• Aucun résultat trouvé

Alexandre Gramfort alexandre.gramfort@telecom-paristech.fr 11 Oct 2012

N/A
N/A
Protected

Academic year: 2022

Partager "Alexandre Gramfort alexandre.gramfort@telecom-paristech.fr 11 Oct 2012"

Copied!
68
0
0

Texte intégral

(1)

Alexandre Gramfort

alexandre.gramfort@telecom-paristech.fr

Introduction to Magnetic Resonance Imaging (MRI)

11 Oct 2012

(2)

Alexandre Gramfort MRI Intro

MRI

2

Magnetic Resonance Imaging (MRI) is a non-invasive imaging modality based on

“Nuclear Magnetic Resonance”

3D

• High resolution (1mm isotropic for anatomy)

• Anatomical images, functional images, angiography, diffusion

• Many applications: clinical, cognitive neurosciences

Measures the magnetic properties of material

(3)

Alexandre Gramfort MRI Intro

History

3

• 1945 : Bloch and Purcell “Nuclear induction” or “Nuclear magnetic resonance” (Nobel 1952)

1972 : 1

st

scanner shows that tumor tissue is different from normal tissue in vivo with NMR (Damadian)

• 1973 : First image of a finger by Lauterbur (Nobel 2003 with Mansfield)

• 1975 : Imaging with Frequency and Phase encoding by Ernst (Nobel 1991)

• 1978 : First clinical systems (1982 in France)

• 1985 : Diffusion MRI (Le Bihan)

• 1990 : BOLD (Blood-oxygen-level-dependent) effect in vivo (Ogawa et al.)

• 1992 : BOLD activation experiments (Kwong et al. & Kwong et al. &

Bandettini et al.)

(4)

“Nuclear induction” and Nuclear Magnetic

Resonance (NMR)

(5)

Alexandre Gramfort MRI Intro

Magnetic dipole

5

1 Wire A magnetic dipole can be

obtained with 2 wires with currents flowing is

opposite direction

(6)

Alexandre Gramfort MRI Intro

Magnetic dipole

6

µ: magnetic moment (A/m)

µ

Colinéarité entre ! µ et P !

• sphère de rayon r , de densité de masse ρ

m

, de densité de charge ρ

e

rotation Ω, vitesse " v = r "

• moment cinétique :

"

P = Z

V

ρ

m

rvdV =

Z

V

ρ

m

r

2

dV Ω "

• moment magnétique induit par une charge élémentaire dq :

dµ = 1

2 rvdq

• moment magnétique :

"

µ = Z

V

1

2 rv ρ

e

dV = 1 2

Z

V

ρ

e

r

2

dV Ω "

I. Bloch - IRM – p.5/50

Colinéarité entre ! µ et P !

• sphère de rayon r , de densité de masse ρ

m

, de densité de charge ρ

e

rotation Ω, vitesse " v = r "

• moment cinétique :

"

P = Z

V

ρ

m

rvdV =

Z

V

ρ

m

r

2

dV Ω "

• moment magnétique induit par une charge élémentaire dq:

dµ = 1

2 rvdq

• moment magnétique :

"

µ = Z

V

1

2 rv ρ

e

dV = 1 2

Z

V

ρ

e

r

2

dV Ω "

I. Bloch - IRM – p.5/50

Colinéarité entre ! µ et P !

• sphère de rayon r, de densité de masse ρ

m

, de densité de charge ρ

e

rotation Ω, vitesse " v = r "

• moment cinétique :

"

P = Z

V

ρ

m

rvdV =

Z

V

ρ

m

r

2

dV Ω "

• moment magnétique induit par une charge élémentaire dq :

dµ = 1

2 rvdq

• moment magnétique :

"

µ = Z

V

1

2 rv ρ

e

dV = 1 2

Z

V

ρ

e

r

2

dV Ω "

I. Bloch - IRM – p.5/50

Colinéarité entre ! µ et P !

• sphère de rayon r, de densité de masse ρ m , de densité de charge ρ e

rotation Ω, vitesse " v = r "

• moment cinétique :

"

P = Z

V

ρ m rvdV =

Z

V

ρ m r 2 dV Ω "

• moment magnétique induit par une charge élémentaire dq :

dµ = 1

2 rvdq

• moment magnétique :

"

µ = Z

V

1

2 rvρ e dV = 1 2

Z

V

ρ e r 2 dV Ω "

I. Bloch - IRM – p.5/50

Colinéarité entre ! µ et P !

