• Aucun résultat trouvé

The geometry of the universal Teichmüller space and the Euler-Weil-Petersson equation

N/A
N/A
Protected

Academic year: 2021

Partager "The geometry of the universal Teichmüller space and the Euler-Weil-Petersson equation"

Copied!
63
0
0

Texte intégral

(1)

HAL Id: hal-01396618

https://hal.archives-ouvertes.fr/hal-01396618

Submitted on 14 Nov 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

The geometry of the universal Teichmüller space and the Euler-Weil-Petersson equation

Francois Gay-Balmaz, Tudor Ratiu

To cite this version:

Francois Gay-Balmaz, Tudor Ratiu. The geometry of the universal Teichmüller space and the Euler-Weil-Petersson equation. Advances in Mathematics, Elsevier, 2015, 279, pp.717-778.

�10.1016/j.aim.2015.04.005�. �hal-01396618�

(2)

Contents lists available atScienceDirect

Advances in Mathematics

www.elsevier.com/locate/aim

The geometry of the universal Teichmüller space and the Euler–Weil–Petersson equation

François Gay-Balmaza,∗,1,Tudor S. Ratiub,2

aCNRS-LMD-IPSL,EcoleNormaleSupérieuredeParis,Paris,France

bSectiondeMathématiques,EcolePolytechniqueFédéraledeLausanne, CH-1015 Lausanne,Switzerland

a r t i c l e i n f o a b s t r a c t

Fondlydedicatedtothememoryof ourfriendJerroldE.Marsden

Keywords:

UniversalTeichmüllerspace Weil–Peterssonmetric CriticalSobolevindexGeodesic Globalexistence

Regularity

OntheidentitycomponentoftheuniversalTeichmüllerspace endowedwith theTakhtajan–Teotopology,thegeodesicsof the Weil–Petersson metric are shown to exist for all time.

Thiscomponentisnaturallyasubgroupofthequasisymmetric homeomorphismsofthecircle.Viewedthisway,theregularity of its elements is shown to be H32−ε for all ε > 0. The evolutionaryPDEassociatedtothespatialrepresentationof thegeodesics of theWeil–Petersson metric isderived using multiplication and composition below the critical Sobolev index3/2.Geodesiccompletenessisusedtointroducespecial classes of solutionsof thisPDE analogousto peakons.Our settingisusedto prove that there existsa unique geodesic betweeneach twoshapesintheplaneinthecontextof the applicationoftheWeil–Peterssonmetricinimaging.

* Correspondingauthor.

E-mailaddresses:francois.gay-balmaz@lmd.ens.fr(F. Gay-Balmaz),tudor.ratiu@epfl.ch(T.S. Ratiu).

1 Research partially supported by a Swiss NSF postdoctoral fellowship, by a “Projet Incitatif de Recherche”contractfromtheEcoleNormaleSupérieuredeParis,andbytheANRprojectGEOMFLUID (ANR-14-CE23-0002-01).

2 ResearchpartiallysupportedbyNCCRSwissMAPandgrant200021-140238,bothoftheSwissNational ScienceFoundation,aswellasbythegovernmentgrantoftheRussianFederationforsupportofresearch projects implemented by leading scientists, Lomonosov Moscow State University under the agreement No.11.G34.31.0054.

(3)

Completeness Patternrecognition

Contents

1. Introduction . . . . 718

2. TheuniversalTeichmüllerspace . . . . 720

3. Takhtajan–Teotheory . . . . 734

4. Sobolevmultiplicationandcompositionbelowcriticalindex . . . . 739

4.1. Multiplication . . . . 739

4.2. Composition . . . . 742

5. RegularityinTandQS(S1)H . . . . 755

6. CompletenessoftheuniversalTeichmüllerspace . . . . 761

7. TheEuler–Weil–Peterssonequation . . . . 763

8. TeichonsasparticularWPgeodesics . . . . 771

9. Applicationtopatternrecognition . . . . 773

Acknowledgments . . . . 776

References . . . . 776

1. Introduction

Thispaperestablishesalinkbetweenthreedistinctsubjects:conservativeevolutionary PDEs having a form similar to those appearing in fluid dynamics, the theory of the universalTeichmüllerspace, andthestudyofmapsat criticalSobolevindex.

ItiswellknownsincetheworkofArnold[4]thatthesolutionsoftheEulerequations are the spatial representation of the geodesics on the group of volume preserving dif- feomorphisms.Inmaterialrepresentation, theevolutionisgovernedbyasmoothvector field,thegeodesicspray,onthetangentbundleofthisdiffeomorphismgroup(see[10,6]).

This point of view not only leads to an elegant proof of well posedness but to many other results regarding the Euler equations. This is a remarkable property thatholds only insomespecificsituationssuch as theEuler equationsfor aperfectfluid [10], the incompressiblenon-homogeneousEulerequations[26],theaveragedEulerequations[27, 36],and the n-dimensionalCamassa–Holmequations [16]. Evenequations thatexhibit stronggeometric properties,suchas KdV,ingeneral,donothavethisproperty.

The universalTeichmüller space appearsinmany areas of mathematics and mathe- matical physics.For example,itisaspecialcoadjoint orbitoftheBott–Virasorogroup [30] and plays an important role in the theory of Riemann surfaces, several complex variables, andquasiconformalmaps[14,24,29].

