• Aucun résultat trouvé

Automatic measurement of the sinus of Valsalva by image analysis

N/A
N/A
Protected

Academic year: 2021

Partager "Automatic measurement of the sinus of Valsalva by image analysis"

Copied!
14
0
0

Texte intégral

(1)

HAL Id: hal-01577247

https://hal-univ-bourgogne.archives-ouvertes.fr/hal-01577247

Submitted on 6 Jul 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution| 4.0 International License

Automatic measurement of the sinus of Valsalva by image analysis

Fabrice Mairesse, Cédric Blanchard, Arnaud Boucher, Tadeusz Sliwa, Alain Lalande, Yvon Voisin

To cite this version:

Fabrice Mairesse, Cédric Blanchard, Arnaud Boucher, Tadeusz Sliwa, Alain Lalande, et al.. Auto-

matic measurement of the sinus of Valsalva by image analysis. Computer Methods and Programs in

Biomedicine, Elsevier, 2017, 148, pp.123-135. �10.1016/j.cmpb.2017.06.014�. �hal-01577247�

(2)

Automatic measurement of the sinus of Valsalva by image analysis

Fabrice Mairesse

a,

, Cédric Blanchard

a

, Arnaud Boucher

a

, Tadeusz Sliwa

a

, Alain Lalande

b,c

, Yvon Voisin

a

aLe2i FRE2005, CNRS, Arts et Métiers, Univ. Bourgogne Franche-Comté, av. des Plaines de l’Yonne, BP16, 89010 Auxerre Cedex, France bLe2i FRE2005, CNRS, Arts et Métiers, Univ. Bourgogne Franche-Comté, 9 av. A. Savary, BP 47870, 21078 Dijon Cedex, France

cService de Spectroscopie-RMN, CHU Dijon, 14 rue Paul Gaffarel, BP 77908, 21079 Dijon Cedex, France

BackgroundandObjectives:DespitetheimportanceofthemorphologyofthesinusofValsalvainthebe- havior ofheart valves and theproper irrigationofcoronary arteries, thestudy ofthese sinusesfrom medicalimagingisstilllimitedtomanualradiimeasurements.Thispaperaimstopresentanautomatic methodtomeasurethesinusesofValsalvaonmedicalimages,morespecificallyoncineMRIandXrayCT.

Methods: This paper introduces an enhanced method to automatically localize and extract each sinus of Valsalva edge and its relevant points. Compared to classical active contours, this new image approach enhances the edge extraction of the Sinus of Valsalva. Our process not only allows image segmentation but also a complex study of the considered region includ- ing morphological classification, metrological characterization, valve tracking and 2D modeling.

Results: The method was successfully used on single or multiplane cine MRI and aortic CT an- giographies. The localization is robust and the proposed edge extractor is more efficient than the state-of-the-art methods (average success rate for MRI examinations=84% ± 24%, average success rate for CT examinations=89% ± 11%). Moreover, deduced measurements are close to manual ones.

Conclusions: The softwareproduces accuratemeasurements ofthe sinuses ofValsalva. Therobustness and thereproducibilityofresultswillhelpforabetterunderstandingofsinusofValsalvapathologies andconstitutesafirststeptothedesignofcomplexprosthesesadaptedtoeachpatient.

1. Introduction

The sinus of Valsalva (SV) is a cavity atthe base of the aor- tic root betweenthe sinotubular junctionand the cardiac valves [1–3] (Fig.1). In a normal morphology, the SV is tricuspid: it is composed by three anatomicdilations calledcusps(Fig.2a). Each cusp isassociated withavalve. The junctionbetweentwovalves alongtheaorticwalliscalledacommissureanddefinesthelimit of each cusp. The naturalcenter ofthe SV is thelocation where valvestoucheachotherduringtheirclosureinthediastolicphase.

Between two commissures, the cusp point is determinated with farthestedgepointsfromthecenter.

BicuspidSVisthemostcommoncongenitalcardiacabnormality andaffectsthemorphologicalstructureoftheSV[4,5] (Fig.2b).It can be congenital [6]or,moreordinary, dueto the rapheoftwo anatomicleaflets.Thisleadstoonlytwofunctionalleaflets.

AnotherpathologythatcouldaffectSVwhateverthenumberof cuspsisan abnormaldilatation: ifthemaximumdiameterofthe

Corresponding author.

E-mail address: fabrice.mairesse@u-bourgogne.fr (F. Mairesse).

aortaexceedsawell-definedthreshold,anaorticrootreplacement canbe considered[7].However,aorticrootprosthesesarealmost cylindrical.Hence allradiiarealmost equal.Inthiscase,commis- suresarelocalizedviathevalveandeachcusppointisthefarthest edgepointfromthecommissuresbetweentwoofthem.

Overthe past decade,theaortic valve surgicalprocedures are onthe increase[8].When areplacement oftheaortic rootisre- quired,the shape ofthe prosthesis must be perfectly adapted to themorphologyofthepatientasitisimportantforvalveclosure andstressdistribution[9].Howevernowadaystheaorticrootmea- surementonmedicalimagesisstillsubjectiveandnotnormalized [10,11].EvenifSVdonot haveacylindricalstructure,butaretri- foliate,itsmeasurementisoftenmanuallyperformedfromasagit- tallongaxisview[12]whichisnotthemostrelevantorientation.

Moreover,thismanualmethodintroduces interandintra-observer variations.

In this paper, the study of the SV is extended to multiplane cine-MRI andstatic X-ray computedtomography in order to de- crease the influence of the choice of plane and its movements.

After a presentation of the main geometrical properties of the SV,anewgeometricalmodelisproposed.Thereforemathematical

(3)

Fig. 1. The sinus of Valsalva and surrounding organs.

Fig. 2. Location of relevant points and modeling of a tricuspid SV (a) and a bi- cuspid SV without the right coronary cusp(b) as an overlapping of ellipses. There are also two other cases for bicuspid SV depending on the missing cusp. C = cen- ter; C1,C2,C3: commissures; LC,RC,NC: Left Coronary Cusp, Right Coronary Cusp and Non Coronary Cusp.

morphologyhasbeenchosenasthemostnaturaltechniquetoap- plyontomographicimagesofSV.Thethreemainstepsofprocess- ingarethelocalizationoftheSV,theextractionofitsedgeandthe detectionofrelevantpoints.Particularly,anewmorphologicaltool, theAuroraTransform(AT),isintroducedandthenusedtoimprove theautomaticextractionofSVedgescomparedtopreviousstudies [1,13]. Theefficiency andthe reliabilityof each stepare assessed anddiscussed.

The proposed methods allowimage registration,2D modeling, valvetracking,morphologicalclassification andmetrologicalchar- acterization ofSV. Thiswork leads to a softwarededicated fora quickandreliableanalysisoftheSVandtheaorticroot.

2. Modalityanddatarendering

In medical image analysis, the modality specifications and anatomicgeometryknowledgeare crucial.Theseaspectscompose theapriori knowledge.Theyarethetoolstocompute datainin- telligentway,toobtainameaningfulcomputerassistedanalysis.

In thissection, methods andconditionsof acquisition that al- low tocorrectly examine theaortic rootand theSV are defined.

Accordingtotheselectedplanes,themaingeometrical properties oftheshapesdepictedbytheseSVarethendescribed.Afterward, ourcontributiontotheassistedlocalization, extractionandanaly- sisoftheSV ispresented,includingthedesignof pipelinescom- posedbyexistingtoolsofimageprocessingandthedefinitionofa newusefulone.