• sphère de rayon r , de densité de masse ρ

m

, de densité de charge ρ

e

rotation Ω, vitesse " v = r "

• moment cinétique :

"

P = Z

V

ρ

m

rvdV =

Z

V

ρ

m

r

2

dV Ω "

• moment magnétique induit par une charge élémentaire dq :

dµ = 1

2 rvdq

• moment magnétique :

"

µ = Z

V

1

2 rv ρ

e

dV = 1 2

Z

V

ρ

e

r

2

dV Ω "

I. Bloch - IRM – p.5/50

Rotation:

Speed:

Kinetic momentum:

Colinéarité entre ! µ et P !

• sphère de rayon r, de densité de masse ρ

m

, de densité de charge ρ

e

rotation Ω, vitesse " v = r "

• moment cinétique :

"

P = Z

V

ρ

m

rvdV =

Z

V

ρ

m

r

2

dV Ω "

• moment magnétique induit par une charge élémentaire dq :

dµ = 1

2 rvdq

• moment magnétique :

"

µ = Z

V

1

2 rvρ

e

dV = 1 2

Z

V

ρ

e

r

2

dV Ω "

I. Bloch - IRM – p.5/50

Colinéarité entre ! µ et P !

• sphère de rayon r, de densité de masse ρ

m

, de densité de charge ρ

e

• rotation Ω, vitesse " v = r Ω "

• moment cinétique :

"

P = Z

V

ρ

m

rvdV =

Z

V

ρ

m

r

2

dV Ω "

• moment magnétique induit par une charge élémentaire dq:

dµ = 1

2 rvdq

• moment magnétique :

"

µ = Z

V

1

2 rv ρ

e

dV = 1 2

Z

V

ρ

e

r

2

dV Ω "

I. Bloch - IRM – p.5/50

Mass density

Charge density

A magnetic dipole can also be obtained with a rotating charge

Magnetic moment induced by dq:

Magnetic moment:

(7)

Alexandre Gramfort MRI Intro

Hydrogen (H) nuclei

7 O

H

H

Remark : NMR possible with other nuclei. You just need a spin i.e. impair number of protons + neutrons

N

S

=

“Like” a small magnet with a magnetic moment

Water molecule

=

N

S

spin

While a charge can rotate at different speed the speed is fixed and intrinsic for a spin. Only the orientation can vary.

µ

(8)

Alexandre Gramfort MRI Intro

Spins in an external field

8

B

0

M

high

energy level

low

energy level

No field In B0 field

Spins align with external field producing a global magnetization M M is the magnetization induced by an external magnetic field

M = ∑ µ (linear) spins with random orientation

Remark: Not all spins in low energy state: quantic effect, thermodynamic

M depends on the proton density, the temperature, amplitude of B

0

(9)

Alexandre Gramfort MRI Intro

A material can be...

9

diamagnetic: M tends to cancel the effect of B paramagnetic: M aligns with B

ferromagnetic: M is present even when B is absent (permanent magnet)

What changes is the magnetic susceptibility of the materials

Keep in mind: the magnetic susceptibility has an effect

on the local magnetic field (what makes fMRI possible)

(10)

Alexandre Gramfort MRI Intro

Ferromagnetic material in a scanner

10

(11)

Alexandre Gramfort MRI Intro

Ferromagnetic material in spatial varying field

Text

11

!2011/10/13! Why.N.How

Ferromagnetic object in spatially varying B field

6

F ~ mag = r ([U U 0 ]V )

F ~ mag = C material 2V

µ 0 B 0 dB 0 dz

Depends on both field strength and spatial derivative!

This factor depends on shape & material:

~1 for a ferrous sphere

~500 for a ferrous cylinder!

The equation for the force on a ferromagnetic object is shown at the top. Itʼs equal to the gradient (spatial derivative) of the magnetic potential energy. U is the magnetic energy density inside the ferromagnetic object, U0 is the magnetic energy density in the absence of that object, and V is the volume of the object.

Skipping the derivation, the result is shown on the second line. V is the volume of the object, and mu is the permittivity of free space, a fundamental constant. The first term is a factor that depends on the shape and composition of the object. Itʼs approximately 1 for a ferrous sphere, but as high as 500 for a ferrous cylinder.

Note that this is further bad news! This means that longer, sharper objects (pens, scissors, screwdrivers, etc), which already have a higher change of injuring a person than a round object, experience an even higher magnetic force.

