellules

i

et

j

grâce à la valeur de la variable d'écoulement auniveau de ladiscontinuité initiale.La solutionest alors calculéepour diérentspas de tempsenutilisantunschémadediscrétisationexplicite.

The Riemann problem of the Saint-Venant and sensitivity equations is rst recalled and then the applicationoftheproposed solverisdetailed.

1. The Riemannproblem

Theone-dimensionalprojectionoftheSaint-Venantequationsisa

3 × 3

HyperbolicSystemof Conser-vationLaws(HSCL), whichcanbewritten invectorformas:

∂U

∂t

+

∂F(U, φ)

∂x

=

0

U

(x, 0)

= U

0

(x, φ)

U

(x

b

, t)

= U

b

(t, φ)

with

U

=

h

q

r

, F =

q

q

2

/h + gh

2

/2

qr/h

(1)

with

U

: theconservedvariable;

F

:theux function;

φ

:aparameteron which theux depends;

g

: the gravitationalacceleration;

h

: the water depth;

q

(resp.

r

) : the unit discharge in the

x

(resp.

y

) direction;

u = q/h

(resp.

v = r/h

):theowvelocityinthe

x

(resp.

y

)direction.Thesuperscripts

b

and

0

indicate thedomainboundaryabscissaandtheinitialconditionrespectively.

Dierentiatingthegoverningequation1withrespecttotheparameter

φ

leadstotheequationforthe sensitivity

s

= (η, θ, ρ)

of

U

to

φ

:

∂s

∂t

+

∂x

(As) = −

∂x

 ∂F

∂φ



(2) with

A

= ∂F/∂U

.

However,thisderivationiscorrectonlyundertheassumptionofacontinuousanddierentiablesolution

U

[7].Inthepresenceofadiscontinuity,theso-calledRankin-Hugoniotconditions(orjumprelationships) mustbeused:

F

L

− F

R

= (U

L

− U

R

)c

s

where

c

s

isthediscontinuityspeed,andwhere theindex LandRdenotetheleftandrightstatesacross thediscontinuity.Moreover,since

U

and

s

areindependentvariables, thesensitivities

s

L

and

s

R

onthe leftandright-handsideofthediscontinuityareindependentfrom

U

L

and

U

R

.Consequently,thejump relationshipforthesensitivityismuchmorecomplexthanthatfortheowvariable([1],[6])andimplies aspecicsourceterm

R

,inaformofaDiracfunction,which takeseectonlyatthediscontinuity:

H

L

− H

R

+ R = (s

L

− s

R

)c

s

with

s

theconservedvariableand

H

= As

theuxfunction forsensitivity.Then,

(4)

R

= ∆ [(A − c

s

I

) s]

(3) Thesource term

R

is non zeroonlywhen there isashock.Indeed, whenthe discontinuityis acontact one,

c

s

isaneigenvalueofthematrix

A

and

(A

R

,L

− c

s

I

) = 0

.

Because this Jacobianmatrix

A

depends onthe solution

U

, the Riemann problem of thesensitivity cannot be considered independently from the one of the ow variable. We thus consider the following initial-valueproblem:

∂U

∂t

+

∂F

∂x

=

0

∂s

∂t

+

∂H

∂x

=

∆ [(A − c

s

I

) s]

(U, s)(x, 0) =

(

(U

L

, s

L

)

for

x < 0

(U

R

, s

R

)

for

x > 0

(4)

whichisa

3 × 3

HSCLwiththefollowingeigenvalues:



λ

(1)

, λ

(2)

, λ

(3)



= (u − c, u, u + c)

(5) ThegeneralsolutionoftheRiemannproblemismadeofthreewavesseparatingtwointernalregionsof constantstate.IntheexactsolutionoftheRiemannproblem,thesecondwave(withcelerity

λ

(2)

= u

)is acontactdiscontinuity,while therstand thirdwavesmaybeofanytype,dependingon

U

L

and

U

R

. Althoughnotstrictlyvalidacrossashock,theRiemanninvariantsmaybeusedtoapproximatethejump relationships(e.g. [8],[10],[4], [3], [9]).Then, thenature ofthe wavesin theRiemann problemmaybe guessed a priori without a posteriori verication and the resulting systemof algebraicequations may besolvedtodeterminedirectlythesolutionintheintermediateregionsofconstantstate.Theproposed approximate-stateRiemannsolverusestheassumptionthattheeigenvalues(5)aretheceleritiesofthree rarefactionwaves.Inwhat follows,weassessthesensitivityofthesolutiontotheinitialvalueoftheleft orrightstateof

U

.