The theoryof thegroupsof diffeomorphisms of ann-dimensional manifold endowed withaSobolevmanifoldstructure requiresdifferentiabilityclassstrictlyabove n2+ 1.It is not even clear how to define agroup of diffeomorphisms at this critical index.This is reflected in the fact that a particle path flow associated to the Euler equations in dimensionatleast3,definedateverypointinthereferenceconfiguration,isknownonly fordifferentiability classstrictlybiggerthanthiscriticalindex.

(4)

In this paper we shall establish a connection between these three problems in the context of Weil–Petersson geometry on the universal Teichmüller space. The classical theory endows the universalTeichmüller space with agroup structure and an infinite dimensionalcomplex Banach manifold structure relative to which the inclusion of the TeichmüllerspacesofRiemannsurfacesisholomorphic.However,itisnotatopological groupand theformula forthe Weil–Petersson metricproposedin[30] is divergentand thusdoesnotdefine aRiemannianmetric.Thesebasicproblems wereovercome in[37]

whoendowedtheuniversalTeichmüllerspacewithadifferentcomplexHilbertmanifold structure in which the formula for the Weil–Petersson metric not only converges, but defines astrong metric, that is, ametric which induces the Hilbertspace topology on eachtangentspaces.TheyalsoshowthattheidentitycomponentofuniversalTeichmüller space is a topological group. With this manifold structure the tangent space at the identity is the space of functions on the circle of class H3/2. Therefore, the identity componentofuniversalTeichmüllerspacetakes theplace ofdiffeomorphisms ofcritical SobolevclassH3/2.

Weshallstudy thisgroupfromthepointofviewofmanifoldsofmaps byidentifying itwithasubgroupofthequasisymmetrichomeomorphismsofthecircle.Weshallprove thatallelementsofthisgroupareofclassH32−εforallε>0.Thenweshallusethefact thatthe metricis strongto show that allgeodesics ofthe Weil–Petersson metricexist foralltime,thatis,wehavegeodesiccompleteness.Weshallalsoprovethatthisspaceis Cauchycomplete(somethingnotgenerallyimplied bygeodesiccompletenessininfinite dimensions)relativetothedistancefunctiondefinedbytheWeil–Peterssonmetric.

Thespatial formulationofthegeodesicequations turnsoutto be considerablymore involvedthaninthecaseoftheEulerequations.Weobtainanewequation,thatwecall the Euler–Weil–Petersson equation, and we show its solutions are C0 in H3/2 and C1 inH1/2.AcomparisonofthetechnicaldifficultiesencounteredinthestudyoftheEuler equationsandoftheEuler–Weil–Peterssonequationisinorder.FortheEulerequations, themain technicalissueis theproofofthe smoothnessofthegeodesicspray, whilethe passage from material to spatial representation does notessentially require additional functionalanalytic developments.FortheEuler–Weil–Petersson equation,however,the situationis theopposite. Thesmoothnessspray follows directlyfrom the factthatthe metricisstrong,whereasthepassagefromthematerialtospatialrepresentationismuch more involved since it requires the composition and multiplication under the critical Sobolev exponent 3/2. We close the paper with two applications. The first one is the proof of long time existence of special solutions called Teichons by analogy with the peakonsfortheCamassa–Holmequations.Itturnsoutthatthese singularsolutionsare actuallysmootherthanthegenericgeodesics.Inthesecondapplication,weuseagainlong time existence of Weil–Petersson geodesics to positivelyaddress acomment of Sharon andMumford[35],namelythatthereexistsauniquegeodesicbetweeneachtwoshapes intheplane.

Planofthepaper.Section2reviewsthebasicfactsconcerningtheuniversalTeichmüller space T(1) endowed with its classical infinite dimensional complex Banach manifold

(5)

structure.Inparticular,werecallthatthismanifoldstructureisnotcompatiblewiththe naturalgroupoperationandthattheformulafortheWeil–PeterssonRiemannianmetric onT(1) isdivergent.ThesedifficultiesaresolvedbyendowingT(1) withanewcomplex Hilbert manifold structure, the Takhtajan–Teo topology, thatwe review in Section 3.

This approach allows us to define a new topological group and Hilbert manifold of homeomorphisms of the circle, thatreplaces the group of Sobolev diffeomorphisms in the caseof thecritical exponents = 3/2. Inparticular, we show thatthemodelspace is givenbySobolevH3/2 vectorfields onthecircle. Section4isdevotedtotheproofof a technicalresult, namely, the compositionof diffeomorphisms of the circle of Sobolev class strictly lower than the critical index 3/2 is also a diffeomorphism of the same type. In Section5 we prove that this new Hilbert manifold is continuously embedded in the topological groupof all homeomorphismsof the circle that are of Sobolevclass H3/2−ε for all ε > 0. In Section 6 we exploit the strongness of the Weil–Petersson metric to show that the Hilbert manifold T(1) is geodesically and Cauchy complete.

The passage from theLagrangianto thespatial formulation ofgeodesics iscarried out in Section7, using multiplication and compositionunder criticalexponents inSobolev spaces. Section 8 is concerned with particular solutions of the Euler–Weil–Petersson equation,calledTeichons,byanalogywiththepeakonsoftheCamassa–Holmequations.