The next terms of interest are highlighted in red. The force is proportional to the field strength AND the spatial derivative! That means that the higher the spatial rate of change of the magnetic field, the higher the force will be. This is why well-shielded magnets present an additional danger. To bring the magnetic field down to zero in the smallest possible distance, the rate of change of the field has to be very high.

!2011/10/13! Text5 Why.N.How

B

0

field strength

Distance from isocenter 0 1.5

Highest spatial rate of change of B

0

field strength

Ferromagnetic object in spatially varying B field

The important thing to note is the point where the drop in field strength is the highest. Thatʼs the point where the slope of the B0 field strength line is steepest.

Iʼve highlighted in red the regions where the field is changing, and the two arrows point to where itʼs changing the fastest. Weʼll see in the next slide why these points matter.

0

(12)

Alexandre Gramfort MRI Intro

Precession

12

f

0

: Larmor frequency (63.86 MHz at 1.5 T for H)

f

0

= γ B

0

/ 2 π

A magnetic field induces a rotation around the direction of the field

Figure 2.4. A spinning gyroscope whose axis is not aligned with the gravitational field is analogous to magnetization that is not aligned with the magnetic field. The gyroscope is pulled down by gravity, but its angular momentum causes this force to

rotate the gyroscope’s rotational axis about the vertical gravitational field. Friction causes the gyroscope’s rotational axis to slowly alter towards the direction of the gravitational field.

Rotation of M by applied RF

When a subject is immersed in the static field, the water in his tissues becomes magnetized and M aligns with B. Precession only occurs when the direction of M is pushed away from the direction of B. This change of direction can be accomplished by adding an extra magnetic field to the main field. This new field is not static: its strength oscillates in time.

A tiny magnetic field that oscillates at the Larmor frequency and points perpendicularly to the main field B will have a dramatic effect on M, causing it to rotate away from the direction of the much larger static magnetic field at the same time it is precessing around the direction of B. This effect is called resonance or resonant excitation. It is analogous to the “pumping” effect on a playground swing.

Gravity tends to align a swing to point downwards from its attachment point on the swingset frame. The pumping motion of the swing occupant’s legs produces a sideways force much smaller than the gravitational force downward on the occupant. If the pumping force oscillates in synchrony with the natural pendulum frequency of the swing, even this small force can build up to displace the swing very far away from the natural downwards position. Similarly, the effects of a tiny time-varying magnetic field perpendicular to the large static B can build up over many cycles to have a large effect on M.

Magnetic fields that oscillate in time are always accompanied by oscillating electric fields. This combined type of field is usually called an electromagnetic field, or electromagnetic wave. The resonant frequencies typically encountered in MRI are in the same range as radio and television signals, and so the usual term for this type of electromagnetic radiation is radiofrequency radiation, abbreviated simply to RF.

The symbol for the strength of the time-varying magnetic field used to excite the magnetization M is B1. A typical value of B1 in MRI is 10-6 Tesla. The RF transmission time (TRF) is usually just a few milliseconds—for this reason, the transmitted RF radiation is often called the RF pulse. The angle

© Robert W Cox Page 6 7/2/2001

B

0

ω

0

= γ B

0

Spinning top in a

gravitational field Magnetic moment

in a magnetic field

(13)

Alexandre Gramfort MRI Intro

Precession

13

A magnetic field induces a rotation around the direction of the field ω

0

= γ B

0

• γ is the gyromagnetic ratio

ω

0

depends on the field strength and the type of nuclei

Nuclei γ (MHz / T)

1

H 42,575

13

C 10,7

31

P 17,235

(14)

Alexandre Gramfort MRI Intro

Precession

14

Random phase

z

x y

x y

M = M z + M xy

B

0

M z = longitudinal magnetization

M xy = transverse magnetization

M

With B

0

only M = M

z

(M

xy

= 0)

(15)

Alexandre Gramfort MRI Intro

to sum up

15

• Spins precess in the direction of B

• Frequency depends on:

nuclei

• field strength

• Spins are either down or up but more up than down to create the constant magnetization M

• Phases are random in the transverse plane and produce no

M xy magnetization

The idea of NMR is to perturb the constant

magnetization to produce a signal

(16)

Alexandre Gramfort MRI Intro

Induction

16

z

x

y

N

S

Induced current

Remark: Same idea as the dynamo on a bike

z

x M xy y

Rotate a magnet

NMR uses M

xy

as a rotating magnet : it’s “Nuclear induction”

Changing magnetic flux through a coil

induces a detectable difference of potential

(17)

