• Aucun résultat trouvé

GPS (Global Positioning System)

N/A
N/A
Protected

Academic year: 2022

Partager "GPS (Global Positioning System)"

Copied!
31
0
0

Texte intégral

(1)

M2 STEP - Module "Outils et méthodes de la géodesie spatiale" - C. Vigny

1

12 m antenna

140” antenna

GPS (Global Positioning System)

GPS was created in the 80s’ by the US Department of Defense for military purposes. The objective was to be able to get a precise position anywhere, anytime on Earth.

The satellites send a signal, received by a GPS antenna. Again, this allow to measure the distance satellite to antenna

With at least 3 satellites visible at the same time, we can compute instantaneously the station position. The precision can be as good as 1 millimeter

2

Fundamentals of GPS

(2)

M2 STEP - Module "Outils et méthodes de la géodesie spatiale" - C. Vigny

3

GPS (Global Positioning System)

∆t

pseudo-distance Measurement:

Accurate to 30 m if C/A code (pseudo frequency of 1 MHz) Accurate to 10 m if P code (pseudo frequency of 10 MHz) Easy because code never repeats itself over a long time, i.e. no ambiguity

Phase Measurement:

Accurate to 20 mm on L1 or L2 (1.5 GHz)

But difficult because the initial offset is unknown.

=> Post processing of a sequence of measurements on 1 satellite give final station position Phase offset

Unknown initial offset

M2 STEP - Module "Outils et méthodes de la géodesie spatiale" - C. Vigny

4

GPS signals

-L1=1575.42MHz, λ=19 cm -L2=1227.60 MHz, λ=24 cm

-P1 (C/A)~1.023 MHz, λ~293 m -P2 (précis)~10.23 MHz, λ~29.3 m

•2 carrier phases (phases porteuses)

•2 carried codes (codes portés)

C/A : Coarse acquisition = code “grossier” carried on L1 P : Precise = code “précis” carried on L2

P code is encrypted (by US army). This is known as “AS: Anti spoofing”. the encrypted P-code is usually called the Y-code. Deciphering the Y-code is done through Z tehcnology (squaring of Y-code).

(3)

M2 STEP - Module "Outils et méthodes de la géodesie spatiale" - C. Vigny

5

US army - limiting access to civilians: SA & AS SA: Selective availability

z Until May 2000, US DoD artificially degraded stability of satellite clocks

z No solution for absolute and/or real time positionning. Solved by double differences (provided that GPS receivers sample the GPS signal at the same time).

z Stopped after 2000 (by Al. Gore)

AS: Anti Spoofing

zP-Code encrypted into Y-code

zdone by multiplying P by an unknown code at 20KHz

zdeciphered by “Z-tracking” (squaring of Y-code) receivers

zStill active today

6

Offsets measurements are biased by Clocks

Satellites

z “Stable” atomic clocks (unless SA is active).

Instability= ~10-14(=> ~10-9sec./day)

z Synchronized between all satellites

z Navigation message contains clocks corrections ==> can be modeled Receivers

z Unstable cheap clocks: (10-5- 10-6) (=> ~1 sec./day)

Problem : at 300 000 km/s, satellite-station distance is covered in 70 ms, and a 1m difference in position corresponds to 10-9seconds…

Solution: Double difference

(4)

M2 STEP - Module "Outils et méthodes de la géodesie spatiale" - C. Vigny

7

Double differences

One wayphases are affected by stations and satellitesclock uncertainties

Double differencesAre free from all clock uncertainties but

=> Measurement of distances between points (= baselines)

=> Relative positioning Single differencesare affected by stationsclock uncertainties Or

satellitesclock uncertainties

M2 STEP - Module "Outils et méthodes de la géodesie spatiale" - C. Vigny

8

Other perturbation : The Ionosphere

Correct measurement in an empty space But the ionosphere perturbates

propagation of electric wavelength …..

… and corrupts the measured distance

… and the inferred station position

(5)

M2 STEP - Module "Outils et méthodes de la géodesie spatiale" - C. Vigny

9

Ionosphere theory

Ionospheric delay

τ

iondepends on :

• ionosphere contains in charged particules (ions and electrons) : Ne

• Frequency of the wave going through the ionosphere : f

τ

ion = 1.35 10-7Ne / f2

10

Ionosphere : solution = dual frequency

Problem : Nechanges with time and is never known solution : sample the ionosphere with 2 frequencies

τ

ion1= 1.35 10-7Ne / f12

τ

ion2= 1.35 10-7Ne / f22

=>

τ

ion2-

τ

ion1= 1.35 10-7Ne (1/ f22- 1/ f12 )

=>Ne =

[ τ

ion2-

τ

ion1

] /

1.35 10-7(1/ f22- 1/ f12 )

Using dual frequency GPS, allow to determine the number Ne and then to quantify the ionospheric delay on either L1 or L2.