These Teichonsare shownto be particularWeil–Petersson geodesics.Finally,Section9 considers applicationtoimagingfromthefunctional analyticpointofviewdevelopedin thepaper.

2. Theuniversal Teichmüllerspace

In this sectionwe recallsomebasic classicalfactsweshall need aboutuniversalTe- ichmüllerspace,forthereader’sconvenienceandtoestablishnotation.Amorecomplete expositioncanbefoundin[1,12,14,24,29].

Notation and some important facts. Let C be the Riemannsphere. Let the open unit disk in the complex plane be denoted by D := {z C | |z| < 1} and its exterior by D :={z∈C||z|>1}.Wedenotebyd2z theusualtwodimensionalLebesguemeasure onC,thatis,d2z:= 2i(dz∧d¯z).

Consider the separable complex Banachspace L1(D) of integrable complexvalued functionsonD.Itsdualcanbeisometricallyidentifiedwiththenon-separable complex BanachspaceL(D) ofessentiallyboundedcomplexvaluedfunctionsonD.Inthecon- text ofTeichmüllertheory, theelementsofL(D) arecalledtheBeltrami differentials on D.

Define theclosedsubspace A1(D) =

φ∈L1(D)φis holomorphic onD

of L1(D). Its dual canbe identified with the quotient Banach space L(D)/N(D), where

(6)

N(D) :=

⎧⎨

μ∈L(D) ˆ

D

μ(z)φ(z)d2z= 0,∀φ∈A1(D)

⎫⎬

isthespaceofinfinitesimallytrivialBeltramidifferentials.Thereisacanonicalsplitting L(D) =N(D)Ω−1,1(D), (2.1) whereΩ−1,1(D) istheclosednon-separable BanachsubspaceofL(D) definedby

Ω−1,1(D) :=

μ∈L(D)μ(z) = (1− |z|2)2φ(z), φa holomorphic map onD . This projection allows us to identify L(D)/N(D) with Ω−1,1(D), whose elements arecalled,bydefinition,harmonicBeltrami differentialson D.Wecanwritethisspace as

Ω1,1(D) :=

μ(z) = (1− |z|2)2φ(z)φ∈A(D) ,

whereA(D) isthenon-separable complexBanachspace A(D) =

φ holomorphic inD sup

z∈D|φ(z)(1− |z|2)2|<∞

.

Alltheresultsofthissectionremainvalid whenD isreplacedbyD.

TherealLiegroupPSU(1,1).RecallthatthebiholomorphicmapsoftheRiemannsphere C areoftheform

z→ az+b

cz+d where a, b, c, d∈C, ad−bc= 1.

The set of such maps form a group under composition that is readily checked to be isomorphictothecomplexmatrixLiegroup

PSL(2,C) := SL(2,C)/{±I}

of complex dimension3, called the group of Möbius transformations. The subgroup of allbiholomorphicmapsoftheRiemannspherewhichpreservetheunitdiscDareofthe form

z→ az+b

¯bz+ ¯a, where a, b∈C, and |a|2− |b|2= 1.

ThisgroupisisomorphictotherealthreedimensionalLiegroup PSU(1,1) := SU(1,1)/{±I}.

(7)

The elements of PSU(1,1) preservethe unitcircle S1 and are uniquelydetermined by theirrestrictiontothecircleS1.Beingconformal,thesemapsareorientationpreserving on the disk. Since the circle inherits the natural boundary orientation,it follows that PSU(1,1) can be regarded as a subgroup of Diff+(S1), theorientation preserving C diffeomorphisms ofthecircleS1.

View thisway, andusingthe standardchartθ→e ofthecircle, theLiealgebraof PSU(1,1) consistsofperiodicfunctionsoftheform

psu(1,1) ={fa,b,c(θ) =a+bsinθ+ccosθ|a, b, c∈R}.

TheLiealgebrabracketonthisspaceoffunctionsisminustheusualJacobi–Liebracket on vector fields. This Lie algebrabracket is given as follows: for Lie algebra elements f(θ)∂/∂θandg(θ)∂/∂θ,theirbracketis

[f, g](θ) =g(θ)f(θ)−g(θ)f(θ).

Quasiconformal maps.Let φ:A→φ(A) beanorientation preserving homeomorphism definedonanopensubsetAofthecomplexplane.Themapφissaidtobequasiconformal ifit hasalldirectionalderivatives(inthesense ofdistributions)inL1loc(A) andifthere is μ∈L(A) with μ <1 suchthat

z¯φ=μ∂zφ. (2.2)

This is called the Beltrami equation with coefficientμ. If Aand φ(A) have boundaries which areJordancurves(that is,curveshomeomorphicto acircle),then anyquasicon- formal map on A extendsto an orientation preserving homeomorphism from cl(A) to cl(φ(A)) (seeTheoremI.8.2in[25]).

Inasimilarway,anorientationpreservinghomeomorphismbetweenRiemannsurfaces issaidtobequasiconformalifitslocalexpressionsarequasiconformalmapsbetweenopen subsetsofthecomplexplane.TheonlyRiemannsurfacewewillconsideristheRiemann sphereC.