Alexandre Gramfort MRI Intro

Frames of reference

17

Magnetization precesses slowly in rotating frame Magnetization precesses

rapidly in lab frame

Lab frame Rotating frame

Special Case: If frame rotates at Larmor frequency, magnetization appears stationary!!!

z

x

y M

B

0

ω

lab

= ω

0

= γ B

0

z’

x’

y’

M

ω

rot

= ω

0

- ω

ω

(18)

Alexandre Gramfort MRI Intro

B1 and radio-frequency (RF) pulse

18

Rotating frame with stationary magnetization

z’

x’

y’

M

ω

0

B

0

B

1

Mouvement de précession

dans B ! 0 , le noyau est soumis au couple :

C ! = ! µ ∧ B ! 0

• moment cinétique :

P ! = ! r ∧ m ! v d P !

dt = ! r ∧ m d ! v

dt + ! 0 = ! r ∧ F ! = C !

• colinéarité ! µ = γ ! P , d’où :

d! µ

dt = γ (! µ ∧ B ! 0 )

solution :

!

µ =

0 B

@

µ sin θ cos ω 0 t

− µ sin θ sin ω 0 t µ cos θ

1 C A

avec θ constant et ω 0 = γ B 0

I. Bloch - IRM – p.7/50

Flip angle

B1 field along x’

leads to a precession around x’

and rotates the magnetization producing a transverse

magnetization

B1is produced by a radio

frequency (RF) pulse tuned at

the Larmor frequency

(19)

Alexandre Gramfort MRI Intro

Longitudinal Relaxation: T1

19

x

Mxy

y

M Mz

B0

After a 90° flip the

magnetization returns to M 0

Free induction decay (FID)

(20)

Alexandre Gramfort MRI Intro

Longitudinal Relaxation: T1

20

M

z

(t) = M

z

(0)(1 e

T1t

)

1 st Bloch’s law after 90° flip:

T1 : longitudinal relaxation time

0 T

1

time

M

z

M

0

0,63M

0

Due to B 0 field

(21)

Alexandre Gramfort MRI Intro

Transverse Relaxation: T2

21

2 st Bloch’s law after 90° flip:

T2 : transverse relaxation time

M

τ

0 T

2

time M

T

0,37 M

τ

M xy (t) = M xy (0)e

Tt2

Due to progressive dephasing of the spins

Random phase

Relaxation

Relaxation spin-spin = échange d’énergie entre les protons, les µ ! reprennent des phases quelconques

illustration du déphasage

M xy = M 0 e t/T

2

avec T 2 ≤ T 1

I. Bloch - IRM – p.13/50

(22)

Alexandre Gramfort MRI Intro

Relaxation

22

(23)

Alexandre Gramfort MRI Intro

Image contrasts

T1-weighted T2-weighted PD-weighted

• Image contrast = signal difference between different tissues of interest

• Image contrast is the combined effects of tissue differences in proton density (PD), T1 and T2

• Many sequences can be either PD or T1 or T2 weighted, depending on details of timing

• Typically aim to maximize the contrast due to one of these and minimize the contrast due to the others

23

(24)

Alexandre Gramfort MRI Intro

T1, T2, proton density (PD)

T

1

(1,5 T) T

2

water

CSF

muscle fat

white matter gray matter

3000 ms 1500 ms 2500 1000

800 45 200 75 750 90 850 100

Tissues have different magnetic properties:

24

That’s why you can see the difference

(25)

Alexandre Gramfort MRI Intro

Echo time (TE) and T 2 contrast

TE

Si gna l a mpl itud e

TE = time from excitation to readout Long TE gives T 2 contrast but low signal Tradeoff between signal and T 2 contrast

Tissue 1 (long T 2 )

Tissue 2 (short T 2 ) Short

TE

High signal contra Low

st

Long TE signal Low

contra High st

25

(26)

Alexandre Gramfort MRI Intro

T 1 contrast

time M z

Tissue 2 (long T 1 ) Tissue 1 (short T 1 )

26

Excited magnetization returns to alignment with main field

Speed of return is described by T1 (transverse relaxation time)

T1 varies with tissue and field strength

(27)

Alexandre Gramfort MRI Intro

TR and T 1 Contrast

Long TR: T 1 recovers completely for both tissues

27

(28)

Alexandre Gramfort MRI Intro

TR and T 1 Contrast

Short TR: short T 1 recovers more T 1 contrast!

28

(29)

Alexandre Gramfort MRI Intro

What’s My Contrast?