2.1.Modalityspecifications

The commonly employed techniques for aortic root examina- tionsareechography,MagneticResonanceImaging(MRI)andX-ray Computed Tomography (CT).Even if a sagittal long axis view in transthoracic echographyis oftenused [12,14], thereis no global consensus forthe measurementof aorticrootdimensions. More- over, dueto its complexity,the measurement of the SV shape is

Fig. 3. The aortic valve cross-section plane. Example from a MR image.

not reliable in thisplane. Tomographicmethods, such as CTand MRI, allow to choose one orseveral acquisition planes andBur- man andal. havealready proposed to studythe SV in an aortic valvecross-sectionplane[15](Fig.3),perpendiculartothetwoleft ventricularoutflowtractplanes.ThetrifoliateshapeoftheSVcan be studied fromthis plane, even ifthere is plane motion during cine-MRI acquisition [1]. Withsome planesparallel to the aortic valvecrosssectionplaneandcoveringthewholeaorticroot,multi- planeMRIandCTnaturallydecreasetheeffectoftheseunwanted movementsonmeasurementsandanalysisoftheSV.

2.2. Anatomicpropertiesandgeometricalmodeling

2.2.1. Anatomicpresentation

Inanaorticvalvecross-sectionplane,ifthecompletegeometry andthesizeofaSVisnotknowninadvance,some propertiesof theSVcanbelistedinordertoencloseaprioriinformationinour globalprocessing:

1. On MR images acquired with Steady-State Free-Precession (SSFP) sequences andonCT imagesafter injectionofcontrast agent,SVarequitebrightregions;

2. Theyarestardomains:thereisapointinsidetheSVsuchthat eachsegment betweentheSVedge andthispoint isincluded insidetheSV;

3. Theirsizeisinanintervalofboundedvalues.

4. Theirsizeinasliceisalmostconstantduringacardiaccycle.

5. Duringbreath-hold,respiratorymovementsandmyocardialdis- placementarereduced.

6. Consideringmulti-slicesacquisitions,thereisonlyasmallvari- ation ofaortic rootposition andsize betweentwo successive slices.Wecallthispropertythespatialredundancyoftheaor- ticroot.

These properties are always true for all performed examina- tions,whatevertheacquisitiontechniqueused.

2.2.2. Mathematicalrendering

A geometrical framework must be defined for the various shapesofSV.Incross-sectionalplanes,theSVprosthesisandaor- ticrootabovethesinotubularjunctioncanbemodelasacircleor anellipse.BicuspidandtricuspidSVcanalsobenaturallyseenas anoverlappingofellipses(Fig.2).

Anellipticalobjectisanobjectwhoseprojectioninthediscrete image plane can be assimilated to a discrete ellipse.Let ak, k∈ 1;n be the projection in theimage plane of nelliptical objects (n > 1) that constitute a simply connected shape (it consists of onepiece anddoesnothaveanyholes)E=n

k=1ak.Let||bethe cardinalnumberdefiningthenumberofpixelsinasetandlet

(4)

Table 1

Number of frames according to data types.

Min Max Mean

Cine-MRI (one plane) 19 50 30 Multi-planes cine-MRI 45 224 80

CT 22 35 27

be the morphological internal gradient [16]that provides the 8- connected edgeofa shape bykeepinginteriorpixels whichhave anexteriorpixelasneighbor.

Let E and E be two functions related to the structure of theseshapes:

Eistheparticipationofeachobjectprojectioninglobalshape edge:

k∈1;n,

E

(

ak

)

=

|∇

(

ak

)

(

E

) |

|∇

(

ak

) |

(1)

E isbetween 0and1.If thereis onlyone object,its partic- ipation is 100%,whereas ifa region isentirely overlapped or surroundedbyothers,itsparticipationisnull.

The regions superposition E can be quantified by following function:

k∈1;n,

E

(

ak

)

=

|

E

|

|

Eak

|

|

E

|

.

n

i=1

|

ai

|

|

ak

|

(2)

The first term in the equation 2 is the area where only the consideredobjectprojection(ak)ispresent,normalizedbythe globalarea.Thesecondtermisaweightinglinkedwiththesize oftheconsideredregioncompared withothers.Ahighcontri- bution meansthat a regionis almost totallydistinct fromthe others.

Thecomplexityofashapedependsonthenumberofelliptical objects thatdefine itandthechoice oftwointervalsoftolerance forEandE.

TheshapesdrawnbytheSVintheimageplanecanbeseenas astardomainandasubset ofshapescomposedbypartiallyover- lappedellipseswiththefollowingconstraints:

The eccentricity e must be in [0; 0.4] to prevent unrealistic cusps.

EandE mustbechosenintheinterval[0.25;0.66];

k ≤ 3 and for k=3,

(k)∈1;3,

(ak)∩

(E) is simply connected.Inotherwords,thethreeellipsesmakeacluster,not asequence;

Theselimitshavebeenempiricallyestimatedongroundreality andthe difference betweenthesizes ofellipses isalsoindirectly controlledbythelimitsofthesuperpositionE.

The positionofcommissures isdirectlygivenby thejunctions oftheedgeofellipsesalongtheglobaledge,i.e.theextremitiesof eachsetofedgepixels{edge(E)∩edge(ak)}.

3. Data

Thedatasetiscomposedof44singleplanecine-MRI,8multi- planecine-MRIand4AorticCTangiographies.

Asingleplane cine-MRI hasfrom19imagesto 50images(30 images onaverage) whereas a multi-plane cine-MRI hasfrom45 imagesto224images(80imagesonaverage)(Table1).Regarding themulti-planecine-MRIexaminations,oneofthemhas7planes, three have5planesandthefourothershave 3planes.Thereso- lutionofthefirstmentionedexaminationisequalto1.56 mmper pixelwhereastheresolutionoftheothersisequalto0.96 mmper pixel.

Thepreferredfileformat istheDICOMformat(DigitalImaging and Communications in Medicine) that contains unmodified im- ages (Fig.4a). However, in order to assess the robustness of our methods,oneCTexaminationsavedasDICOMandthreeCTexam- inationssavedasJPEGimages(highquality/lowcompressionrate) wereaddedto thedataset.Thesefourexaminationscontainem- beddedtextaroundtheSV(Fig.4.b).

Notemporalinformationisavailable,buttherearemanyplanes alongthe aorticroot. Thefour CTexaminations haverespectively 22,23,28and35slices.Theunavoidableradiationexposureisob- viouslythe drawbackofthistechnique, butit allowsa goodcon- trastfortheaorta.MoreoverCTprovidesabetterspatialresolution thancine-MRI.

MRI was performed on a 1.5 T magnetic resonance whole body imager (Siemens Magnetom Avanto, Siemens Medical Solu- tion,Germany)usingaphasedarraythoraciccoil.Thecine-MRim- ageswere acquiredusingabreath-hold ECG-gatedSSFP sequence coveringthewholecardiaccyclewiththefollowingacquisitionpa- rameters:

Repetitiontime(TR):1.54ms;

Echotime(TE):1.49ms;

17linespersegment;

Pulseflipangle(

α

):65degrees;

Slicethickness:5 mm;

Temporalresolution:27msperimage;

Isotropic in plane spatial resolution: from 0.7 mm per pixel to 2.0 mm per pixel, according to the patient examination (mean=1.2 mm,standarddeviation=0.4 mm);

Numberofplanes:between1and7.

