• Aucun résultat trouvé

Bio-inspired systems for solar energy storage

N/A
N/A
Protected

Academic year: 2022

Partager "Bio-inspired systems for solar energy storage"

Copied!
53
0
0

Texte intégral

(1)

Marc Fontecave

Laboratoire de Chimie des Processus Biologiques, UMR 8229 CDF/CNRS/UPMC Collège de France, 11 Place Marcelin Berthelot, 75231 Paris Cedex 05

marc.fontecave@college-de-france.fr; Phone: (0033)144271360

Bio-inspired systems for

solar energy storage

(2)

P. Simon Y. Xu-Li V. Mougel

M. Gomez-Mingot C. Mellot-Draznieks M. Chambers

Tran Ngoc Huan S. Aroua

T. Yordanova N. Elgrishi JP Porcher X. Wang T. Fogeron G. Caserta L. Pecqueur C. Papini

Collaborations

V. Artero (Grenoble)

S. Palacin, B. Jousselme (CEA Saclay) F. Bedioui (Chimie ParisTech)

C. Policar (ENS)

D. Farruseng, J. Canivet (Lyon) W. Lubitz (MPI Muelheim)

(3)

ORIGINS

- Molecules and macromolecules - Materials

- Processes - Catalysis - Replication

- Regulation/Adaptation - Repair

4 billions years of evolution

A « living » machinery with exceptional performances (?)

Living organisms: a source of inspiration?

(4)

- Temperature, Pressure - Solvent, water

- Requirement for non toxic products

- Limited availability of chemical elements (metals…) - Limited availability of stable precursors

(H2O, CO2, N2, O2,..) -….

However…drastic limitations ORIGINS

4 billions years of evolution

A « living » machinery with exceptional performances (?)

Living organisms: a source of inspiration?

(5)

ORIGINS

- Molecules and macromolecules - Materials

- Processes - Catalysis - Replication

- Regulation/Adaptation - Repair

4 billions years of evolution

A « living » machinery with exceptional performances (?)

Living organisms: a source of inspiration?

« Copy » (from biomimetism to bioinspiration)

In order to « invent » new

materials/molecules/processes

Understand

(6)

co mp le xi ty

diversity

CHEMISTRY

BIOLOGY

Synthetic biology

Bioinspired chemistry

From JM Lehn

?

(7)

Bioinspired chemistry

« Exceed the limits of life »?

Combinations of natural and non natural atoms and molecules

Principles for biological organization

Principles for biological function

Bioinspired systems

(8)

Bioinspired chemistry

« Exceed the limits of life »?

Combinations of natural and non natural atoms and molecules

Principles for biological organization

Principles for biological function

Bioinspired systems

Biology:

Molecules

Chemistry:

Molecules and Solids

(9)

Energy

H

+

/CO

2

Hydrocarbons Biomass

Hydrogen Chemical Energy

Solar Energy

Transformation

Storage

Heat

(combustion) Electricity

(thermal plant) Organic Synthesis

ca ta ly st

Solar energy chemical storage

(10)

Natural

Photosynthesis…

(11)

Photoanode

Water oxidation

Photocathode

Reduction of H+/CO2

…photoelectrochemical cell

Natural

Photosynthesis…

Sc en ar io 1 : a p h o to el ec tr o ch em ic al c el l

H+ H2

(12)

« The artificial leaf »

D. NOCERA, Harvard

D.  Nocera.    Science,  2011,  334,  645.  

Solar-­‐to-­‐H2  =  4.7  %   (PV  7%)  

1.5  mA.cm-­‐2  

(13)

H2OÚO2

H+/CO2ÚX

Sc en ar io 2 : Ph o to V o lta ic + el ec tr o ly si s

(14)

Solar cells:

Towards artificial photosynthesis

-  semi-conductors: perovskite (CH3NH3PbI3) phototensions > 2V.

-  Catalysts: Ni, Fe hydroxides

For both oxidation and reduction of water Small overvoltages (0.2V)

(15)

H2OÚO2

H+/CO2ÚX

Mature technologies High cost

(low capacity factor of PV)

Immature technologies Low cost

(integration) Target:15-25 % ? (energy conversion

efficiency)

H+ H2

(16)

H 2

H 2 O

Energy input (solar electricity..)