(in fact, GPS can and is used to make ionosphere Total Electron Containt (TEC) maps of the ionosphere)

(6)

M2 STEP - Module "Outils et méthodes de la géodesie spatiale" - C. Vigny

11

Second perturbation : The Troposphere

Horizontal effects cancel out

Vertical effects remain

The troposphere (lower layer of the atmosphere) contains water. This also affects the travel time of radio waves.

But the troposphere is not dispersive (effect not inversely proportional to frequency), so the effect cannot be quantified by dual frequency system. Therefore there a position error of 1-50 cm.

Thanks to the presence of many satellites, the effect cancel out (more or less) in average, on the horizontal position. Only remains a vertical error calledZenith tropospheric delay

M2 STEP - Module "Outils et méthodes de la géodesie spatiale" - C. Vigny

12

Troposphere zenith delay

The tropospheric zenith delay can be estimated from the data themselves…

if we measure every 30son 5 satellites, we have 1800 measurements in 3 hours.

We only have 3unknowns : station lat, lon, and altitude! So we can add a new one : 1 Zenith delay every 3 hours The curves show that the estimated Zenith delay vary from 15 cm to 30 cm with a very clear day/night cycle

(7)

M2 STEP - Module "Outils et méthodes de la géodesie spatiale" - C. Vigny

13

Antenna phase center offset and variations

Electric wires inside the antenna

area of phase center displacement (~1 cm) The Antenna phase center is the wire in which the radio wave converts

into an electric signal.

It’s a “mathematical”

point, which exact position depends

on the signal alignment with the wire (azimuth and elevation)

14

Antenna phase center offset and variations

Solution : use identicalantennas, oriented in the same direction

As the signal rotates, the antenna phase centers move

But they move the same quantity in the same direction if antennas are strictly identical because the incoming signal are the same (satellite is very far away)

Therefore, the baseline between stations remains unchanged But this works for small baselines only (less than a few 100 km)

(8)

M2 STEP - Module "Outils et méthodes de la géodesie spatiale" - C. Vigny

15

Tripod and tribrachs source of errors

The measurement give the position of the antenna center, we have to tieit to the GPS marker which stays until next measure

The antenna has to be leveled horizontally and centered perfectly on the mark. Then :

Horiz. position of marker = horiz. position of antenna Altitude of marker = altitude of antenna – antenna height

M2 STEP - Module "Outils et méthodes de la géodesie spatiale" - C. Vigny

16

GPS est précis, à condition de :

1.

GPS bi-fréquence pour éliminer l’ionosphere

2.

Mesures longues pour « moyenner » la troposphère

3.

Mesures relatives de distances entre stations

4.

Utilisation d’antennes identiques, orientées

parallèlement, et du centrage forcé sur les

repères pour éviter les biais instrumentaux

(9)

M2 STEP - Module "Outils et méthodes de la géodesie spatiale" - C. Vigny

17

Precision and repeatability

10 measurements of the same baseline give slightly different values :

80 km +/- 10 mm How many measurements are between 80 and 80+δ The histogram curve is a Gaussian statistic The baseline repeatability is the sigma of its Gaussian scatter

18

Network repeatabilities

Network of N points (N=9)

(N-1) (=8) baselines from 1st station to all others (N-2) (=7) baselines from 2nd station to all others

=> subtotal = (N-1)+(N-2) total number of baselines

= (N-1)+(N-2)+…+1

= N(N-1)/2 (36 in that case)

(10)

M2 STEP - Module "Outils et méthodes de la géodesie spatiale" - C. Vigny

19

Typical repeatabilities (60 points => ~1800 bsl)

Repeatabilities are much larger than formal uncertainties !

M2 STEP - Module "Outils et méthodes de la géodesie spatiale" - C. Vigny

20

1 order of magnitude Improvment over a decade

1-2 mm 1-10 cm

1-2 cm 1-10 mm

(11)

M2 STEP - Module "Outils et méthodes de la géodesie spatiale" - C. Vigny

21

Accuracy vs. precision (1)

Fix point : measure 1 hour every 30 s

=> 120 positions

with dispersion ~+/- 2 cm 5 hours later, measure again 1 hour at the same location

=> Same dispersion but constant offset of 5 cm

Precision = 2 cm Accuracy = 5 cm

22

Accuracy vs. precision (2)

Measure path, 1 point every 10s

=> 1 circle with 50 points 10 circles describe runabout with dispersion ~ 2 cm Next day, measure again

=> Same figure but constant offset of 6 cm

Precision = 2 cm Accuracy = 6 cm

(12)

M2 STEP - Module "Outils et méthodes de la géodesie spatiale" - C. Vigny

23

Mapping in a reference frame (sketch)

Measure short lines with a good precision is easy.