Cine-MRI provides temporal information including the move- mentandthedeformationoftheSVandtheopeningandtheclos- ing of the valves. Evenwithout contrast media, the contrastbe- tweenthebloodandtissuesishigh. Ontheotherhand,temporal andspatialresolutions are limitedbythe durationof thebreath- hold.Hence, quality and quantity of images directly depends on patientcapabilities.

Aortic CT angiography was performed using a second- generationdual-source128-MDCT(DefinitionFlash,SiemensMedi- calSolutions,Erlangen,Germany),withECG-triggering.Thefollow- ingparameterswereused:

2×64×0.6mmcollimation;

0.28srotationtime;

pitchof0.25;

120 kVtubevoltage;

320mAstubecurrent-timeproduct.

Acontrastagentwasinjectedintravenouslyatarateof5 mL/s (80mLIomeron[400 mgiodine/mL],BraccoAltanaPharma,Milan, Italy).Axial cross-sectionalimage reconstructionsoftheaorticsi- nuswereperformedandanalyzedonaseparateworkstationusing amediastinalwindowinordertoselectrelevantintensities(1mm axialcross-sectional,perpendiculartothevesselcenterline,Win- dow:600–800,Level:100–200).

4. Methods

Theaimofthismethodisthesegmentation andthemeasure- mentofSV.Theproposed modelconsistsofthreeparts.The first partisthepreprocessingpartforSVlocalization.Thesecond part dealswithSVsegmentationandedgeextraction.Thelastpartaims toSVmeasurements.

Themethodsinvolvedinthefirstpartareasfollows:asafirst step,anormalizationandbinarizationaredone.Inthesecondstep, an organs segmentation is done using mathematical morphology

(5)

Fig. 4. Database image examples. a) MRI image. b) CT image with embedded text.

Fig. 5. Main steps of the extraction of bright regions. Bright pixels (a) are found and bright regions (b) are identified in each image of the examination. Finally, a correction is applied (c) in order to only preserve the regions that are visible in the previous, current and next frames.

processingandaprioriinformation.Inthethirdstep,blobtrajec- tories are computed to identify aorta root(Fig.5). In the second part,aSVedgesextractionmethodisimplemented.Thisnewpolar geodesicoperatornamedAurora Transform(AT)allows ustopre- ciselydefine SV edges despite connections withneighbor organs.

Thefinalpartdealswiththecomputeraideddiagnosisprocess.To carry out this task,severalprocesses are done: SV edge relevant pointsdetection,temporaltrackingandmeasurements.

Inthefollowing,a3D+tdatasetisconsidered.WenoteIz(k)as theframenumberkintheslicenumberz.

4.1.SVlocalization

Sincetheoperatorsofmathematicalmorphologydirectlyrelate toshape,theyareeasy-to-useandefficientforimagesegmentation [17–19].Sincethebody globallydoesnotmove duringtheexam- ination,theareaAz locatingthe interiorofthebody ineachslice canbe deducedfromonlythe firstimage Iz(1).LetBR1 bea disk whoseradius is coherentwiththe commonmean body size and BR2be adiskwitharadiusclosetothemeanthicknessofthefat aroundthebody.Azisdefinedasfollowed:

Az=

γ ( ϕ (

Tc

(

Iz

(

1

))

,BR1

)

,BR2

)

(3)

where

γ

isthemorphologicalopeningand

ϕ

isthemorphological closing.Themorphologicalclosingfillsdarkorgansinsidethebody whiletheopeningerasessuperficialfatsignals.

4.1.1. Organsextraction

Considering acquisition conditions, the aortic root appears as anhyperintenseregion.Inordertoprevent theinfluenceofsmall hyperintense regions which can appear in some cases, each im- ageIz(k)isnormalizedbetween0and1underthefollowingcon- straint:High valuesare clippeduntil thenumberof pixelsset to 1 issignificant (for instance, greater than 0.2%of the numberof pixels in the image |Iz(k)|). This normalization is notedc, with c thepercentageofpixels setto1.Consideringthat pixelswitha valuehigherthan30%ofthemaximumintensityafterthenormal- izationare brightpixels,we alsointroduced Tc,the binaryimage thatindicateswhichpixelsofthenormalizationarebright.

Foreachimageframe,brightpixelsinsidethebody(Fig.5a)are consequentlygivenby:

A1z

(

k

)

=Tc

(

Iz

(

k

)

Az

)

(4) where ◦ depicts the Hadamard product of two matrices. Ac- cording to the first general property of the SV (enumerated in Section2.2.1),SVaremostlycomposedofbrightpixels.Inorderto verifythe second andthethird properties,the imagesA1z(k) are then regularized. Holesare filled by geodesic reconstruction, ele- mentswhichareclosetoeachother aremergedbyclosing,small elementsareerasedbyopening:

A2z

(

k

)

=

γ ( ϕ (

H

(

A1z

(

k

))

,BR3

)

,BR4

)

(5) with BR3 andBR4 two disks coherent with the common sizesof theSV. Inorderto keepexact shapes, A2z(k) isthen geodesically reconstructed inside A1z(k) and a dilation by a small structuring elementBR5guaranteesthattheSVareentirelyinsidethisnewset (Fig.5b):

A3z

(

k

)

=

γ

REC

(

A1z

(

k

)

,A2z

(

k

)

A1z

)

BR5 (6) Finally, considering the fourthand the fifth properties of the SV,aconstraintoftemporalcoherence canbe applied.LetBR6 be asmallstructuringelementwhichsimulatesacceptablemovement andgrowing.Eachbrightregionofthecurrentframemustbein- cludedinsidethedilatedbrightregionofthepreviousandthenext frame:

A4z

(

k

)

=

(

A3z

(

k−1

)

BR6

)

A3z

(

k

)

(

A3z

(

k+1

)

BR6

)

(7) Forthefirst(respectivelythelast)frame,onlytheexistingnext(re- spectivelyprevious)frameisconsidered.Thisfinalsetrepresenting brightregionsincludingtheSVortheaorticroot(Fig.5c).

(6)

Fig. 6. Localization of bright regions. a) Main edges inside the area depicted in Fig. 5 d. b) Distance transform on main edges. c) Local maxima in b). d) Detected trajectories.

The bottom left point in c) is eliminated. This point is not inside any trajectory since it is missing in most frames.

4.1.2. Trajectories

EvenifeachorganisnotseparatelyidentifiedinA4z(k),apoint per regioncanbeestimatedinordertotrackeachregion.SVand aorticrootarestardomainswhoseassociateddetectedpointswill beneartotheircenter.

Firstlymain edgesaredetected insidethebrightregionsusing thecentereddifferencesapproximatinggradient

(c(I)):

A5z

(

k

)

=Tc

( |∇ (

c

(

Iz

(

k

))) |

A4z

(

k

))

(8) Inordertoreducetheartifactofnoiseandbloodflowthatcan induceisolated irrelevantsmalledges,edges areerodedby aunit diskandgeodesicallyreconstructed(Fig.6a):

A6z

(

k

)

=

γ

REC

(

A5z

(

k

)

B1,A5z

(

k

))

(9) Inordertofindthepointsthatarelocallythefarthestfromthe edgesinsidethebrightregions,theEuclideandistancetransform

δ

[20]is then computed (Fig.6b):

A7z

(

k

)

=

δ (

A6z

(

k

))

A4z

(

k

))

(10) Farthestpointsarethosehavingalocalmaximumintensityin- sideA7z(k)(Fig.6c).From thesemaxima,atrajectory perregionis defined. Thetrajectoryofaregionisasetcomposedofonepoint located inside the region per frame. Closest pointsfrom a frame tothenextoneareaggregatedinsidethesametrajectory(Fig.6d).

