• Aucun résultat trouvé

Treolar’s tests on rubber (1944)

N/A
N/A
Protected

Academic year: 2022

Partager "Treolar’s tests on rubber (1944)"

Copied!
28
0
0

Texte intégral

(1)

1

HYPERELASTICITY

(2)

Soft biological tissues: many challenges for

continuum mechanics

(3)

Essais de Treloar (1944)

0 10 20 30 40 50 60 70

0 1 2 3 4 5 6 7

Lambda-1

Contrainte nominale

Traction simple Equibiaxiale Traction plane

Treolar’s tests on rubber (1944)

Nomi nal st ress F /S0 (MPa )

Stretch λ=L/L

0

Biaxial tension

Planar tension Uniaxial tension

3

1 2 3 4 5 6 7

Hyperelasticity

(4)

Pseudo-hyperelasticity:

Irreversible effects are neglected…

Stretch λ=L/L

0

1 2 3 4 5 6

No minal str ess ( MPa )

(5)

0 10 20 30 40 50 60 70

0 1 2 3 4 5 6 7

Contrainte nominale

Lambda-1

Nominal str ess S=F/ A

0

(MPa )

Stretch λ=L/L

0

5

Stored energy per unit volume 1

𝐴

0

𝐿

0

න 𝐹 ሶ𝐿𝑑𝑡 = න 𝑆 ሶ λ𝑑𝑡

1 2 3 4 5 6 7

Strain energy density

(6)

Deformation mapping in 3D

Deformation Gradient

1 2 3

( , , , )

i i i

y   x u x x x t

 

 

( )

or i i i ij i ij

j j j

y u

x u F

x x

x

    

  

    

  

y x u x F

x u(x)

e3

e1 e2

dx dy

u(x+dx)

Original Configuration

Deformed Configuration

i ik k

d d

dy F dx

 

y F x

(7)

e3

e1 e2

l0

Original Configuration

Deformed Configuration

m

l

1 1

( ) or ( )

2 2

T

E

ij

F F

ki kj

ij

    

E F F I

 

2

2 2

0

2 2

0 0 0

2 2

ij i j

l l l l

E m m

l l l

 

      

m E m

7

Green Lagrange strain

(8)

Nominal/ 1

st

Piola-Kirchhoff

Material/2

nd

Piola-Kirchhoff

1 1

ij ik kj

J

S

JF

  

S F

σ

1 T 1 1

ij ik kl jl

J JFF

 

Σ F

σ

F

e3

e1 e2

Original Configuration

Deformed Configuration

t

dA0

dA n

n0

x

u(x)

dP(n) dP0(n)

True / Cauchy

σ

Stress measures

π π

(9)

0 10 20 30 40 50 60 70

0 1 2 3 4 5 6 7

Contrainte nominale

Lambda-1

Nominal str ess S=F/ A

0

(MPa )

Stretch λ=L/L

0

9

Stored energy per unit volume න 𝑺: ሶ F𝑑𝑡 = න 𝝅: ሶ E𝑑𝑡 = Ψ(E)

1 2 3 4 5 6 7

Hyperelasticity

(10)

compressible hyperelastic behaviour

incompressible hyperelastic behaviour (𝐽=1)

 ?

Strain energy density:

𝛔 = 𝐽𝐅. 𝜕Ψ

𝜕𝐄 . 𝐅 𝑇

𝛔 = 𝐅. 𝜕Ψ

𝜕𝐄 . 𝐅 𝑇 + 𝑐𝐈

(11)

Review: Thermodynamics

e3

e1 e2

Original Configuration

Deformed Configuration

S

R R0

S0 b

t

Specific Internal Energy

Specific Helmholtz free energy     s Temperature 

Heat flux vector q External heat flux q

First Law of Thermodynamics d ( )

KE Q W dt    

ij ij i const i

D q q

t y

x

Second Law of Thermodynamics dSdt ddt 0 Specific entropy s

( / )

i 0

i

s q q

t y

 

 

1 0

ij ij i

i

D q s

y t t

11

(12)

Constitutive Laws

General Assumptions:

1. Local homogeneity of deformation

(a deformation gradient can always be calculated) 2. Principle of local action

(stress at a point depends on deformation in

a vanishingly small material element surrounding the point)

Restrictions on constitutive relations:

1. Material Frame Indifference – stress-strain relations must transform consistently under a change of observer

2. Constitutive law must always satisfy the second law of

thermodynamics for any possible deformation/temperature history.

Equations relating internal force measures to deformation measures are known as Constitutive Relations

e3

e1 e2

Original Configuration

Deformed Configuration

1 0

ij ij i

i

D q s

y t t

  

 

    

        

neglected

12

(13)

13

          x , t x , t : D x , t x , t s x , t 0

  

We go back in the reference configuration:

  X , t : E 0     X , t s 0 X , t 0

0

0      

   

   

             

possible E

0 t

, X , t , X e s t

, X , t , X E E

: t , X , t , X e e

0 X 0

X 0

0 X 0

 

 

   

 

 

 

 

 

 

It can be written:

(14)

   

 

 E ,

, T E s

0 0 X

X

   

 

 

 

 E ,

Sym E ,

E

0 X X 0

Compressible materials Constitutive equations:

F E .

sym .