2. The Approximate-state Riemannsolver

2.1. Discretization

Thesolutionwillbeadvancedintimeusingthefollowingdiscretizationof (4):

U

n+1

i

= U

n

i

+

∆t

∆x

i



F

n+

1

/

2

i−

1

/

2

− F

n+

1

/

2

i+

1

/

2



(6)

s

n+1

i

= s

n

i

+

∆t

∆x

i



H

n+

1

/

2

i−

1

/

2

− H

n+

1

/

2

i+

1

/

2

+ R

n+

1

/

2

i−

1

/

2

,i

+ R

n+

1

/

2

i+

1

/

2

,i



(7) where

U

n

i

and

s

n

i

are the average values of

U

and

s

overthe cell

i

at the time

n

;

F

n+

1

/

2

i−

1

/

2

and

H

n+

1

/

2

i−

1

/

2

are theaverage valuesofthe uxes

F

and

H

at the interface

i −

1

/

2

betweenthe cells

i − 1

and

i

over thetimeinterval

t

n

, t

n+1



;

R

n+

1

/

2

i−

1

/

2

,i

and

R

n+

1

/

2

i+

1

/

2

,i

representthecontributionsofthesourcetermspossibly generatedbyshockspropagatingrespectivelyfromtheinterfaces

i +

1

/

2

and

i −

1

/

2

intothecell

i

;

∆t

is thecomputationaltimestepand

∆x

i

isthewidthofthecell

i

.

Foreachinterfacebetweentwocells

i

and

j

(issuedfromaspatial discretization),aRiemannproblem is dened with leftand rightstatestakenfrom these cells. Then,the proposed solveruses theclassical HLLapproachto computethesolutionin thecontinuouscaseandaspecictreatmentoftheshocks.

(5)

TheRiemanninvariantsfor(4)aredened as[5]:

d(u − 2c) = 0

for

dx

dt

= u − c

dv = 0

for

dx

dt

= u

d(u + 2c) = 0

for

dx

dt

= u + c

(8)

andtherefore,noting

χ

,

ν

,

ω

thesensitivitiesof

c

,

u

,

v

withrespectto theparameter

φ

:

d(ν − 2χ) = 0

for

dx

dt

= u − c

dω = 0

for

dx

dt

= u

d(ν + 2χ) = 0

for

dx

dt

= u + c

(9)

Intheregionsofconstantstate(seegure1),usingtheapproximateexpressions(8)and(9)yields:

c

∗,1

= c

∗,2

=

1

2

(c

L

+ c

R

) +

1

4

(u

L

− u

R

)

u

∗,1

= u

∗,2

=

1

2

(u

L

+ u

R

) + c

L

− c

R

v

∗,1

= v

L

v

∗,2

= v

R

(10)

χ

∗,1

= χ

∗,2

=

1

2

L

+ χ

R

) +

1

4

L

− ν

R

)

ν

∗,1

= ν

∗,2

=

1

2

L

+ ν

R

) + χ

L

− χ

R

ω

∗,1

= ω

L

ω

∗,2

= ω

R

(11)

wherethesubscript*,1and*,2denotethevaluesofthevariablesintheintermediateregionsofconstant stateontheleftandright-handsidesofthecontactdiscontinuity,respectively.Theux

H

intheregions ofconstantstateisthendetermineduniquelyfrom(11):

H

∗,p

=

θ

∗,p

c

2

∗,p

− u

2

∗,p

 η

∗,p

+ 2u

∗,p

θ

∗,p

−u

∗,p

ν

∗,p

η

∗,p

+ ν

∗,p

θ

∗,p

+ u

∗,p

ρ

∗,p

p = 1, 2

Usingthefactthat

h = c

2

/g

,

q = hu

and

r = hv

,yieldsthesensitivity

s

∗,p

:

η

θ

ρ

∗,p

=

2cχ/g

ηu + hν

ηv + hω

∗,p

(6)

t

x

U

L

U

R

U

*, 1

U

*, 2

dx

dt

=

u c

-dx

dt

=

u c

+

dx

dt

=

u

Fig.1.SchemeofthedierentregionsfortheSaint-Venantequationssolution

2.3. Shocktreatment

Ashockappearsontherstorthirdwave(andconsequentlyasourceterm

R

)wheneither

u

L

− c

L

>

u

R

− c

R

or

u

L

+ c

L

> u

R

+ c

R

. The shock speedis estimated using oneof the followingrelationships (withthesuperscript

L

and

1

or

R

and

2

iftheshockisontherstorthirdwaverespectively):

c

s

=

q

{L,R}

− q

∗,{1,2}

h

{L,R}

− h

∗,{1,2}

c

s

=

q

2

/h + gh

2

/2



{L,R}

− q

2

/h + gh

2

/2



∗,{1,2}

q

{L,R}

− q

∗,{1,2}

or

u

{L,R}

+ u

∗,{1,2}

 /2

iftheprevioustwodenominatorsarenull.