Then,abnormaltrajectories(containingaberrantormissingpoints) arefilledbybarycentersofthetwotemporallyclosestpoints.Con- sideringthedistancebetweeneachpointandthebarycenterofthe trajectory, someaberrantpointsare detectedusingtheusualcen- teredconfidenceintervalofsixstandarddeviations.

If the distance between trajectories is less than 30mm [21], only one is retained. Natural and not noisy trajectories i.e. less correctedonesarefavored.Ifnot,the moststableoneisretained usingthestandard deviationofdistancesbetweenpointsandthe barycenter. If3D spatial informationis available, trajectories rel- evancy is increasedby selecting similar trajectories over distinct 2D planes.Iftherearemorethanone trajectoryattheendofthe automatic process, the only one which is inside the SV is man- ually selected.A square RegionOf Interest (ROI) centeredon the selectedtrajectoryallows totrackit.TheROIsizeisautomatically set to 80mm [22] in orderto completely includethe aortic root andtheSVoneachframe.

4.2. Polargeodesicreconstructionandauroratransform

Anewapproach,basedonapolargeodesicreconstruction and aspecifictransform,isproposed.Theextractionofstardomainsis thensimplified,particularlyincaseofconnectedorganedges.

4.2.1. Theory

Thegrayscalegeodesicreconstructionallowsonetorecoversan area fromamarker[23,24].The reconstruction

γ

REC offunction f fromgisthesupremumofthegeodesicdilationsofginsidef:

γ

REC

(

f,g

)

=Sup

{

In f

(

gBr,f

)

,r>0

}

(11)

On a binary image I, holes of shapes can be filled, whatever theirsizes,byconsideringthegeodesicreconstructionoftheimage borderinsidethesetofblackpixels.ThisoperationisnotedH(I).

LetI be a square grayscale image of size 2s+1 that contains asimplyconnectedshape I0 surroundingp0,thecenterofI.LetI be the set ofpixels onthe border of I. Since I isa square, each borderpixel is atthe samedistance fromthe centerconsidering theChebyshevdistance(

pI,

|

pp0

|

=s+1).

Inthis discrete set,I0 is calleda stardomain accordingto p0 ifall line segments of [25] fromp0 to each pixel ofthe edge of I0 are completelyinside I0.Thismeans thatincentered polarco- ordinates,the edgefunctionof theshapeiswell-defined andcan be continuously described (in terms of pixelconnectivity). Using thispostulate, a new transformand a new reconstruction based on geodesic reconstruction are proposed in order to more easily andmore preciselydetect the edge ofcentered star domains in- sidegrayscaleimages.

Theclassicalgeodesicdilationsandreconstructionareisotropic.

Hence intensities spread in all the directions (Fig.7b). To correct thispoint,aspreadthatisonlyradialisbuilt,fromp0toeachpixel ofI. For this purpose, Bresenham’s line algorithm extracts seg- mentsineachdirection.ThisconstitutesthelinearsetsL(p)ofradii linkedtoeachpixelpoftheborderItothecenterp0.Itdoesnot avoidredundancybutensures thatallpixelsofIare usedatleast once.Italsodoesnotexactlyprovideaconstantangularresolution butitisvery simpleandavoidsapproximation andinterpolation.

Moreover,eachradiushasthesamesize:

pI,

|

L(p)

|

=s+1. Ageodesic reconstruction isseparately performedon each set L(p) from the shared core p0. All results are then juxtaposed to constitute a two-dimensional matrix where the abscissa corre- spondstothedirectionandtheordinatecorrespondstotheradius (thisisalmosta(r,

θ

)planeasfoundinthetransformproposedby RadonandParks[26]). Onimagescontaininga centered stardo- mainandsurroundingshapes, thispolartransformseems likean auroraborealis (Fig.7d). Hence,wecalledittheAuroraTransform (AT)andisnotedŴ(I)whereIisanimage.

Tocompletethistransform, aCartesianrepresentationofATis doneandisnamedthepolargeodesicreconstructionasopposedto theclassicgeodesicreconstruction(Fig.7c).Weseethatthespread ofintensitiesisrestrictedtobeamdirectionsandthereforeismore limitedthanwiththeclassicgeodesicreconstruction(Fig.7b).

4.2.2. Edgeextraction

Afirstapproach,proposed byBlanchardetal.[1]allowsa reli- ablemeasurementoftheSVusingcine-MRI,especiallyforthedi- agnosisof SV dilations [13]. However when same densityorgans areconnectedtoSV,someSVedgescannot becorrectlyfound.In orderto enhancethe quality ofthe detectionandwork onstatic examinations,anewmorphologicalmethodcalledAuroraEdgeEx- tractor(AEE)waselaboratedandispresentedhere.Usingthever- ticalcomponentofthecenteredgradientoftheAuroraTransform (Fig.8c), SV edges can be more precisely detected (Fig.8b) from MRIsequencesandalsoonstaticviewslikeinCT.Inthenextsec- tions,we explainhow dynamicexaminations are registeredtobe

(7)

Fig. 7. Polar geodesic reconstruction and Aurora transform. a) Initial MR-image containing a centered SV. b) Geodesic reconstruction from the center. c) Polar geodesic reconstruction. d)Aurora transform Ŵ( I ).

Fig. 8. Edge extraction using the Aurora transform. a) Initial image I kcentered on a SV. b) Continuous edge found. c) Vertical gradient of the Aurora transform yŴ(I k).

inthesameplacefromoneimage toanotherandhowtheradial edgeoftheSVisextracted.

Consideringa singleimage Ikfromasequence I1,...,In ofROI centeredon the SV, let

Ŵy(Ik) be the verticalcomponent of the centeredgradient of theAurora transform. Main radial edges are soughtin

Ŵy(Ik).Highestintensitiesareemployedasinitialmark- ers. From each marker a complete path(without interruption) is drawnbyseekingthehighestintensityintheleftandintheright around the path under construction. If there is no high inten- sityanymore, i.e.ifthe pathfallsin anhomogeneous region, the edgeis sought inthe polarrepresentationofthe initial image. A path ends when there is no longer an edge in its neighborhood in

Ŵy(Ik).Theimage containingthedrawingofall pathsisnoted

ε

1(Ik). After selection of the morecontrasted complete path, the inverseof

ε

1 transformgivesthelocationofmain radialedges in theinitialimage.

4.2.3. Imageregistrationindynamicexaminations

Using thenumberofedgepixelsthat matchbetweentwo im- agesasacriteriontomaximize,imagesofthewholeexamination canberegistered andnewROI I1R,. . .,IRn areextractedsothat the SVis motionless inside them. The registrationis dynamically as- sessed by building a video from these ROI. Its efficiency is also highlighted by building three images before and after the reg- istration: they respectively contain the minimum, the mean and themaximumintensitiesineach locationon thewholesequence (Fig.9).

Fig. 9. Visual assessment of the registration. Minimum (a), mean (b) and maximum (c) intensities on a whole sequence before registration. Minimum (d), mean (e) and maximum (f) intensities after registration.

The verticalgradient canthen be maskedby aregion encom- passingthemainradialedgesofthesequence:

2y

(

IRk

)

=

1y

(

IRk

)

Tc

p=1

n

ε

1

(

IRp

)

B5

,

k∈[1,n] (12)

(8)

Hence verticalgradients that arenot relevantare setto zeroand donotinfluencethedetectionofSVedge.