Quantify deformation within a small network is easy BUT

Determine the motion of the whole network with respect to the rest of the world is more difficult

In order do do this…

We need to know how to map

into a reference frame ⇒ compute Helmert transformations

M2 STEP - Module "Outils et méthodes de la géodesie spatiale" - C. Vigny

24

Mapping in a reference frame (1)

… when station

displacement is constant with time

Constraining campaign positions (and or velocities) to long term positions (and or velocities) works fine …

if the station motion is linear with time, then estimating the velocity on any time span will give the same value

(13)

M2 STEP - Module "Outils et méthodes de la géodesie spatiale" - C. Vigny

25

Mapping in a reference frame (2)

… when station

displacement is not constant with time

Constraining campaign positions (and or velocities) to long term positions (and or velocities) does not work

if the station motion is not linearwith time, then estimating the velocity on different time span will give differentvalues

26

Mapping in a reference frame (3)

some stations are better than others …

(14)

M2 STEP - Module "Outils et méthodes de la géodesie spatiale" - C. Vigny

27

From position to velocity uncertainty

If one measures position P1at time t1and P2at time t2with precision ∆P1and ∆P2, what is the velocity V and its precision ∆V ?

V = (P2- P1) / (t2 - t1)

∆V = (∆P2

X

+ ∆P1 ) / (t2 - t1)

Uncertainties don’t add up simply, because sigmas involve probability.

∆V =

[

(∆P2 )2+ (∆P1 ) 2

]

1/2

/

(t2 - t1)

M2 STEP - Module "Outils et méthodes de la géodesie spatiale" - C. Vigny

28

Velocity uncertainties

It is only needed that we wait a given time between position measurements to detect deformation velocities

Reasonnable (but wrong) idea:

Geodesy is like good wine: measurements, even (and mostly) bad ones, gain value by aging

The more we wait, the more precise the velocity is

(15)

M2 STEP - Module "Outils et méthodes de la géodesie spatiale" - C. Vigny

29

In practice…: BRAZ : 2000->2007

4,650 4,700 4,750 4,800 4,850 4,900 4,950

0 500 1000 1500 2000 2500

days

horizontal position (m)

4,800 4,810 4,820 4,830 4,840 4,850 4,860 4,870 4,880 4,890 4,900

0 100 200 300 400 500 600 700

4,810 4,815 4,820 4,825 4,830 4,835 4,840 4,845 4,850

0 100 200 300 400 500 600 700

7 years

2 years 2 years

+ zoom

4,820 4,825 4,830 4,835 4,840 4,845 4,850

0 100 200 300 400 500 600 700

2 years + zoom + detrended

4,820 4,825 4,830 4,835 4,840 4,845 4,850

0 500 1000 1500 2000 2500

All 7 years + zoom + detrended

30

18,0 1

deviation month

4,830 4,831 4,832 4,833 4,834 4,835 4,836 4,837 4,838 4,839 4,840 4,841 4,842 4,843 4,844 4,845

0 5 10 15 20 25 30 35

4,830 4,831 4,832 4,833 4,834 4,835 4,836 4,837 4,838 4,839 4,840 4,841 4,842 4,843 4,844 4,845

0 10 20 30 40 50 60 70

4,830 4,831 4,832 4,833 4,834 4,835 4,836 4,837 4,838 4,839 4,840 4,841 4,842 4,843 4,844 4,845

0 20 40 60 80 100

4,830 4,831 4,832 4,833 4,834 4,835 4,836 4,837 4,838 4,839 4,840 4,841 4,842 4,843 4,844 4,845

0 50 100 150 200

4,830 4,831 4,832 4,833 4,834 4,835 4,836 4,837 4,838 4,839 4,840 4,841 4,842 4,843 4,844 4,845

0 50 100 150 200 250 300 350 400

4,830 4,831 4,832 4,833 4,834 4,835 4,836 4,837 4,838 4,839 4,840 4,841 4,842 4,843 4,844 4,845