If theshockspeed in negative, thecorresponding wavetravels from theinterface

i −

1

/

2

intothe cell

i − 1

anddoesnotyieldanysourceterminthecell

i

.Incontrast,ifthespeedispositive,thewavetravels intothecell

i

andcontributesto thesourceterm

R

n+

1

/

2

i−

1

/

2

,i

byaquantitygivenbyequation(3).

2.4. Fluxesattheinterface

Attheend oftheprocess, theuxescan becomputedattheinterfaceusing:

F

n+

1

/

2

i−

1

/

2

= F



U

n+

1

/

2

i−

1

/

2



A

n+

1

/

2

i−

1

/

2

= A



U

n+

1

/

2

i−

1

/

2



H

n+

1

/

2

i−

1

/

2

= A

n+

1

/

2

i−

1

/

2

s

n+

1

/

2

i−

1

/

2

Thewholeprocessisthenrepeatedin timeusing6and7.

2.5. Example

Thegure2showsthecalculationofthewaterheightandthesensitivitytotheinitialleftwaterheight value

h

L

,in thecaseofthedam-breakproblem.

(7)

h (m)

0

2

-L /2

x

+L /2

h (-)

0

1

analytical

numerical

-L /2

x

+L /2

Fig.2.Waterheight

h

andsensitivity

η

totheinitialleftwaterheightvalue

h

L

Conclusion

TheproposedapproximatestateRiemannsolverhasbeenappliedhereto solvetheshallowwaterand sensitivity equationswhen shocksare presentin thesolution. Itwill begeneralizedto otherHSCLand othercasestudyinforthcomingpublications.

Références

[1] Bardos,C.,Pironneau,O.,2002,Aformalismforthedierentiationofconservationlaws.C.RAcad.Sci.Paris,Ser.I 335,p.839845.

[2] Dukowicz,J.K.,1985,Ageneral,non-iterativeRiemannsolverforGodunov'smethod.JournalofComputationalPhysics 61,119-137.

[3] Guinot, V., 2000, Riemann solvers for water hammer simulationsby Godunov method. International Journal for NumericalMethodsinEngineering49,851-870.

[4] Guinot,V.,Godunov-typeschemes.Anintroductionforengineers.Elsevier.

[5] Guinot, V., 2006, Ondes en mécanique des uides. Modélisation et simulation numérique. Hermes Publishing (in French).

[6] Guinot, V.,Leménager, M.,Cappelaere, B., 2007, Sensitivity equations for hyperbolic conservation law-based ow models.AdvancesinWaterResources,30:1943-1961.

[7] Gunzburger,M.D.,1999,Sensitivities,adjointsandowoptimization,International JournalforNumericalMethods inFluids,31:53-78.

[8] Lax, PD.,1957, Hyperbolic systemsof conservation laws. Communications in Pure and Applied Mathematics,10, 537-566.

[9] Lhomme,J.,Guinot,V.,inpress,Ageneral,approximate-stateRiemannsolverforhyperbolicsystemsofconservation lawswithsourceterms.InternationalJournalforNumericalMethodsinFluids.

Figure

Fig. 1. Scheme of the dierent regions for the Saint-V enant equations solution
Fig. 2. Water height h and sensitivity η to the initial left water height value h L

Références

Documents relatifs

Plusieurs auteurs ont réalisé ainsi la synthèse d'acides 3-désoxy-aldulosoniques (3). Il est aisé de voir que cette méthode intro- duit en position 4 un carbone&#34;'asymétrique

grandes, on transformera l’équation de manière à réduire ces racines dans un rapport convenable, et si la longueur des bras du fléau devenait une difficulté, on

Habituellement, pour un schéma DG à un seul pas avec des points de Gauss-Lobatto, il suffit de donner les valeurs du premier degré de liberté de l’autre côté de l’interface de

phenomenon is robust for shallow water equations, but that some of the energy of the large scale flow is lost into inertial-gravity waves (energy Ew). For an initial entrophy Z0

Nous nous int´eressons ici aux ´equations de Saint-Venant Quasi-G´eostrophiques (3) ainsi qu’` a la limite, pour de faibles nombres de Rossby et de Froude, du syst`eme de

Matrice R dans l’espace des pixels : Bien que le bruit soit cor- rélé en espace, sa répartition au sein des séquences d’images est homogène en temps et en espace.. Par

shallow-water equations, Exner equation, splitting method, finite volume method, positivity preserving, well-balanced scheme, approximate Riemann solver..

Dans la suite du développement de modèles LPV réalisé dans cette thèse par une méthode de réduction de modèle optimale, il serait envisageable de développer une commande LPV