4.2.4. Maincyclicradialedge

TheSVcontourcontainedinanimageisdefinedastheinverse transform ofthe main cyclicpath foundin the Aurora transform (using

1y(Ik)or

2y(IRk)ifthereisregistration).

Main radial edges are determinedin thesame wayasforthe previous step, drawing paths from highest intensities in

1y(Ik). Then acyclicpathis builtbyselectingbest candidatesamongall pathsfoundandcompletedifnecessary:

Foreachabscissain

1y(Ik),ifoneandonlyonepixel belongs toapath,thispositionisretainedastheedgeoftheSVforthis abscissa.

Otherwise, ifthere is an interval ofabscissae having none or more thanone path, the two extremities of SVedges already foundaroundtheintervalarelinkedbythebestgeodesicpath thatcanbefound.

4.2.5. Spatialandtemporalcorrections

Finally each detection is corrected accordingto temporal (re- spectivelyspatial)stabilityaccordingtothefourth(respectivelythe sixth)propertyinSection2.2.1.

Indeed,in image sequences,the shape drawnby the SVis al- most constant.Hence aberrant radii are identified by computing, on thewhole cardiaccycle, themean andthestandard deviation of all the radii foreach direction. Theyare then replaced by the barycenterofthetwoclosestreliableradii.

Inmulti-sliceexaminations, thedifferenceoftheSVshapebe- tween twosuccessivesliceisverylimited. Hence theedgeofthe SVshapeSzatagivenlevelmustbeincludedintheneighborhood oftheSVedgeofneighborlevels:

(

Sz

)

((

Sz−1BRSz+1BR

)

(

Sz−1BRSz+1BR

))

(13) SVshapesare correctedaccordingtothisconstraintinCTexami- nationsandmultiplanecine-MRI.

4.3. Extractionofshapeandrelevantpoints

Inordertoreducetheeffectofdigitizationonthestudyofthe SV shape,the resolutionofSV shapesisfirstly multipliedbyfive withoutinterpolation.Thereisnospatialshiftduringtheincreas- ingoftheresolution.Tocompensateforthebiasintroducedbythe pixel spacinginthe initialresolution, an erosionisapplied. Thus thefinalSVshapeSz(k)isgivenbythefollowingequation:

Sz

(

k

)

=

( ϕ ( γ ( χ (

Sz

(

k

)

,5

)

,B5

)

,B5

))

B5 (14) with

χ

(I,m),thenearest-neighborinterpolationofIthatincreases theresolutionbyafactorm.Therelevantpointsextractionisbased onthegeometricalproprietyofthisshape.

4.3.1. CenteroftheSV

Consideringthepositions ofmaximainthe Euclideandistance transformofSz(k),theSVcenteristheisobarycenteroftheselo- cations.Thisisthesameprincipleasintheautomatic localization oftheSVwiththeexceptionthattheedgeoftheaorticrootisnow well-defined.

4.3.2. Localextremainpolaredgestudy

Firstly,localextremeradiiaresoughtalongtheedgeofeachSV shape. Cusppoint candidates areedge pixels wherethe radiusis maximumwhereascommissuresareedgepixelswheretheradius is minimum.Sinceeach cusp hasonlyone cusp point andisde- limitedbytwocommissures,twopointsofasametypecannotbe

closetoeachother.TheradiusReqofadiskofsameareaastheSV region definesthe minimumdistance betweentwo pointsof the sametype. Thisconstraintandthe temporalorspatialcoherence allowtoreliablylocatecommissuresandcusppoints.

4.4.Measurementsection

Today,the maximum diameter in SV is employed to evaluate theSVdilations.Nevertheless,someothermeasurementscouldbe useful.Accordingtothemeannumberofcommissures,SVcanbe morphologicallyclassifiedasabicuspidvalveoratricuspidvalve.

Thisclassificationisnotalwayssimilartothefunctionalclassifica- tionofSV[27],sincethestudyoftheSVdoesnotincludethede- tectionofraphebetweenvalves.Withaknowledgeoftheposition of SV center, commissures andcusps points (Fig.2), our method canprovidethefollowingmeasurements:

distancebetweentwocommissures;

distancebetweenacuspandtheoppositecommissure(fortri- cuspid);

distancebetweenacuspandthetwocommissuresforbicuspid cases;

distancebetweentwocusps;

distancebetweenthecenterandacusp.

OurmethodcanbesuccessfullyusedtodetectSVdilation[13]. These measures based on relevant pointscould have more mor- phologicalmeaningthanamaximumarbitraryradiusinourmind.

Thedistancebetweena cuspandthecenter oftheSVcould also beagoodgeneralmeasureforSVdilationdiagnosis,whateverthe morphology ofthe SV, especially when the dilationis located in onlyonecusp.

4.4.1. Detectionofthephaseofthecardiaccycle

Using the position ofcommissures andcenter in each image, the binarypredominanceof beinga diastolic or a systolicimage canbeestimatedfortricuspidcases.

ARegionOfInterest(ROI)forthisclassificationisdefinedasa geodesic dilationofthe commissure filled triangle(Fig.10). Thus, theROIcompletelyencompassesthearea ofvalveopening.After- wards,thisROIissegmentedtwiceinordertodefinepositiveand negativeregions fordiastolicandsystolic phases(finalregions in Fig.10).

ThesystolicpositiveregionS+ isdefinedasageodesicdilation ofthesegmentsthatconnectcommissuresinsidetheROIwhereas thediastolic positiveregion D+ is builtby performing ageodesic dilationofthesegmentsbetweencommissuresandthecenter.The respective negative regions (S and D) are simply the relative complementofpositiveregionswithrespecttotheROI.

Thearithmeticmeanm(R,I)thatprovidestheaverageintensity valueofaregionRinsideanimageIallowstobuildadiastolecri- terionTandasystolecriterionT.Weproposetocomputethem usingthefollowingformulae:

T

(

I

)

=m

(

D+,I

)

m

(

D,I

)

2 (15)

T

(

I

)

=m

(

S+,I

)

m

(

S,I

)

2 (16)

Themean ofthe negativeregion isalways divided by twoin or- der to promotethe real contours ofthe valves instead ofpoten- tialnoiseinducedbybloodflow.Themaximumofthetwocriteria givesthephaseofthestudiedimage.

4.4.2. Valvepost-processforassistedvisualization

Avalvetrackingcouldbeusefulforthemedicalpractitioner.For example,thecorrect valvesclosingandopening canbe detected.

(9)

Fig. 10. Diagram of morphological steps used to build diastolic and systolic positive and negative regions.

Fig. 11. Detection of valves boundaries using opened snakes. The ten images are from the same cine-MRI examination.

FollowingthecentralSVregionevolutionduringthecardiaccycle, amutualvalvesedgeduringsystole(respectivelyalow maximum openarea)couldindicatearaphe(respectively anaorticstenosis).

Sopreciseedgesofvalvesareneeded.Tofindthem,anopenactive contoursisused(snakesaspresentedbyAminietal.[28]).Theini- tializationisdoneby consideringsegmentsbetweencommissures (respectivelysegments thatlink commissures andthe center) for imagesof a systolic phase (respectively a diastolic phase). When theminimizationends,eachsnakeisclosetovalveboundariesdue tothegrayscalehomogeneityineachvalve(Fig.11).

5. Results

The experiments were done inMatlabon a dualcore 2.4GHz and3GoRAM PC. Thepresentation ofresultsfocuses ontwo as- pects.Thefirstsectiondealswiththeaccuracyofthemethodsand thesecondoneiscenteredonprocessingtimeconsiderations.