TheuniversalTeichmüllerspace.Werecallbelowtwoequivalentmodelsfortheuniversal Teichmüller space, by following the presentation given in [37]. See also [1,24,29]. We denote byB1 theunitopenball inL(D).

ModelA.Extendeveryμ∈B1to Dbythereflection

μ(z) =μ 1

z z2

z2, z∈D.

Thus we get a new map,also denoted by μ∈ L(C). Wedenote byωμ :C C the uniquesolutionoftheBeltramiequation

(8)

z¯ωμ=μ∂zωμ

whichfixes±1,−i.Thisωμisobtainedbyapplyingtheexistenceanduniquenesstheorem ofAhlfors–Bers(see[2]);ωμ isahomeomorphismofC anditsatisfies

ωμ(z) =ωμ

1 z

dueto thereflectionsymmetry ofμ.Asaresult,S1,DandD areinvariantunderωμ.

ModelB. Extendeveryμ∈B1 to be zerooutsideD. Wedenoteby ωμ :C C the uniquesolutionoftheBeltrami equation

z¯ωμ=μ∂zωμ,

satisfying the conditions f(0) = 0,zf(0) = 1, and z2f(0) = 0, where f is the holo- morphicmappingf :=ωμ|D.This ωμ isahomeomorphismof C andisalsoobtainedby applyingtheexistenceanduniquenesstheoremofAhlfors–Bers.

Therelationbetweenthesetwomodels isgivenbythefollowingstandardresult.

Theorem2.1. Forμ,ν ∈B1,wehave theequivalence ωμ|S1 =ων|S1 ⇐⇒ ωμ|D=ων|D.

See [24], Chapter III, Theorem 1.2 for aproof. We now recall the definition of the universalTeichmüller space.

Definition2.2.TheuniversalTeichmüller spaceisthequotientspace:

T(1) :=B1/∼, relativeto followingequivalencerelationonB1:

μ∼ν ⇐⇒ ωμ|S1 =ων|S1 ⇐⇒ ωμ|D=ων|D.

In viewof this definition T(1), endowed with the quotient topology, is clearly con- nected.ItturnsoutthatT(1)iscontractible([24],ChapterIII,Theorem 3.2).

The Bers embedding and the complex Banach manifold structure. The embedding of T(1) intoA(D) playsacrucialinthetheoryofTeichmüllerspaces.Werecallbelowthe classicalBers theoremaboutthisembedding.

Theorem2.3. TheBers embedding

β :T(1)→A(D), β([μ]) :=Sμ|D),

(9)

isaninjectivemappingfromT(1)ontoanopensubsetofA(D).Itsimagecontainsthe ball ofradius 2andiscontainedin theballof radius6.HereS denotes theSchwarzian derivative of aconformalmapf,that is,

S(f) := 3zf

zf 3 2

z2f

zf 2

.

Theorem2.4.ThereisauniqueBanachmanifoldstructureonT(1)relativetowhichthe projection map

π:B1→T(1)B

is aholomorphic submersion.Relative tothis Banach manifoldstructure,theBers em- bedding

β :T(1)B →A(D) is abiholomorphicmaponto itsimage.

It can be shown that the kernel of the tangent map T0π : L(D) T0T(1)B is given byN(D),so thetangentspaceT0T(1)B canbe identifiedwiththeBanachspace L(D)/N(D)Ω−1,1(D).

It isknownthatthetopologyofT(1) isthatofametricspacerelative totheTeich- müllerdistanceτ(see[24],ChapterIII,§2).Sincethisdistancefunctionwillnotbeused in the sequel, we will not recall the definition. Nevertheless, it is interesting to recall thatthe metricspace(T(1),τ) is complete.ByTheorem 2.3, T(1) ishomeomorphicto anopen subsetoftheBanachspaceA(D),whichisclearlyincomplete.

Quasisymmetric homeomorphisms of the circle. An orientation preserving homeomor- phism η of thecircle S1 isquasisymmetric ifthere isaconstantM such thatfor every xandevery|t|≤π/2

1

M η(x+t)−η(x) η(x)−η(x−t) ≤M.

Note thatthe definitionimpliesthatM 1.Here we identifythehomeomorphismsof the circle with the strictly increasing homeomorphisms of the real line satisfying the condition η(x+ 2π) = η(x)+ 2π. The set of all quasisymmetric homeomorphisms of the circleis denotedbyQS(S1), itis agroupunderthecomposition ofmaps. Thelink withthequasiconformalmappingsonthediscisgivenbytheBeurling–Ahlforsextension theorem (see[5]).

Theorem 2.5. An orientation preserving homeomorphism of the circle admits a quasi- conformalextension tothediscif andonly ifitisquasisymmetric.

(10)

Notethatthisextensionisfarfrombeingunique.Fromthisresult,itfollowsthatthe restrictiontothecircleofasolutionωμ oftheBeltramiequationwithcoefficientμ∈B1 isaquasisymmetrichomeomorphismofthecircle.Wethereforeobtainthatthemap

Φ :T(1)−→QS(S1)fix, [μ]−→ωμ|S1 (2.3) isabijection, whereQS(S1)fix denotesthesubgroup ofQS(S1) consistingof quasisym- metrichomeomorphismsfixingthepoints±1 and−i.