Short TE Long TE

Short TR T 1 -weighted T 1 and T 2 weighted

Long TR Proton

density T 2 -weighted

29

(30)

Alexandre Gramfort MRI Intro

T2*

In practice we don’t observe T2 but T2* (T2* < T2)

30

1

T 2 = 1

T 2 + 1

T 2 0 = 1

T 2 + B 0

It’s a problem for anatomical images but this “issue” is actually a blessing for functional and diffusion imaging.

It describes the exponential decay of signal, due to spin-spin interactions, magnetic field

inhomogeneities, and susceptibility effects.

(31)

Alexandre Gramfort MRI Intro

Spin Echo

31

Objective : correct for T2* dephasing

source: wikipedia.org

[Erwin Hahn 1950]

(32)

Alexandre Gramfort MRI Intro

Spin Echo vs. Gradient Echo signal

time

signal

time

signal

GRE signal

(more properly, a Free Induction Decay = FID)

SE signal

(signal decays, then comes back as

“echo”)

32

(33)

Alexandre Gramfort MRI Intro

T 2 vs T 2 * Relaxation

time

signal

SE can refocus only part of the signal decay

– T

2

* refers to part that can be refocused

– Without refocusing, signal will have T

2

* contrast

Even spin echo signal experiences some decay

– T

2

refers to signal decay that cannot be refocused – With refocusing, signal will have T

2

contrast

SE signal T

2

* decay T

2

decay

33

(34)

Magnetic Resonance

Imaging

(35)

Alexandre Gramfort MRI Intro

Magnetic gradient

35

Gradient: Extra magnetic field varying over space

– Precessional frequency varies with position!

– Detect signal at a position by selectively listening to the corresponding frequency

– “Pulse sequence” modulates size of gradient – Gradient around 10 mT / m

High field

Low field

B

0

precessionFast

precessionSlow

z x

y

(36)

Alexandre Gramfort MRI Intro

Magnetic gradients

36

54

23/03/2009

Composantes d’un système d’IRM Les gradients

La vitesse d’acquisition et les dimensions géométriques de l’image sont principalement déterminés par les gradients.

• Des gradients puissants permettent d’avoir une résolution spatiale plus importante pour une même largeur spectrale (BW)

• Des gradients rapides permettent une acquisition plus rapide.

23/03/2009

Composantes d’un système d’IRM Les gradients

Z

X

54

23/03/2009

Composantes d’un système d’IRM Les gradients

La vitesse d’acquisition et les dimensions géométriques de l’image sont principalement déterminés par les gradients.

• Des gradients puissants permettent d’avoir une résolution spatiale plus importante pour une même largeur spectrale (BW)

• Des gradients rapides permettent une acquisition plus rapide.

23/03/2009

Composantes d’un système d’IRM Les gradients

Z

X

54

23/03/2009

Composantes d’un système d’IRM Les gradients

La vitesse d’acquisition et les dimensions géométriques de l’image sont principalement déterminés par les gradients.

• Des gradients puissants permettent d’avoir une résolution spatiale plus importante pour une même largeur spectrale (BW)

• Des gradients rapides permettent une acquisition plus rapide.

23/03/2009

Composantes d’un système d’IRM Les gradients

Z

X

3 gradients in MR system

Fast gradients lead to fast imaging

Strong gradients lead to higher

spatial resolution

(37)

Alexandre Gramfort MRI Intro

Slice selection

37

B

0

z x

y

Gradient along z axis so field varies along z axis:

B = B 0 + zG z Field strength matches RF pulse frequency only for a slice dZ

dZ

ω = ω 0 + γ zG z so : dz = dω/(γ G z )

Strong gradient leads to small

thickness

(38)

Alexandre Gramfort MRI Intro

MR sequence

38

x y

z

= spin

B0

t t t t t RF

Gz Gy Gx Acq

t signal

Sequence = 3 gradients (Gx, Gy, Gz)

+ 1 radiofrequency (RF) system

+ 1 (or more) acquisition channel (Acq) Gx

Gz Gy

emitting antenna receiving

antenna

Spins in a magnetic field

Tuesday, February 15, 2011

(39)

Alexandre Gramfort MRI Intro

1D Frequency Encoding

39

Principe de la localisation spatiale

Codage de fréquence : champ de gradient linéaire Gx

ω = γ(B0 + xGx)

I. Bloch - IRM – p.22/50

Principe de la localisation spatiale

Codage de fréquence : champ de gradient linéaire G

x

ω = γ (B

0

+ xG

x

)

I. Bloch - IRM – p.22/50

Gradient along x axis

Precession frequency varies along x axis:

Measured signal:

It’s a Fourier Transform!