Thestatisticalvaluesoftheprocessingtime,thenumberofor- gansfound,thenumberofpointslocalizedinsidetheSVarepro- vided.Moreover,we alsoexplaininwhichconditionsourmethod

Table 2

Numerical results of the automatic localization of bright or- gans in our whole data set. For each type of data, the num- ber of success, the mean and the standard deviation (SD) are given.

Success (Y/N) Mean SD Cine-MRI (one plane) 42 / 2 0.95 0.21 Multi-planes cine-MRI 7 / 1 0.88 0.35

CT 4 / 0 1.00 0.00

fails andhighlight the difficult cases forwhich our method was successful.

5.1. Accuracy

Theautomaticlocalizationisprocessedonallpatientexamina- tions.Foreachexamination,theresultisasetofseedslocatedin brightorgansoneachframe.Astheprocessdefinesseedtrajecto- ries,all seeds are presentin eachimage ofthe sequence.In case ofseveraltrajectoriesi.e.severalbrightorgansdetected(Fig.12the medicalpractitionerselectstheSVseedbyclickingonthecorrect seed. So, to consider a successful SV localization, only one seed mustbelocatedintheSV.Thatistosaythatifthereisnoseedor morethanoneseedintheSV,theprocessisafailure(Fig.6d)and amanuallocalizationmustbedone.

The robustnessof thelocalization is assessed by testingit on somedifficultcases.Exceptforthreesequences,thelocalizationis alwayscorrect,especiallywithCTexamsandevenwiththosethat aresavedasJPEGimagescontainingembeddedtextaroundtheSV.

Thesuccessrateisequalto95%forsingleplanecine-MRI,88%

formultiplanescine-MRIand100%forCT.Numericalresultsofthe automaticlocalizationoftheSVaregiveninTable2.

(10)

Fig. 12. Frequency histogram of seeds number. Gray color indicates a success and black color a failure.

Theedgeextractionisthemostimportantstepofthestudy.The resultsofAEEarecomparedwiththeBinarizationoftheGeodesic Reconstruction (BGR) [1] and the three state-of-the-art methods basedonactive contours:thePoissonInverseGradient(PIG)[29], an active contourby Reaction–Diffusion Network(RDN)[30] and theRegionScalableFitting(RSF)[31].Inordertobeefficient,these methods needs to be parametrized. So, correct parameters have been empiricallychosen foreach method onthe whole dataset.

ThePIGmethodisaGradientVectorFlow(GVF)[32]whoseexter- nal force isthe Vector Field Convolution(VFC) [33].The Poisson Inverse Gradient is used to initialize the VFC. The RDN method is based on the propagation of topological waves. It provides a grayscalepicturewhereeachgraylevelcorrespondstoadifferent contour which represents the object viewed at a different scale.

This image isthen thresholded on aconstant scale to obtainthe desired contour. The RSF method proposes a region-based active contour. Foreach side ofthe contour,a function is definedtofit image intensity. The energy of each region depends on the lo- cal difference betweenthe image and the fittingfunctions. After addingacommonsmoothingconditionbypenalizingthelengthof thecontour,theenergyfunctionisminimizedbyastandardgradi- entdescentonalevelsetformulationmakingtheevolutionofthe contour.Thisactivecontourisabletocopewithintensityinhomo- geneitywhichisoftenpresentinmedicalimaging.

Eachframeisprocessedbythefivedetectorsmethodsandgives fiveedgestoevaluate.Theresulting6200edgesarethenrandomly mixed in order to perform a blind evaluation by three experts.

Separately,theexpertsassessedeachedgeinabinarymanner.An edgeisconsideredascorrectifthemaximumdistancebetweenit andtheexperttrueedge doesnot exceedtwo pixels.From these 18,600 results, an success rate, defined asthe ratio betweenthe

Table 3

Comparison between the percentages of success of edge extrac- tor based on geodesic reconstruction and recent active contours (expressed in percent according to the number of images in each examination). Since BGR needs temporal information to be com- puted, this method is not used on CT examinations.

Min (Frequency) Max Mean SD

Cine-MRI PIG 7 (1) 100 54 27

RDN 0 (7) 94 39 26

RSF 0 (5) 100 57 27

BGR 0 (4) 100 77 26

AEE 0 (4) 100 84 24

CT PIG 55 (1) 86 65 12

RDN 0 (5) 77 23 29

RSF 7 (1) 100 57 30

BGR

AEE 57 (1) 100 89 11

numberofcorrectedgesandthenumberofexaminedones,isde- ducedforeachdetector,examinationandexpert.Foreachdetector, theminimum,themaximum,themeanandthestandarddeviation (SD)of the success rate by examination andexpert are given in Table3.Anaveragesuccessratebydetectorandexaminationover thethreeexpertsisgivenasaboxplotinFig.13.Anhistogramof successratedistributiononMRIdataisgiveninFig.14.

Forinstance oncine-MRI sequences, the active contours aver- agesuccessratesarebetween39%and57%.Thesemethodsarefar fromsuccessfulevery time. For the developedmethods, the BGR succeedsin 77%of imageson average.The useofthe AEE based onATfurtherincreasestheefficiencyandtherobustnessoftheSV edgeextraction(84%±24%). TheAEEisalsothe bestmethodon CTexaminations(89%±11%)(Table3).

(11)

Fig. 13. Graphical comparison between the percentages of success of edge extractors on IRM (a) and CT (b).

Fig. 14. Frequency histogram of edge extractor methods by mean success rate on MRI data.

Considering the relevant points extraction and measurement, results were obtained using the most successful edge extractor:

AEEmethod.Tocomparewithprevious work[1],resultswiththe BGRextractorareshown. Moreover,thesemethods areautomatic anddo not need anyparametrization foreach new examination.

Evenifactivecontoursareoftenusedtosegmentmedicalimages, theirlimitsareobviouswhentheparametersofthesegmentation mustnotbechangedfromoneexaminationtoanotherorfromone imagetoanother.SomeexamplesofAEEresultsfromCTexamina- tionscanbeshownonFig.15.Thecomparisonisperformedwitha linearregressionanalysisandthemethodproposed byBland and Altman[34](Fig.16).

5.2. Processingtimeconsiderations

The localizationprocessing time is between7s and 2min ac- cording to the resolution,the size and the number ofimages in theexamination.Thistimeisacceptable toamedicalpractitioner forastudyofapatientexamination.Moreover,theprocessingtime canbeeasilyreducedwithanotherimplementation(inClanguage forinstance) ona morepowerfulcomputer.The statisticalvalues ofprocessingtimearegiveninTable4.

The edge extractionprocessingtime is shownin Table5.RDN method is the most time-consuming edge extractor. As the un- derlying FitzHugh–Nagumo equation is related to physic propa- gation, it needs a specific electronic implementation [30] to be

(12)

Fig. 15. Some results of AEE from the CT examinations at different levels of the aortic root. Initial ROI are shown on the top and detected edges are drawn at the bottom. (a) Beginning of the ascending aorta (b) Aortic valve cross-section plane (c) and (d) Low levels of the aortic root, under the aortic valve cross-section plane.

Table 4

Computation time (in seconds) of the automatic localization of bright organs in our whole data set. The minimum, the maxi- mum, the mean and the standard deviation (SD) of these val- ues are given.