Oxidation H

2

ELECTROLYZER PHOTOELECTROLYZER

FUEL CELL

2 H

2

+ O

2

2 H

2

O

Δ H = - 570 kJ.mol

-1

Production H

2

Energy output (electricity, heat..)

Hydrogen Oxygen

Storage into hydrogen: catalysis

(17)

Hydrogenases

Ni-Fe Fe-Fe

JW Peters et al Science (1998) 282, 1853 Y Nicolet et al Structure (1999) 7, 13 Volbeda, A. et al., Nature (1995), 373, 580-587.

Volbeda, A. et al., J. Am. Chem. Soc. (1996), 118, 12989-12996.

-S-CH2-NH-CH2-S- DTMA

2 H

+

+ 2 e

-

H

2

E = -400 mV vs SHE (30°C; pH 7; 0,1 bar H2)

1500-9000 TON/s

Fe-Fe Ni-Fe

Fe

Fe Ni Fe

(18)

From hydrogenases to bio-inspired nanocatalysts

(19)

From hydrogenases to bio-inspired nanocatalysts

Ni

N N Ni

(20)

From hydrogenases to bio-inspired nanocatalysts

(21)

From Hydrogenase Mimics to Noble-Metal Free Hydrogen-Evolving Electrocatalytic Nanomaterials A. Le Goff, V. Artero, B. Jousselme, N. Guillet, R. Métayé, A. Fihri, S. Palacin, M. Fontecave

Science 2009, 326, 1384-1387

Noncovalent Modification of Carbon Nanotubes with Pyrene-functionalized Ni complexes: Carbon Monoxide Tolerant Catalysts for H2 Evolution and Uptake

P. D. Tran, A. Le Goff, J. Heidkamp, B. Jousselme, N. Guillet, S. Palacin, H. Dau, M. Fontecave, V. Artero Angew. Chem. 2011, 50, 1371 –1374

From hydrogenases to bio-inspired nanocatalysts

(22)

The first fuel cell (PEM) without noble metals !!

N-heterocyclic polymer Co2+/3+; metallic Co

(23)

Further optimization…

Three-dimensional structuration

of the electrode (carbon microfibers)

V. Artero et al En. Env. Sci. 2016

(24)

24

-  Concentration -  Storage (fuels) CO

2

valorization

Solar energy

CO2

electrons/protons

CO

HCO2H

CH3OH

CH4 Hydrocarbons

Fischer-Tropsch

New markets ?

Fuel

Solar energy storage into carbon

(25)

2015: from CO

2

to carbon monoxide

-  semiconductor: perovskite CH

3

NH

3

PbI

3

-  Catalysts « noble »: Au; IrO

2

-  Yield (CO/sun): 6.5 %

M. Grätzel and coll. Nature Communications 2015

(26)

Enzymes: « CO

2

reductases »

CO dehydrogenases

(27)

Formate dehydrogenases

molypdopterin

Enzymes: « CO

2

reductases »

(28)

Enzymes: « CO

2

reductases »

(29)

Ligand mimick: dithiolene

N N

O

OH Br2

N N

Br

OH 89% O

2

(30)

Biomimetic catalyst

J.P. Porcher, Y. Xu-Li, T. Fogeron, M. Gomez-Mingot, E. Derat, M. Fontecave Angew Chem 2015 54 14090

CO X 2

(31)

0 2 4 6 8 10 12 14 16 0

100 200 300 400 500

0 5 10 15 20 25 30

0 20 40 60 80 100 120

TON H2

Time / min

TON H2

Time / h

-1.5 -1.0 -0.5 0.0 0.5 1.0

-70 -60 -50 -40 -30 -20 -10 0

A

I/ µA

E/V vs. Ag/AgCl/KClsat Mo

O S

S S

S H

Mo O S

S S

S H Mo

O S

S IV S

2

H+, e-

2

H

2

H2 N

N+

O

S H

Mo O S

S S

S H

H

2

III

H+, e-

IV

An excellent catalyst for H

2

production

H+ → H2

electroreduction

photoreduction k = 1030 s-1

( – 1.3 V vs Ag/AgCl)