S (t) = X

y

I (y)e i G

y

yt

(40)

Alexandre Gramfort MRI Intro

2D Imaging

40

x y

k-space Image

kx

k

FFT -1

• Originally obtained by multiple 1D projections by Lauterbur 1973 (like with CT scanner)

Phase encoding is used today instead:

G

y

gradient is used to have a phase that depends on y position

• Image is obtained with 2D Fourier Transform

(41)

Alexandre Gramfort MRI Intro

K-space coverage based on accumulated gradient

41

Gradients are used to cover the k-space

The size and resolution of k-space specifies the

field of view (FOV) (size of image)

If k-space sampling is too

low : aliasing problem

(42)

Alexandre Gramfort MRI Intro

Multi-slice imaging

42

Each slice excited & acquired separately

TR: time between repeated excitation of same slice (typically 1–3 seconds) Slices no thinner than ~1 mm

t1

t2

t3

t4

t5

t6

(43)

Alexandre Gramfort MRI Intro

3D imaging

43

• With multi-slice we need to wait for full relaxation

between each slice: ok with long TR like for T2 weighted images

• To accelerate (like for fast T1 weighted images):

• using symmetry of Fourier plane

• multi-slice imaging

• full volume with 2 phase encoding

• use smaller flip angles

• Today T1weighted brain scan 8mn. (256x256x256 voxels)

(44)

Alexandre Gramfort MRI Intro

Partial volume effect

44

Effet de volume partiel

I. Bloch - IRM – p.36/50

Both WM and GM in 1 voxel

Need smaller voxels

(45)

Alexandre Gramfort MRI Intro

MR system

45

Instrumentation

I. Bloch - IRM – p.30/50

(46)

Alexandre Gramfort MRI Intro

RF Fields

46

RF fields are generated by RF coils:

Linearly Polarized RF Fields

• Linear RF Fields can be generated by:

• Surface coil

• Solenoid

• Loop-gap

Thursday, 18 February 2010

Surface

Linearly Polarized RF Fields

• Linear RF Fields can be generated by:

• Surface coil

• Solenoid

• Loop-gap

Thursday, 18 February 2010

Solenoid

Linearly Polarized RF Fields

• Linear RF Fields can be generated by:

• Surface coil

• Solenoid

• Loop-gap

Thursday, 18 February 2010

Loop gap

• A circularly polarized RF field can be generated using

• 2 surface coils at right angles: Coils are driven with sinusoidal currents, 90° out of phase “Quadrature” Excitation

• a bird cage coil

Circularly Polarized RF Fields

• Circularly polarized RF

Fields can be generated by:

• Pairs of surface coils (quad pair)

• Birdcage Coil

• TEM Resonator

Thursday, 18 February 2010

Bird cage coil

(47)

Alexandre Gramfort MRI Intro

Intrinsic parameters

47

• T1 : longitudinal relaxation time

• T2 : longitudinal relaxation time

• PD : Proton density

• field inhomogeneity

• physiological motion

(48)

Alexandre Gramfort MRI Intro

Extrinsic parameters

48

• External magnetic fields

• Sequence parameters:

• TR: repetition time

• TE: echo time (readout)

flip angle

• number of slices

FOV

• slice thickness

• slice orientation

• gradient parameters

• type of coils (surface?)

(49)

Functional Magnetic

Resonance Imaging (fMRI)

(50)

Alexandre Gramfort MRI Intro

Functional neuroimaging

50

blood volume

spatial resolution (mm)

invasivity

weak strong

5 10 15 20

temporal resolution (ms)

1 10 102 103 104 105

sEEG MEG

EEG

fMRI

MRI(a,d) PET

SPECT nIRS

It’s the study of the brain activity through functional imaging devices

Functional MRI

Optical Imaging

(51)

Alexandre Gramfort MRI Intro

Vascular response of activation

51

HbO2

HbO2

HbO2 HbO2

dHb

dHb

dHb dHb

O

2

metabolism

dHb dHb

HbO2

HbO2 HbO2 dHb

HbO2 dHb dHb

HbO2

blood flow

HbO2

HbO2

HbO2

HbO2

HbO2 HbO2

HbO2 HbO2 HbO2

HbO2 HbO2

HbO2

HbO2

HbO2

[dHb]

dHb = deoxyhemoglobin

HbO

2

= oxyhemoglobin capillary

HbO2

HbO2 HbO2

neuron

blood volume

paramagnetic

diamagnetic

(52)

Alexandre Gramfort MRI Intro

Functional MRI (fMRI)