F t

0 X 



 

With the Cauchy

tensor:

   

 

E X,t , X,t E

0 X 0

because:

Must be antisymmetric for cancelling the dot product of the preceding

slide

(15)

15

E s E

h 0 X

0 0

X

0 

 

 

 

enthalpic elasticity

(cristal)

entropic elasticity

(biological tissue)

   

 

 E ,

, E E

0 X X 0

We can still choose such as:

0

(16)

16

0 0,2 0,4 0,6 0,8 1 Dé formation %

Entropie Ene rgie Inte rne

0 100 200 300 400 500 600 Dé formation %

Ene rgie Inte rne Entropie

enthalpic elasticity

(cristal)

entropic elasticity

(biological tissue)

(17)

17

incompressible hyperelastic behaviour

  C

tr

I 1II trC . C  

2

1 2

1

2  

I 1 , I 2

Function of invariants of or E C

Isotropic material so

ISOTROPIC, ISOTHERM

(18)

incompressible hyperelastic behaviour

ISOTROPIC, ISOTHERM

E I I

E I I

E

2 2

1

1

 

 

Tensors to calculate independently Scalars

I c F E . sym .

F t



 

whatever c

(19)

19

E I I

E I I

E

2 2

1

1

 

 

 2 I I 2 C

E I

1

2

 

 I 

E 2 I

1

 

I c F

F F I F

F I F

I I

t t

t

 

 

 

 

 

 

 2  2 . 2 . . .

2 2

1 1

I c F E . sym .

F t



 

incompressible hyperelastic behaviour

ISOTROPIC, ISOTHERM

c

whatever

(20)

I c F

F F I F

F I F

I I

t t

t

 

 

 

 

 

 

 2  2 . 2 . . .

2 2

1 1

I 1 , I 2

Left Cauchy-Green stretch tensor

F . F B 

t

incompressible hyperelastic behaviour

ISOTROPIC, ISOTHERM

c

whatever

(21)

F E .

sym .

F  

t

 

 

?, ?, ?

Invariants of E compressible hyperelastic behaviour

ISOTROPIC, ISOTHERM

21

(22)

  F

J  det F J

F

3

1

det   F 1

F F

C

t

. I

1

tr   C II tr   C . C

2 1

2

2

1

  E I 1 , I 2 , J

compressible hyperelastic behaviour

ISOTROPIC, ISOTHERM

(23)

  E    I 1 , I 2 , J

. F

sym E .

F  

t

 

 

F E .

J J

E I E I

I . I

F

2 t

2 1

1

 

 

 

 

 

 

 

Complex derivations!

compressible hyperelastic behaviour

ISOTROPIC, ISOTHERM

23

(24)

s I

p

 

Hydrostatic pressure related to J

Deviatoric component

Releted to I

1

and I

2

 

3

p   tr

compressible hyperelastic behaviour

ISOTROPIC, ISOTHERM

(25)

 

 

 

 

 

 

 

 

F F F F

F I I F

I I Dév

J

s 2 .

t

.

t

. .

t

2 2

1 1

1

0

p J

 

 

0

  E    I 1 , I 2 , J

compressible hyperelastic behaviour

ISOTROPIC, ISOTHERM

25

(26)

Common hyperelastic

models

(27)

27

   

el

2i N

1

i i

N i

1 i

1 0 i 2

1

J 1

D 3 1

I C

J , I ,

I    

  

Polynomials of the first invariant

Initial shear modulus0  2C 10

Initial compressibility modulus

1 0

2 kD

Ψ E = Ψ(ഥ 𝐼 1 , ഥ 𝐼 2 , 𝐽)

Ψ(ഥ 𝐼 1 , ഥ 𝐼 2 , 𝐽) 𝐽

(28)

Particular case 1: Neo-Hookean behaviour (N=1)

   

el

2

1 1

10 2

1

J 1

D 3 1

I C

J , I ,

I    

   

el

2i N

1

i i

N i

1 i

1 0 i 2

1

J 1

D 3 1

I C

J , I ,

I    

  

Polynomials of the first invariant Ψ E = Ψ(ഥ 𝐼 1 , ഥ 𝐼 2 , 𝐽)

Ψ(ഥ 𝐼 1 , ഥ 𝐼 2 , 𝐽) 𝐽

Références

Documents relatifs

In this study, we propose to determine crystallinity from heat power density instead of temperature, by using infrared thermography during the mechanical tests.. In practice,

“Selection of a convolution function for Fourier inversion using gridding (computerised tomography application)”. “Twisting radial lines with application to robust magnetic

تاراقعلا هذى يمغاش نإف، ةرجؤم تاراقع عيب ةلودلا تررق اذإ ويمعو ( نيعفتنملا ) رييستلاو ةيقرتلا نيواودل ةعباتلا تانكسلا لثم، ءارشلا يف ةعفشلا قح

This technique was developed from juvenile seedling material and rejuvenated clonal material by reiterated grafting on young seedling or somatic embryogenesis (Carron , 2003)..

Abstract: A super-Arrhenius-to-Arrhenius dynamic crossover phenomenon has been observed in the translational (x-relaxation time and in the inverse of the

Such gels present a strain hardening behavior if submitted to large amplitude oscillatory deformation.. Whether this irreversible strain hardening occurs homogeneously

5.4 Experimental results for DIF as a function of strain rate: for fine-grain concrete with green diamond markers (left) and for fiber-reinforced concrete with blue triangles

Our specific objectives were to: (1) identify the repertoire of expressed NLR sequences through the analysis of seven conifer transcriptomes; (2) classify the poorly known