Min Max Mean SD

Cine-MRI (one plane) 07 86 42 30

Multi-planes cine-MRI 78 124 95 19

CT 34 70 49 17

Table 5

Comparison between the speed of edge extractor based on geodesic reconstruction and recent active contours (ex- pressed in second per slice for cine-MRI and in second per examination for CT).

Min Max Mean SD

Cine-MRI PIG 2.3 14.8 7.9 4.1

RDN 25.1 3186.7 889.7 919.7

RSF 17.3 137.7 66.1 39.2

BGR 0.4 27.6 5.2 5.8

AEE 12.5 96.6 45.7 27.3

CT PIG 5.5 21.2 10.0 7.5

RDN 46.8 604.1 251.6 306.6

RSF 46.7 200.7 91.7 73.4

BGR – – – –

AEE 14.2 75.9 33.0 29.0

time-efficient but, asit is,itcannot be usedunderdecent condi- tions fora medicalpractitioner. BGR[1]andPIG processingtime areclose.Atmost,theytakelessthan30s.Theaverageprocessing time ofRSF iscloseto oneminuteandthe one ofAEE isalmost equal to45s forcine-MRI sequences. Onthedata-set, thesepro- cessingtimesareacceptableinmedicalpractice.

Fig. 17. An artifact and a disease that can affect the correct automatic localization of the SV. a) There is aliasing, mainly at the top of the picture. b) Due to the pres- ence of calcification in an aortic stenosis, valve boundaries are too important and there is a hyperintensity inside the opening of it.

6. Discussion

Considering localization results (Table2), the method fails on threeoverfortyfourexaminations.Inthefirstproblematicexam- ination(Fig.17a), thereisanaliasing artifact(aspecificartifact in MRI). Even if there is no overlapping near the SV, the proposed normalizationofthesignalatthebeginningofthelocalizationstep isnotrelevantandtheprocessfails.Nevertheless,ithasbeenveri- fiedthattheissuecanbesolvedbynormalizingtheimageaccord- ing to the maximumintensity that is not located in the aliasing area.Therearesomeotherexaminationsinthedatasetwithalias- ing,butitsinfluenceis lowerandthelocalizationsucceedswith- outmodifying theprocess.Thetwo othersequences (Fig.17b) fail duetothepresence ofcalcifications. Indeed,valve boundariesare simultaneously toodarkand toothick. Moreover, there isan hy- perintensityinsidethetrianglemadeby thevalve openingwhich isprobablyduetoimportantbloodflowasaconsequenceofaor- ticstenosis.There is currentlynosolution forthiscasesince the methodconsiderseachcusp asauniquebrightorgan.However,a manualSVlocalizationbyclickispossibletocontinuetheprocess butcanimplyuser-dependentresults.Asitis,themethoddetects brightorgans.Thisleadstoaninteractionfromthemedicalpracti- tionertoselecttheSVamongallseeds.Iftheintegrationofapriori informationcould reduce the numberofseeds even a unique SV seed.The useofphase contrastIRM alsogivesinteresting results onaortaautomaticlocalization[35].

Thestudyofthe edgeextraction resultsisambiguous.On the opposite of BGR andAEE methods, the active contours methods needaparametrizationanditinfluencesresults[36].Anapproach isto automaticallyfound it thanksto a model[37] butitcannot managehighvariations.So,withoutanexaminationdependentpa- rameters,the extractededges quality canstrongly vary. Although theAEEmethodfurnishesbetterresults,itisdifficulttoconclude on accuracy. However, the AEE method gives, in mean, good re- sults.Thecriticalpointoftheextractionistoobtain,atleast,one

Fig. 16. Linear regression and Bland and Altman analysis results for comparison between automatic and manual measurements.

(13)

Table 6

Comparison of measurement precision deduced from manual lo- cations of relevant points, a detection based on the BGR (need cine-data) and the detection based on the AEE (minimum, max- imum, mean and standard deviation (SD) of the differences with this reference in millimeter).

Min Max Mean SD

Cine-MRI Inter-observer −6.0 5.2 0.7 1.9 BGR −8.5 7.5 −0.2 2.3

AEE −5 5 0.4 1.8

CT Inter-observer −5.5 3 0.1 1.3

BGR

AEE −3 2 0.1 1.3

correctedgetogetmeasurements.ConsideringTable3,fourexam- inationsevaluatedbyoneexpertdonotreturnacorrectedgewith theAEEextractor. Infact,themeansuccess rate(Fig.14) isnever equaltozeroforAEE extractorforthe threeexpertsatthe same time.OnlytheRDNandBGRfail,respectively,ontwoandoneex- aminations.Thispointsatthevariabilityoftheexpertsvalidation.

Once therelevantpointsobtainedfroman edge [1], themea- surements can be deduced (Fig.2). The measurements from the two morphological edge extractors are close to manual mea- surements (Table6). Particularly, there is an excellent agree- ment between the method proposed in this paper and the manual measurement used as the reference for both cine-MRI (difference=0.4±1.8mm) andCT examinations (difference=0.1± 1.3 mm).Indeed,thereisnobiasnordispersion,whatevertheac- quisitiontechniqueused.Onthewholedataset,thereisacorrela- tionofr=0.96withy=1.03x+0.92.

7. Conclusions

In thispaperwe proposenewmathematicalmorphology tools inorder to segment star domains. The Aurora Transform is here appliedtoautomate thestudyofSV fromcine-MRIandstaticCT examinations.Afteradescriptionofthemainmorphologicalprop- ertiesofSV,acompletemethodisproposed inorderto automat- ically localizeSV and extract its edge and relevant points. Dura- tions,efficiencyandrobustnessofourprocess allows touseit in medicalpractice.The localizationisrepeatable androbust onthe wholedataset.Theextractionismoreefficientthanotherstate-of- the-artmethods.Comparedwithclassical active contours, theAT methodenhances thefully automatic edge extraction ofstar do- mainssuchaSV.Moreover,theaccuracyofdeducedmeasurements betweenrelevantpointsaresimilartomanual measurements.Im- plementedinadedicatedsoftware,thepresentedtoolswillbeuse- fulforthefollowupofthepatientsandthesurgeryoftheaortic root.Forinstance,itwillhelpsurgeons tomonitorbicuspidSVor diagnoseSVdilationandvalvediseases.Moreover,themulti-plane extractionofaorticrootedgeswillalsoeventuallyallowtodesign prosthesesadaptedtoeachpatient inordertoimprovestress dis- tributionandpreservevalves.

Acknowledgment

ManythankstoDrPaul M.Walkerforhisprecioushelpinthe redaction of thisarticle, Dr Romaric Loffroy forCT examinations andPr Olivier Bouchot for his help, his expertiseand his medi- calknowledge. Theauthors wouldalsolike tothankthe regional council of Burgundy and the city of Auxerre for supporting this work.

References

[1] C. Blanchard , A. Lalande , T. Sliwa , O. Bouchot , Y. Voisin , Automatic evaluation of the valsalva sinuses from cine-mri, Magn. Reson. Mater. Phys. Biol. Med. 24 (6) (2011) 359–370 .

[2] P. Angelini , Normal and anomalous coronary arteries: definitions and classifi- cation, Am. Heart J. 117 (2) (1989) 418–434 .

[3] M. Underwood , G. El Khoury , D. Deronck , D. Glineur , R. Dion , The aortic root:

structure, function, and surgical reconstruction, Heart 83 (4) (20 0 0) 376 . [4] M. Peterson , R. Roach , J. Edwards , Types of aortic stenosis in surgically re-

moved valves, Arch. Pathol. Lab. Med. 109 (9) (1985) 829 .