This bijection endows the group QS(S1)fix with the structure of acomplex Banach manifoldbypushingforwardthisstructurefrom T(1)B.TheresultingBanachmanifold isdenotedbyQS(S1)Bfix.ThisbijectionalsoendowsthesetT(1) withagroupstructure bypullingbackthegroupstructureofQS(S1)fix.A straightforwardcomputationshows thatthis groupstructure reads

[ν]·[μ] =

μ+ (ν◦ωμ)rμ

1 + ¯μ(ν◦ωμ)rμ

, rμ= zωμ

zωμ. (2.4)

Relativeto the complex Banachmanifold structure, theright translationsR[μ] are bi- holomorphic mappings for all [μ] T(1). The left translations are not continuous in general,thereforeT(1)B isnotatopological group(seeTheorem 3.3in[24]).

NotethatQS(S1)fix canbeidentified withthequotient spaceQS(S1)/PSU(1,1) (or PSU(1,1)\QS(S1)).Indeed,givenη∈QS(S1),thereexistsonlyoneγ∈PSU(1,1) such thatη◦γ (or γ◦η) fixes thepoints ±1 and −i. Note thatthe projections QS(S1) QS(S1)/PSU(1,1) and QS(S1) PSU(1,1)\QS(S1) are not group homomorphisms, whenthequotientspaceisendowedwiththegroupstructureofQS(S1)fix.

Thetangent spaceofQS(S1)Bfix.RecallthatthetangentspacetoapointmofaBanach manifoldM is definedas a spaceof equivalenceof smoothcurves. Twocurvesare said to be equivalent at m if they are tangentat this point ina chart. In general there is notacanonical realization ofthe tangentspace. Nevertheless,inthe caseof manifolds ofmapssuchacanonicalrealization exists.

Werecallbelowhow tangentspaces tomanifoldsofmaps areconcretelyconstructed (see [32] and [10]). If s > dimM/2 then it is well-known that the set Hs(M,N) of Hs-Sobolevclassmapsbetweentwo boundarylesscompactmanifoldsM and N admits asmoothHilbert manifoldstructure. Letus recallthe basicideasof this construction.

Togetafeelingofwhatatangentvectoratf ∈Hs(M,N) mightbe,letustakeapath t ]−ε,ε[→ ft Hs(M,N) such that the map ft(m) is jointly smooth in (t,m) ]−ε,ε[×M. Then t ]−ε,ε[→ ft(m) N is a smooth path in N and hence

∂ft(m)/∂t|t=0isatangentvectortoN atthepointf0(m).Thissuggeststhatatangent vectorat f isanHs-map Uf :M →T N satisfyingUf(m)∈Tf(m)N foreverym∈M, thatis, avectorfieldcoveringf. Hencethecandidatetangentspaceis

TfHs(M, N) ={Uf ∈Hs(M, T N)|Uf(m)∈Tf(m)N}.

(11)

NowoneproceedsconstructingchartsforHs(M,N) withtheseHilbertspacesasmodels, usingtheexponentialmapofsomeRiemannianmetriconN.Oncethemanifoldstructure onHs(M,N) hasbeenobtained,oneproves theidentity

d dtft

(m) =

∂t(ft(m)) forasmoothpatht∈]−ε,ε[→ft∈Hs(M,N).

Inourcase,QS(S1)Bfix isalsoaspaceofmaps,asopposedtoT(1)B.Henceonewould like to study QS(S1)Bfix inthe spirit ofmanifolds of maps. However, thetopologiesare differentandtoimplementmanifoldofmapsconstructionsoneneedstousetheoremsin complex analysisas opposedto thestandardfactsinSobolevspacetheory.Our goalis to obtain aconcrete realization ofthe tangentspace at η:= Φ([μ]) QS(S1)Bfix to the complexBanachmanifoldQS(S1)Bfix.Notethatwealreadyhaveanabstract description ofthistangentspace,namely,itisT[μ]Φ

T[μ]T(1)B

.However,sofarwedonothaveany concrete realization of this complexBanachspace. Wewill show belowthatitis equal to theright translateof avery concrete function space on S1, the Zygmund space. In theprocess wewillexplicitlycalculateT Rη.

Recall that theBanach manifold structure on QS(S1)Bfix is definedby the condition that the bijection Φ : T(1)B QS(S1)fix, Φ([μ]) := ωμ|S1 is a diffeomorphism. This simplysaysthatthemanifoldchartsofQS(S1)Bfixareoftheform(ϕΦ−1,Φ(U)) where (ϕ,U) arethemanifold chartsofT(1)B.AcurveηtQS(S1)Bfixis smoothifitisofthe form ηt =ωμ(t)|S1, where μ(t) isa smoothcurve inthe open ball B1. Theproblem of findingaconcreteexpressionofthevector dtdηtisequivalenttothatoffindingaconcrete realization of the tangentspacesTηQS(S1)fix or aconcrete expression forTηΦ. Afirst step inthis directionisthefollowing theorem.Thefirstpartis adirectconsequenceof Theorem 11 in[2]. Theexpression (2.5) is thereformulation forthe disk of Eq. (2.34) in [29]; see §1.2.11–1.2.12 ofthis book for additionalinformation and the proofof this formula.