0 100 200 300 400 500 600

4,830 4,831 4,832 4,833 4,834 4,835 4,836 4,837 4,838 4,839 4,840 4,841 4,842 4,843 4,844 4,845

0 100 200 300 400 500 600 700 800

1 month

In practice…: BRAZ : 2000->2007

2 months

-7,8 2

3 months

-13,2 3

6 months

-6,4 6

12 months

-1,3 12

18 months

-1,0 18

24 months

-0,2 24

(16)

M2 STEP - Module "Outils et méthodes de la géodesie spatiale" - C. Vigny

31

precision of velocity determination

-20,0 -15,0 -10,0 -5,0 0,0 5,0 10,0 15,0 20,0

0 3 6 9 12 15 18 21 24 27

months

difference from trend (mm/yr)

-0,2 24

-1,0 18

-1,3 12

-0,1 11

0,0 10

-0,3 9

-1,8 8

-3,1 7

-6,4 6

-7,7 5

-9,9 4

-13,2 3

-7,8 2

18,0 1

deviation month

M2 STEP - Module "Outils et méthodes de la géodesie spatiale" - C. Vigny

32

precision of velocity determination

-20,0 -15,0 -10,0 -5,0 0,0 5,0 10,0 15,0 20,0

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 months

difference from trend (mm/yr)

(17)

M2 STEP - Module "Outils et méthodes de la géodesie spatiale" - C. Vigny

33

Velocity ellipses

34

Maintenant, que mesure-t-on

exactement avec GPS ?

(18)

M2 STEP - Module "Outils et méthodes de la géodesie spatiale" - C. Vigny

35

140” antenna

GPS antenna on tripod

Geodetic Geodetic marker marker Campagnes de répétition

M2 STEP - Module "Outils et méthodes de la géodesie spatiale" - C. Vigny

36

(19)

M2 STEP - Module "Outils et méthodes de la géodesie spatiale" - C. Vigny

37

Repeated Campaigns

38

12 m antenna

140” antenna

Stations permanentes

(20)

M2 STEP - Module "Outils et méthodes de la géodesie spatiale" - C. Vigny

39

M2 STEP - Module "Outils et méthodes de la géodesie spatiale" - C. Vigny

40

Permanent station

(21)

M2 STEP - Module "Outils et méthodes de la géodesie spatiale" - C. Vigny

41

Champ de vitesse global => ITRF

42

Au premier ordre, la géodésie sur une décennie « colle » bien avec la géologie sur 3 Ma!

=>Les plaques ont donc des déplacements stables sur ce type de durée mais…. GPS trouve Arabie, Inde et Nazca plus lentes actuellement Arabie et Inde => ralentissement

Nazca => incertitude ?

À grande échelle: les plaques

(22)

M2 STEP - Module "Outils et méthodes de la géodesie spatiale" - C. Vigny

43

l’Asie du Sud-Est, une zone compliquée

INDIA plate:

6 GPS sites

10 years of measurements only 4 cm/yr wrt GPS Eurasia even less (3.5 cm/yr) wrt Sunda SUNDA plate:

60 GPS sites

12 years of measurements independent from Eurasia and moves 1 cm/yr Eastward

BURMA platelet (or sliver):

22 GPS sites

2 years of measurements

Nor India, nor Eurasia, not even Sunda

South China ????

M2 STEP - Module "Outils et méthodes de la géodesie spatiale" - C. Vigny

44

La déformation autour des frontières de plaques

Uy = 2.V0

/

Π arctang (x

/

h)

Le concept: déformation élastique à cause du

frottement Le modèle: le flux mantellique localise la déformation sous une plaque élastique

La solution analytique:

une courbe en arctangente

(23)

M2 STEP - Module "Outils et méthodes de la géodesie spatiale" - C. Vigny

45

Arctang profiles

Uy = 2.V0

/

Π arctang (x

/

h)

46

La faille de Sagaing en Birmanie

(24)

M2 STEP - Module "Outils et méthodes de la géodesie spatiale" - C. Vigny

47

Remarques importantes (1):

z

Quand les stations sont bien à l’intérieur des plaques (loins des marges qui se déforment) GPS mesure la tectonique des plaques

z

Quand les stations sont dans les marges qui se

déforment, GPS ne mesure pas la vitesse des failles (qui est en général zéro si la faille est bloquée), mais la déformation élastique qui s’accumule en réponse au blocage. C’est au travers d’un modèle (Okada par exemple) que l’on retrouve …. La vitesse limite (càd la tectonique) et l’épaisseur élastique, mais toujours pas la vitesse de la faille, concept qui ne veut pas dire grand-chose.