52

• Blood Oxygenation Level Dependent (BOLD) contrast [Ogawa 1990]

• Deoxyhemoglobin (dHb) has different resonance frequency than water

• dHb acts as endogenous contrast agent: larger T2*

detectable with fast imaging sequence

• dHb in blood vessel creates frequency offset in

surrounding tissue (approximately as dipole pattern)

• Frequency spread causes signal loss over time

• BOLD contrast: Amount of signal loss reflects [dHb]

• Contrast increases with delay (TE = echo time)

(53)

Alexandre Gramfort MRI Intro

Echo planar imaging (EPI) sequence

53

Séquence EPI

I. Bloch - IRM – p.46/50

Need fast

gradients!

(54)

Alexandre Gramfort MRI Intro

EPI distortions

54

Séquence EPI

I. Bloch - IRM – p.46/50

Séquence EPI

I. Bloch - IRM – p.46/50

Magnetization precesses at a different rate than expected

Reconstruction places the signal at the wrong location

(55)

Alexandre Gramfort MRI Intro

Typical fMRI experiment

55

• Subject is given sensory stimulation or task, interleaved with control or rest condition

• Acquire timeseries of BOLD-sensitive images during stimulation

• Analyze image timeseries to determine where signal changed in response to stimulation

Predicted BOLD signal

time Stimulus

pattern

on

off

on

off

on

off

on

off off

(56)

Alexandre Gramfort MRI Intro

FMRI at High Field (>3T)

56

• SNR and BOLD increase with field strength

• Physiological noise means practical gain is less

• Benefits: Resolution

• Problems: Artifacts, RF heating, wavelength effects…

(57)

Diffusion Magnetic

Resonance Imaging (dMRI)

(58)

Alexandre Gramfort MRI Intro

Diffusion MRI (dMRI)

58

Field of diffusion tensors

Tuesday, February 15, 2011

Measures local anisotropy using the signal drop out

due to water diffusion

(59)

Alexandre Gramfort MRI Intro

Diffusion MRI (dMRI)

59

• Water diffusion restricted along white matter

• Sensitize signal to diffusion in different directions

• Measure along all directions, infer tracts

Diffusion direction

(60)

Alexandre Gramfort MRI Intro

Diffusion MRI (dMRI)

60

• Complementary information to fMRI

– fMRI: gray matter, information processing – dMRI: white matter, information pathways

• Tractography: tracing white matter

pathways between gray matter regions

Color-coded directions

x

y z

4 min DSI 1

52! 1. Setsompop K, Bilgic B, et al ISMRM 2012!

Tractography

Fig. 6. Undersampled sparse DSI using learned dictionnary from subject 1 to recon- struct DSI signal and diffusion ODFs of subject 2.

258 measurements 129 measurements 58 measurements

43 measurements 37 measurements 29 measurements

References

1. Tuch, D.S.: Diffusion MRI of Complex Tissue Structure. PhD thesis, Harvard University and Massachusetts Institute of Technology (2002)

2. Wedeen, V.J., Hagmann, P., Tseng, W.Y.I., Reese, T.G., Weisskoff, R.M.: Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging.

Magnetic Resonance in Medicine 54(6) (2005) 1377–1386

3. Hagmann, P., Cammoun, L., Gigandet, X., Meuli, R., Honey, C.J., Wedeen, V.J., Sporns, O.: Mapping the structural core of human cerebral cortex. PLoS biology 6(7) (2008) e159

4. Honey, C.J., Sporns, O., Cammoun, L., Gigandet, X., Thiran, J.P., Meuli, R., Hag- mann, P.: Predicting human resting-state functional connectivity from structural connectivity. Proceedings of the National Academy of Sciences of the United States of America 106(6) (2009) 2035–40

5. Sijbers, J., den Dekker, A.J., Audekerke, J.V., Verhoye, M., Dyck, D.V.: Estimation of the noise in magnitude MR images. Magnetic Resonance Imaging 16(1) (1998) 87–90

6. Koay, C.G., Özarslan, E., Basser, P.J.: A signal transformational framework for breaking the noise floor and its applications in mri. Journal of Magnetic Resonance 197(2) (2009) 108–119

7. Mairal, J., Bach, F., Ponce, J., Sapiro, G.: Online learning for matrix factorization and sparse coding. Journal of Machine Learning Research 11 (2010) 19

8. Coupé, P., Manjón, J.V., Gedamu, E., Arnold, D., Robles, M., Collins, D.L.: Ro- bust rician noise estimation for mr images. Medical Image Analysis 14(4) (2010) 483 – 493