Theorem 2.6.Letμ(t)∈B1 be asmoothcurvesuch thatμ(0)= 0.Thenforallz∈S1, thecurvet→ωμ(t)(z)∈S1issmoothinaneighborhoodoft= 0.Thederivativeatt= 0 is givenby

∂t

t=0

ωμ(t)(z) =Vν(z), where ν∈L(C)isμ(0)˙ extendedtoCby reflection,and

Vν(z) =(z+ 1)(z+i)(z−1) π

¨

C

ν(w)

(w+ 1)(w+i)(w−1)(w−z)d2w. (2.5)

(12)

Thistheoremgeneralizestothecasewhereμ(0) isnot0.Indeed,sincerighttranslation onB1issmooth,thecurvet→μ(t)·μ(0)1 issmooth.Herethedotdenotesthegroup multiplicationonB1 givenin(2.4). Wehave

∂t

t=0

ωμ(t)(z) =

∂t

t=0

ωμ(t)·μ(0)1μ(0)(z)) =Vνμ(0)(z)), whereν istheextension of ∂t

t=0(μ(t)·μ(0)1) byreflection.

Hereisareformulationoftheseresults.Letηtbe asmoothcurveinQS(S1)Bfix. Then forallz∈S1, thecurveηt(z) isdifferentiable asacurveonS1 and thetimederivative isoftheform

∂s

t=0

ηt(z) =Vν0(z)), (2.6)

whereVν isavectorfieldonS1 oftheform (2.5).

ThenexttheoremstatesthatthevectorfieldVν belongstotheZygmundspaceonS1 definedby

Z(S1) :=

u∈C0(S1) there is aCsuch that

|u(x+t) +u(x−t)−2u(x)| ≤C|t|for allx, t∈S1 .

Here, the continuous vector fields u on the circle are identified with continuous 2π-periodicfunctionsonthereal line.Wealsodefinethesubspace

Z(S1)0:=

u∈Z(S1)|u(±1) =u(−i) = 0 .

Relativeto theZygmundnorm u Z:= u + sup

x,t∈S1

|u(x+t) +u(x−t)−2u(x)|

|t| , (2.7)

Z(S1) isanonseparableBanachspaceandZ(S1)0 aclosedsubspace(see[9,14]).

Itisknownthatforall0< α <1 ands<1 wehavethestrictcontinuousinclusions Λ1(S1)⊂Z(S1)Λα(S1), and Z(S1)⊂Hs(S1),

whereΛ1(S1) denotesthespaceofLipschitzfunctionsonthecircle,Λα(S1) denotesthe spaceofα-Hölderfunctionsonthecircle,andHs(S1) denotesthespaceofSobolevclass Hsfunctionsonthecircle. IntermsoftheFourierseriesrepresentation wehave

Hs(S1) =

u(x) =

n∈Z

uneinx

u−n =un and

n∈Z

|n|2s|un|2<∞

.

(13)

These continuous inclusions are particular cases of embedding theorems for spaces of Besov–Triebel–Lizorkin type,see [39]and[34] forexample.

Theorem 2.7.Forallν ∈L(D),wehave Vν∈Z(S1)0.Moreoverthelinearmap [ν]∈L(D)/N(D)Ω−1,1(D)→Vν∈Z(S1)0 (2.8) is an isomorphism of Banach spaces, where L(D)/N(D) is endowed with the quo- tient norm andZ(S1)0 is endowed with thecross-ratio norm, a normequivalent to the Zygmund normdefinedin (2.7).

SeeChapter3in[14],and[13,15]forthedefinitionofthecross-rationormandproofs of this theorem.OnZ(S1) thecross-ratio normis actuallyaseminorm whose kernel is given bypsu(1,1).

Using the preceding discussion, it follows that for two smooth curves ηt1 and ηt2 in QS(S1)Bfix such thatη02 = η01 = η, theyare tangent at the point η with respect to the Banachmanifoldstructure ifandonlyif

∂t1t(z)) =

∂tt2(z)), ∀z∈S1.

By formula(2.6) and Theorem 2.7it follows thatarealization of thetangentspace to QS(S1)Bfix atη is

TηQS(S1)Bfix=Z(S1)0◦η.

Remark. It is worth noting here the difference between theusual theory of Hs-diffeo- morphismgroupsandQS(S1)Bfix.TheformulaabovecompletelydeterminesTηQS(S1)Bfix. The sameformulais alsovalid forthe groupofHs-diffeomorphisms Diffs(M),namely, TηDiffs(M)=Xs(M)◦η,where Xs(M) is theHilbertspace ofHs-vectorfields onM.

However, forthediffeomorphismgrouponecangofurtherand saythatTηDiffs(M)= Xs(M)◦η={Uη ∈Hs(M,T M)|Uη(m)∈Tη(m)M}, arealization thatisnotavailable forTηQS(S1)Bfix.

Withrespect tothisrealization,thetangentmapto Φ at[0] is

T[0]Φ :L(D)/N(D)→TidQSfix(S1) =Z(S1)0, T[0]Φ([ν]) =Vν, and thederivativeofasmoothcurveηt isthevectorinTηtQS(S1)Bfix givenby

d dtηt

(z) =

∂tt(z)).