M2 STEP - Module "Outils et méthodes de la géodesie spatiale" - C. Vigny

48

Le cycle sismique:

Shimazaki et Nakata, 1980 Wallace, 1987

Vitesse court terme de la faille:

~constante

~variable

(25)

M2 STEP - Module "Outils et méthodes de la géodesie spatiale" - C. Vigny

49

Remarques importantes (2):

z

La tectonique active basée sur le décalage de marqueurs de part et d’autre d’une faille ne mesure donc pas forcément non plus la « vitesse de la faille » (et donc la tectonique des plaques).

Cela dépend du nombre de cycles sismiques moyennés dans la mesure

50

Déformation intersismique aux frontières de plaques

Potentiel pour un sPotentiel pour un sééisme isme Best fit dislocation:

Best fit dislocation:

2

2 –2.5 cm/yr2.5 cm/yr N 30°N 30°--3535°° Okada

Okadabackback--slip model slip model

(26)

M2 STEP - Module "Outils et méthodes de la géodesie spatiale" - C. Vigny

51

Modeled Observed

Mesure d’un séisme: Sumatra 2004 – Mw 9.2

Mesures

de la déformation de surface

Modèle

du glissement sur la faille

M2 STEP - Module "Outils et méthodes de la géodesie spatiale" - C. Vigny

52

Great Sumatran Fault (2 cm/a)

Sumatran Trench (3 cm/a)

Australia/Sunda motion (5 cm/a)

Les Séismes de Sumatra

(27)

M2 STEP - Module "Outils et méthodes de la géodesie spatiale" - C. Vigny

53

15 m uniform slip 500 years at 3 cm/y

=

Slip deficit Future Eq slip

8+ 7 9+

9.2 8.6 8.4

Chen Ji (Caltech) slip distribution Inverted from seismic & GPS data

7.5 250

8.8 -8.9

54

Les mouvements verticaux prédits par le modèle

¾4 m de surrection

¾2 m de subsidence modèlisation du Tsunami

(28)

M2 STEP - Module "Outils et méthodes de la géodesie spatiale" - C. Vigny

55

Déformations Post-sismique

Co-seismic jumps

post-seismic decays

La relaxation visqueuse après le séisme : 1-10 cm/an !!!!

va durer des années, peut être des décennies !

M2 STEP - Module "Outils et méthodes de la géodesie spatiale" - C. Vigny

56

Thailande: Subsidence

déclenchée par le séisme de Sumatra

Les Mesures Le Modèle

- 1.5 cm/an

- 1 cm/an

(29)

M2 STEP - Module "Outils et méthodes de la géodesie spatiale" - C. Vigny

57

Les conséquences

58

Survey GPS : 32 sites cGPS : 30 sites

Chili février 2010

Déplacement des stations GPS et modèle de glissement sur la faille contraint par les mesures

(30)

M2 STEP - Module "Outils et méthodes de la géodesie spatiale" - C. Vigny

59

Concepcion Constitucion

SanJavier Colbun

SantoDomingo

M2 STEP - Module "Outils et méthodes de la géodesie spatiale" - C. Vigny

60

(31)

M2 STEP - Module "Outils et méthodes de la géodesie spatiale" - C. Vigny

61

GPS haute fréquence: 1 point par seconde => trajectoire des stations pendant le séisme. Comparaisons avec modèles théoriques

Références

Documents relatifs

Dans le cadre de cette thèse, nous développerons des ENMs pour : (i) caractériser les préférences environnementales de plusieurs espèces de copépodes

Roger nous apporterait nos armes, notre voiture et serait témoin de nos actions héroïques dans la campagne, pour ensuite en parler dans le régiment : comment les héros

Given a set of controllers, each of which is subject to a timing contract, we synthesize a dynamic scheduling policy, which guarantees that each timing contract is satisfied and

Considering that BeiDou is currently providing service for Asia-Pacific users and the orbit accuracy of BeiDou satellites, especially that of GEO, is relatively lower compared

Figure 2 shows the residual height time series for the three TAC and the combined solutions for two example stations, Figure 3 the weighted RMS values of the daily height

Immediately after the onset a magnetic field dipolarization is clearly observed by Double Star TC-1, located near the central magnetotail and subsequently, by the Cluster quartet..

The influence of uncorrelated noise and non-plane waves diminish for longer profiles, while the errors due to great-circle deviations are independent of profile length and

In this paper, we study the positioning performance of one player in the optoelectronic motion capture based on markers: Vicon system.. Our protocol includes evaluations of static