T Yordanova JACS 2016 138 8834

(32)

A Ni-dithiolene catalyst for CO

2

reduction

T. Fogeron

(33)

-60 -50 -40 -30 -20 -10 0 10

-2,5 -2 -1,5 -1 -0,5 0 0,5

i (µA)

E (V vs Ag/AgCl

sat)

A Ni-dithiolene catalyst for CO

2

reduction

[Ni(qpdt)2]0,5 mM ACN, TBAP 00.1 M Ar ; CO2 ; CO2 TFE 2 M

-5 -4 -3 -2 -1 0

0 0,5 1 1,5 2 2,5 3 3,5 4

i (mA)

t (h)

Electrolysis in ACN TBAP 0,1 M, TFE 2M, CO2 atm at -1,9 V vs Ag/AgClsat

No complex, [Ni(qpdt)2]0,5 mM

HCOOH 55%

CO 15%

H2 10%

(34)

Biology:

Molecules

Chemistry:

Molecules and Solids

Bioinspired heterogenous chemistry

(35)

Bioinspired heterogenous chemistry

From PSII to CaMn2O4,xH2O

Photosystem II

CaMn2O4

CaMnIV1.6MnIII0.4O4.5(OH)0.5zH2O - Mn(III) and Mn(IV)

- Mn and Ca

- Free coordination sites

Angew Chem 2010 49 2233, Dalton trans 2012 41 21 Water oxidation

Particles, Ce(IV)

(36)

Why not Copper ?

Laccase, a copper enzyme

(37)

Porous dendritic CuO material

Ø  - 1.5 V vs NHE; H2SO4

Cu/Cu2O Cu/CuO

Ø  Annealing: air + 310°C

SEM images of CuO porous nanodendrite electrode Powder XRD pattern : Cu, Cu2O and CuO.

-micro-porous nanostructures -high surface area of the material.

(38)

Cu/CuO Electropolymerization Imidazole or Cu(Im)

2-3 CVs

SEM/TEM

Laccase Cu-Histidine

Porous dendritic CuO material

Towards a bioinspired water oxidation solid catalyst

(39)

Porous dendritic CuO material

Towards a bioinspired water oxidation solid catalyst

Cu/CuOx (red)  

Cu/CuOx/Cu(imidazole) (black) 1.0 M NaOH, 10 mV.s-1

A current density of 10 mA.cm

-2

for O

2

evolution

at 270 mV overpotential!

Controlled current electrolysis (10 mA.cm-2) at pH 11.0

9.2 7 11 1M KOH

pH effects

FY: 90%

(40)

Conductive material High surface area Structuration

Angew. Chem. 2017, under revision Victor Mougel Tran Ngoc Huan

(41)

Solvent: ionic liquid + H2O (8%)

CO2 + 2 e- + 2H+ → HCOOH

CPE of CO2 at –1.55 V vs Fc+/Fc0 in EMIM-BF4/H2O (92/8% v/v)

formate: 86.8%; CO: 4.5%; H2: 6.8%

+ CO2

onset potential:

–1.15 V vs Fc+/Fc0

< 100 mV overpotential

CVs on a modified Cu electrode in EMIM/H2O (92/8 v/v): N2 and CO2.

Tran Ngoc Huan

Porous dendritic Cu material

Towards a CO2 reduction catalyst

Chem. Sci. 2017 8, 742-747

(42)

PV + électrolyse

H2OÚO2

H+, CO2ÚX

Angew. Chem. 2016

CO2 HCO2H

2e-, 2H+ Cu

Chem Sci 2016

Copper for an electrolytic cell

Issues to address:

Ø  Water at the cathode Ø  Cathode selectivity (H2) Ø  More reduced species at the cathode (CH4, C2H2,..) Ø  Long-term stability

Tran Ngoc Huan

Victor Mougel

(43)

Anode Cathode

Water oxidation

membrane

CO2 Ø HCOOH CO2 Ø CO CO2 Ø CxHy

H2O O2

CO2 CxHy

ne-, nH+ Chem. A Eur. J. 22(2016) 14029-14035

Chemical Science, 2017, 8, 742-747

ChemSusChem 8,(2016) 2317 -2323 Submitted to Angewandte Chemie

Accepted in ACS Catalysis

Under Investigation

CxHy: CH4, C2H4, C2H6, C3H6

FY of H2: 43%

Catalyst

Towards an electrolytic cell

Issues to address:

Ø  Solvent: Water

Ø  Cathode selectivity (H2) Ø  More reduced species at the cathode (CH4, C2H2,..) Ø  Long-term stability

Ø  Cell design

(44)

•  Low CO2 solubility: constant bubbling

•  Efficient release of reaction byproducts

•  Highly versatile

Small interelectrode d Electrolyte circulation Conducting membrane

Flow electrolytic cell

(45)

http://sphere-energy.eu/

Cu plate/CuxOy

Nafion memb

Small interelectrode d Electrolyte circulation Conducting membrane

Flow electrolytic cell

(46)

Marc Fontecave

Laboratoire de Chimie des Processus Biologiques, UMR 8229 CDF/CNRS/UPMC Collège de France, 11 Place Marcelin Berthelot, 75231 Paris Cedex 05

marc.fontecave@college-de-france.fr; Phone: (0033)144271360

Bio-inspired systems for

solar energy storage

(47)
(48)

Conductive material High surface area Structuration

Cu foil Cu foil

Conclusion: Rational design of a solid electrocatalyst

(49)

Metal-Organic Frameworks:

metal nodes and organic linkers forming a crystalline coordination polymer with pores, channels and surface sites

An artificial photosystem:

template a light absorber

close to a catalyst within a MOF

Metal-Organic Frameworks (MOF)

M. Chambers

C. Mellot- Draznieks

X. Wang

(50)

1. Rhodium complex heterogenization in UiO-67 through post-synthetic ligand exchange.

Using MOF as….a catalyst

UiO-67 (Zr-based MOF)

(51)

1. Rhodium complex heterogenization in UiO-67 through post-synthetic ligand exchange.

CO

2

+ H

+

HCOOH + H

2

TON = 47 36 (7 h)

2. Using Rh@UiO-67 (10% incorporation) as a catalyst for CO2 reduction.

-  Active

-  Stable (4 days) -  Recyclable

UiO-67 (Zr-based MOF)

Using MOF as….a catalyst

M.B. Chambers et al, ChemSusChem 2015, 8, 603

(52)

Using a polymer as….a catalyst

N N

Br Br

HO O

N N

Br Br

OH O

Co OH2 H2O

N N

Br Br

HO OH

Co(OAc)2.4H2O MeOHN

r.t, stirr2

N N

HO O

N

N OH

O

Co L L

ACS Appl Mater Interfaces. 2016 8 19994

(53)

Linear sweep voltammetry in 1.0 M NaOH scan rate : 10mV/s

Porous dendritic CuO material

Towards a water oxidation catalyst

Tran Ngoc Huan

Victor Mougel

A current density of 10 mA.cm

-2

for O

2

evolution

at 340mV overpotential!

Electrolysis (4hours) Stable current

FY: 90%

Références

Documents relatifs

The resulting datasets are used as a complement to space borne satellite imagery, providing higher spatial resolution with respect to the FORMOSAT dataset we obtained between 2006

Two apparently disconnected applications of the tropical semirings are presented: the Burnside type problems in group and semigroup theory, in Section 3 and decidability problems

Committee: R. Paul Sabatier, Toulouse, France. &#34;Trinuclear ruthenium clusters supported by bridging ligands: evaluation in homogeneous catalysis&#34;. &#34;Transition

Sans magnésium, calcium et manganèse, qui constituent des éléments essentiels de la photosynthèse des végétaux et des algues, il n’y a pas l’oxygène et la matière organique

The temperature and pressure corrections will consider short-range forecasts from the ARPEGE model along the satellite track. 2) Compare the lidar winds derived

Applications are invited for a 6 month post-doctoral research post starting in the 2nd quarter of 2018, at within the Centre National de Recherches Météorologiques

DESIGN GRAPHIQUE et PHOTO BOUTEILLER COMMUNICATION BESANÇON - IMPRESSION UFC -

DESIGN GRAPHIQUE et PHOTO BOUTEILLER COMMUNICATION BESANÇON - IMPRESSION UFC -