[5] H. Sievert , S. Qureshi , N. Wilson , Z. Hijazi , Interventions in Structural, Valvular and Congenital Heart Disease, CRC Press, 2015 .

[6] R. Erbel , V. Aboyans , C. Boileau , E. Bossone , R.D. Bartolomeo , H. Eggebrecht , A. Evangelista , V. Falk , H. Frank , O. Gaemperli , M. Grabenwger , A. Haverich , B. Iung , A.J. Manolis , F. Meijboom , C.A. Nienaber , M. Roffi, H. Rousseau , U. Sechtem , P.A. Sirnes , R.S. von Allmen , C.J. Vrints , 2014 Esc guidelines on the diagnosis and treatment of aortic diseases, Eur. Heart J. 35 (2014) 2873–2926 . [7] H. Patel , G. Deeb , Ascending and arch aorta: pathology, natural history, and

treatment, Circulation 118 (2) (2008) 188 .

[8] J. Albes , U. Stock , M. Hartrumpf , Restitution of the aortic valve: what is new, what is proven, and what is obsolete? Ann. Thorac. Surg. 80 (4) (2005) 1540–1549 .

[9] K. Kunzelman , K. Grande , T. David , R. Cochran , E. Verrier , Aortic root and valve relationships: impact on surgical repair, J. Thorac. Cardiovasc. Surg. 107 (1) (1994) 162 .

[10] J.F. Tsang , M. Lytwyn , A. Farag , M. Zeglinski , K. Wallace , M. daSilva , S. Bohonis , J.R. Walker , J.W. Tam , J. Strzelczyk , D.S. Jassal , Multimodality imaging of aortic dimensions: comparison of transthoracic echocardiography with multidetector row computed tomography, Echocardiography 29 (6) (2012) 735–741 . [11] F. Mongeon , F. Marcotte , D. Terrone , Multimodality noninvasive imaging of

thoracic aortic aneurysms: time to standardize? Can. J. Cardiol. 32 (1) (2016) 48–59 .

[12] M. Roman , R. Devereux , R. Kramer-Fox , J. O’Loughlin , Two-dimensional echocardiographic aortic root dimensions in normal children and adults, Am.

J. Cardiol. 64 (8) (1989) 507–512 .

[13] C. Blanchard , T. Sliwa , A. Lalande , E. Steinmetz , P. Mohan , O. Bouchot , Y. Voisin , Automatic evaluation of the sinus of valsalva from cine-mri in patients with dilated aortic root, J. Cardiovasc. Magn. Reson. 13 (Suppl 1) (2011) 356 . [14] R. Vasan , M. Larson , D. Levy , Determinants of echocardiographic aortic root

size: the framingham heart study, Circulation 91 (3) (1995) 734 .

[15] E. Burman , J. Keegan , P. Kilner , Aortic root measurement by cardiovascular magnetic resonance, Circ.: Cardiovasc. Imaging 1 (2) (2008) 104–113 . [16] J. Rivest , P. Soille , S. Beucher , Morphological gradients, J. Electron Imaging 2

(04) (1993) 326–336 .

[17] R. Haralick , S. Sternberg , X. Zhuang , Image analysis using mathematical mor- phology, IEEE Trans. Pattern Anal. Mach. Intell. 9 (4) (1987) 532–550 . [18] J. Serra , Image Analysis and Mathematical Morphology, Academic Press, Inc.,

Orlando, FL, USA, 1983 .

[19] P. Soille , Morphological Image Analysis: Principles and Applications, Springer-Verlag, New York, 2003 .

[20] C.R. Maurer Jr , R. Qi , V. Raghavan , A linear time algorithm for computing exact euclidean distance transforms of binary images in arbitrary dimensions, IEEE Trans. on Pattern Anal. Mach. Intell. 25 (2) (2003) 265–270 .

[21] D. Lavall , H. Schäfers , M. Böhm , U. Laufs , Aneurysms of the ascending aorta, Dtsch Arztebl Int. 109 (13) (2012) 227–233 .

[22] L. Pape , T. Tsai , E. Isselbacher , et al. , Aortic diameter 5.5cm is not a good pre- dictor of type a aortic dissection:observations from the international registry of acute aortic dissection (irad), Circulation (2007) 1120–1127 .

[23] P. Salembier , J. Serra , Flat zones filtering, connected operators, and filters by reconstruction, IEEE Trans. Image Process. 4 (8) (1995) 1153–1160 .

[24] L. Vincent , Morphological grayscale reconstruction in image analysis: applica- tions and effective algorithms, IEEE Trans. Image Process. 2 (2) (1993) 176–201 . [25] J. Bresenham , Algorithm for computer control of a digital plotter, IBM Syst. J.

4 (1) (1965) 25–30 .

[26] J. Radon , P. Parks , On the determination of functions from their integral values along certain manifolds, IEEE Trans. Med. Imaging 5 (4) (1986) 170–176 . [27] H. Sievers , C. Schmidtke , A classification system for the bicuspid aortic valve

from 304 surgical specimens, J. Thorac. Cardiovasc. Surg. 133 (5) (2007) 1226–1233 .

[28] A .A . Amini , T.E. Weymouth , R.C. Jain , Using dynamic programming for solving variational problems in vision, IEEE Trans. on Pattern Anal. Mach. Intell. 12 (9) (1990) 855–867 .

[29] B. Li , S. Acton , Automatic active model initialization via poisson inverse gradi- ent, IEEE Trans. Image Process. 17 (8) (2008) 1406–1420 .

[30] S. Binczak , T. Sliwa , S. Jacquir , J. Bilbault , Reaction-diffusion network for ge- ometric multiscale high speed image processing, Image Vis. Comput. 28 (6) (2010) 914–926 .

[31] C. Li , C. Kao , J. Gore , Z. Ding , Minimization of region-scalable fitting energy for image segmentation, IEEE Trans. Image Process. 17 (10) (2008) 1940–1949 . [32] C. Xu , J. Prince , Snakes, shapes, and gradient vector flow, IEEE Trans. Image

Process. 7 (3) (1998) 359–369 .

[33] B. Li , S. Acton , Active contour external force using vector field convolution for image segmentation, IEEE Trans. Image Process. 16 (8) (2007) 2096–2106 .

Références

Documents relatifs

For Gueroult, “there is no philosophy without resolution of problems”; “all the great doctrines can be characterized by problems.” 89 And, according to an unpublished

crude PL models are evident. In 2003, Ireland appears alone at the top of the plot. This matches the cluster structure returned by the PL model in which Ireland appears alone.

In the Falck case, the far-sighted family champion of change Alberto Falck—with crucial support of the external CEO Achille Colombo—was able to de-escalate the family business

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

یئاطع ءهدنشخب هک یمیرک یا یئاطخ ءهدنشوپ هک یمیکح یا و یئادج قلخ کاردا زا هک یدمص یا و یئاتمه یب تافص و تاذ رد هک یدحا یا و یئامنهار هک یقلاخ یا و یئازس ار ییادخ هک

l’utilisation d’un remède autre que le médicament, le mélange de miel et citron était le remède le plus utilisé, ce remède était efficace dans 75% des cas, le

Chapter One: Debating Ideological Boundaries and Visionary Frontiers of Western Supremacy: Complexities and Complicities.. Nevertheless, It is the rationale of uplifting

After having defined the source of each voxel of the geodesic mask for both forward and backward propagations of the algorithm estimating the morphological tortuosity, it is