9. Menzel, M.I., Tan, E.T., Khare, K., Sperl, J.I., King, K.F., Tao, X., Hardy, C.J., Marinelli, L.: Accelerated diffusion spectrum imaging in the human brain using compressed sensing. Magnetic Resonance in Medicine 66(5) (2011) 1226–1233

10. Tristán-Vega, A., Aja-Fernández, S.: Dwi filtering using joint information for dti and hardi. Medical Image Analysis 14(2) (2010) 205 – 218

local orientation

(61)

Alexandre Gramfort MRI Intro

Artifacts

61

Les artefacts liés à l’acquisition EPI: ghosting en N/2

Correction

à l’acquisition : amélioration des techniques d’acquisition EPI (reference scan, réduction des courants de Foucault)

à la reconstruction : amélioration des techniques de reconstruction des images et du centrage des échos pairs et impairs

Plan de Fourier

x y

Wednesday, March 2, 2011

What do you think happened?

EPI Ghosting

(62)

Alexandre Gramfort MRI Intro

Artifacts

62

What do you think happened?

Les artefacts liés aux mouvements

Correction de mouvement des images de diffusion avant le calcul des cartes de FA et ADC

Correction à l’acquisition : écho navigateur

Wednesday, March 2, 2011

(63)

Alexandre Gramfort MRI Intro

What else?

63

What do you think happened?

Produits de contraste

Objectif : améliorer la détection et la caractérisation des tumeurs (ou vaisseaux sanguins) avec des séquences courtes

I. Bloch - IRM – p.39/50

MRI with contrast agent (boost signal)

most common Gd-GTPA (paramagnetic)

(64)

Alexandre Gramfort MRI Intro

What else?

64

What do you think happened?

Angiography

Imagerie de flux

I. Bloch - IRM – p.43/50

• Image blood flow

• Clinical applications:

stenosis, aneurysms

(65)

Alexandre Gramfort MRI Intro

What else?

65

What do you think happened?

Cardiac MRI

IRM cardiaque

• Difficile mais grand potentiel

• Synchronisation avec l’ECG

• Bon contraste

• Plans de coupe anatomiques

• Bonne résolution temporelle

Une coupe pendant le cycle cardiaque Rehaussement tardif

I. Bloch - IRM – p.41/50

Need to synchronize with heart beat (ECG)

(66)

Alexandre Gramfort MRI Intro

What else?

66

What do you think happened?

Tagged MRI

IRM "taguée"

I. Bloch - IRM – p.42/50

Useful to track tissue motion and distortion

(67)

Alexandre Gramfort MRI Intro

What you should remember

67

• NMR measures the magnetic properties of nuclei (mainly H)

• Based of precession and electromagnetic induction

• Signal and contrast is obtained by T1 and T2 relaxation

• Intrinsic properties : T1, T2, Proton Density

• Extrinsic : TR, TE, sequence parameters

• Image is obtained by frequency encoding (precession

frequency varying with spatial location) and phase encoding.

(68)

Alexandre Gramfort MRI Intro

Learn more

68

Introduction to Functional Magnetic Resonance Imaging, by R.

Buxton

The Basics of MRI, Joseph P. Hornak http://www.cis.rit.edu/

htbooks/mri/

• http://www.revisemri.com/

• http://www.mritutor.org/mritutor/

• http://www.ebyte.it/library/Library.html#nmr

• google.com ...

Reading list:

Références

Documents relatifs

Accordingly, management stations must be prepared to receive from agents tabular information corresponding to entries not currently in

That is, it is named and characterized through a network datalanguage and all pertinent information as to where it can be located and what its structure is kept in a

Once this constraint is lifted by the deployment of IPv6, and in the absence of a scalable routing strategy, the rapid DFZ RIB size growth problem today can potentially

Potential action items for the W3C included investigating the formation of a privacy interest group and formulating guidance about fingerprinting, referrer headers,

The first was that the Internet Architecture Board should review and consider that document in the context of evaluating Birds of a Feather (BoF) session proposals at the

When talking about users, we also need to distinguish the end user (who we typically think about when we talk about UI) from the server administrators and other technical

[AllJoynExplorer] can be used to browse and interact with any resource exposed by an AllJoyn device, including both standard and vendor-defined data models, by retrieving

During the survey, I noted anomalies in a few dozen hosts’ SMTP servers; examples included a RSET command causing the server to close the connection, a VRFY POSTMASTER evoking a