(14)

Of course,theprevious equalityholds onlyifthe curveηt is knownto be smooth with respecttotheBanachmanifoldstructureinducedbyΦ.Itisnotsufficientthatforallz, thecurvet→ηt(z) issmooth.

RighttranslationbyγisgivenbyRγ(ξ)=ξ◦γanditisknowntobeasmoothmap.

Usingtheprecedingresultswehave,foruη∈TηQS(S1)Bfix, (T Rγ(uη)) (z) =

d dt

t=0

Rγt)

(z) = d dt

t=0

∂tt(γ(z)))

= d

dt

t=0

ηt

(γ(z)) =uη(γ(z)).

Thus,wehaveT Rγ(uη)=uη◦γ.

The isomorphism between the tangent space TidQS(S1)Bfix and the Banach model space A(D) of T(1)B is given bytaking thetangent map at the identity to the map β◦Φ−1: QS(S1)Bfix→T(1)B→A(D), whereβ denotestheBersembeddingand Φ is thediffeomorphismdefinedin(2.3).It wasproved[38],Theorem2.11,thatwehave

Tid

β◦Φ−1

:

n∈Z

uneinx∈TidQS(S1)Bfix−→i

n≥2

(n3−n)unzn−2∈A(D).

UsingthecomplexBanachmanifoldstructureofQS(S1)Bfix thoughtofasareal man- ifold, it is possible to endow the whole group QS(S1) with a real Banach manifold structure,bydeclaringthatthebijection

Ψ : QS(S1)−→PSU(1,1)×QS(S1)Bfix, (2.9) definedbythecondition

Ψ(η) = (ˆη, η0)⇐⇒η= ˆη◦η0, (2.10) is adiffeomorphism. The groupQS(S1) endowed with this Banachmanifold structure isdenoted byQS(S1)B.Its propertiesare giveninthetheorem below. Wewill usethe following lemma which shows thatthe choice of another subgroup fixing three points doesnotchangetheBanachmanifoldstructure onQS(S1).

Lemma 2.8. Let QS(S1)1 be a subgroup of QS(S1)consisting of quasisymmetric home- omorphisms fixing threepoints. Then QS(S1)1 can be endowed witha Banachmanifold structurein thesame wayasQS(S1)fix.The bijection

PSU(1,1)×QS(S1)BfixPSU(1,1)×QS(S1)B1 definedby

0, η0)1, η1), such that γ0◦η0=γ1◦η1, isasmoothdiffeomorphism.

(15)

Proof. Bydefinitionof the Banachmanifold structures onQS(S1)fix and QS(S1)1, we obtainthatthemap

QS(S1)fixQS(S1)1, η →γ◦η, (2.11) where γistheuniqueMöbiustransformationsuchthatγ◦η∈QS(S1)1,isadiffeomor- phism.

Wenow showthatthemap (γ00)11) issmooth. Sinceγ0◦η0 =γ1◦η1,we have η1 = (γ11◦γ2)◦η0. Thus, using (2.11), we obtainthatthe map (γ00)→η1 is smooth. Inorder toshowthat(γ00)→γ1is smooth,weconsiderthemap

F : PSU(1,1)×QS(S1)fix×PSU(1,1)R3, F(γ, η, ξ) = (γ(η(xi))−ξ(xi)), where (xi),i = 1,2,3, denote the fixed points associated to the group QS(S1)1. Note thatF is smoothandthatF00,ξ)= 0 ifandonlyif ξ=γ1. Thepartial derivative ofF withrespecttothevariableξandinthedirectionV ∈TξPSU(1,1) iscomputedto be

∂F

∂ξ0, η0, ξ)(V) =(V(xi)),

therefore the linearmap ∂F∂ξ00,ξ) : TξPSU(1,1) R3 is an isomorphism, and by theimplicitfunctiontheorem,thecorrespondence(γ00)→η1 issmooth. 2

As a consequence of this lemma, we obtain that the identification of QS(S1) with PSU(1,1)×QS(S1)BfixorPSU(1,1)×QS(S1)B1 givesthesameBanachmanifoldstructure.

Theorem2.9. Thetangent spaceattheidentity totherealBanachmanifoldQS(S1)B is the Zygmund space Z(S1). The group QS(S1)B is not atopological group butthe right translations aresmooth; QS(S1)B containsthesubgroupQS(S1)Bfix asaclosed submani- fold ofcodimension3.

Proof. FromthedefinitionoftheBanachmanifoldstructure wehave TidQS(S1)B =psu(1,1)⊕TidQS(S1)Bfix.

RecallthatTidQS(S1)BfixconsistsofvectorfieldsinZ(S1) suchthatu(±1)=u(−i)= 0.

Thereforebyaddinganyelementofpsu(1,1) werecoverthewholespaceZ(S1).Theset QS(S1)Bfix is clearly a subgroup of QS(S1)B. It is also aclosed submanifoldsince it is identified withtheclosedsubmanifold{e}×QS(S1)BfixinPSU(1,1)×QS(S1)Bfix.

We now show that the right translations Rξ : QS(S1)B QS(S1)B η◦ξ are smooth for each fixed ξ QS(S1). We first prove this for ξ QS(S1)fix. Using the diffeomorphism (2.9), the correspondence η η◦ξ reads (ˆη,η0) η,η0◦ξ). This

(16)

is a smooth map since right translations are known to be smooth on QS(S1)Bfix. We now consider thecase ξ PSU(1,1).Note thatfor any ξ we candefine the subgroup QS(S1)ξ consisting of quasisymmetric homeomorphisms of the circle fixing the three pointsξ−1(1),ξ−1(1) andξ−1(−i).AsamapfromPSU(1,1)×QS(S1)BfixtoPSU(1,1)× QS(S1)Bξ ,thecorrespondenceη→η◦ξreads(ˆη,η0)η◦ξ,ξ1◦η0◦ξ).Bythepreceding lemma it suffices to show that this last correspondence is smooth. For the first factor this is trivial sinceright translation onPSU(1,1) is smooth. Henceit suffices to show thatthemap

η0QS(S1)Bfix→ξ−1◦η0◦ξ∈QS(S1)Bξ

issmooth.Thisfollows fromthefactthis mapisinducedbythesmoothmap μ∈L(D)◦ξ)∂zξ

zξ ∈L(D).

ToshowthatRξ isasmoothmapforallξ∈QS(S1) itsufficestowriteξ= ˆξ◦ξ0with ( ˆξ,ξ0)PSU(1,1)×QS(S1)fix.WethenhaveRξ =Rξ0◦Rξˆ,whichisacompositionof smoothmapsbytheprecedingarguments. 2

Asin thecaseof QS(S1)Bfix, wecanshow thatTηQS(S1)B =Z(S1)◦η. Letηt be a smoothcurveinQS(S1)B.Bydefinition,see(2.10),wecanwriteηt= ˆηtt)0,where ˆ

ηt is asmoothcurve inPSU(1,1) and(ηt)0 isasmooth curve inQS(S1)Bfix. Therefore, weobtainthatforallz∈S1 thecurveηt(z) issmooth.Adirectcomputationshowsfor asmoothcurveηtwehave

∂t

t=0

ηt(z) =V0(z)),

where V Z(S1). This shows that a canonical realization of the tangent space TηQS(S1)B is given by Z(S1)◦η, and that the tangent map to right translation is T Rγ(uη)=uη◦γ.

A system of neighborhoods of the identity inQS(S1)B is given by {U(ε) | ε > 0}, whereU(ε) consistsofallquasisymmetrichomeomorphismsη∈QS(S1) suchthat

1

1 +ε η(x+t)−η(x)

η(x)−η(x−t) 1 +ε and sup

x∈S1

|η(x)−x|,|η1(x)−x|

< ε.

Atotherpoints,theneighborhoodsareobtainedbyrighttranslation.

Relationwithdiffeomorphismgroups.Wehavethefollowingchainofsubgroupinclusions Diff+(S1)Diffs+(S1)DiffC+1(S1)QS(S1), (2.12)

(17)

for all s > 3/2. The differential properties are the following. The group Diff+(S1) is endowed with the C Fréchet manifold structure. The group Diffs+(S1) denotes the groupof allorientation preservingSobolev classHsdiffeomorphisms of thecircle. Itis endowedwiththeSobolevHsHilbertmanifoldstructure;thisispossibleforalls>3/2.

The group DiffC+1(S1) is endowed with the C1 Banach manifold structure. All these manifold structures are real and not complex. Recall that Diff+(S1) is a Fréchet Lie group (see [21]), Diffs+(S1) and DiffC+1(S1) are topological groups with smooth right translations[10,31],QS(S1) hassmoothrighttranslationsbutisnotatopologicalgroup (Theorem 2.9). Note also that all the inclusions are smooth. The two first inclusions on the left have dense ranges and the last inclusion on the right is neither dense nor closed. The closure ofDiffC+1(S1) in QS(S1) determines the topological groupS(S1) of symmetric homeomorphismsofthecircle. Wereferto [15,14]forthedefinitionand the propertiesofS(S1).

Thesamedifferentialpropertiesholdforthecorrespondingsubgroupsfixingthepoints

±1 and−i.Wegettheinclusions

Diff+(S1)fixDiffs+(S1)fixDiffC+1(S1)fixQS(S1)fix, (2.13) foralls>3/2.Thesesubgroupshavetheadditionalproperty tobealsocomplexmani- folds.Thetangentspacesattheidentityto thesesubgroups,denotedby

C(S1)0⊂Hs(S1)0⊂C1(S1)0⊂Z(S1)0, (2.14) are obtained by imposing the conditions u(±1) = u(−i) = 0 on the elements of the tangentspacesattheidentity tothecorrespondinglargegroupsin(2.12).

Notethatanotherrealizationofthetangentspacesattheidentitytothesesubgroups is givenbyimposingtheconditionsu−1=u0=u1= 0 ontheFouriercoefficients.This correspondstothinkingofthesesubgroupsasquotientspacesofthecorrespondinggroups by the MöbiusgroupPSU(1,1);therefore the vectorfields are taken modulopsu(1,1).

Thetangentspacesattheidentity inthisinterpretationaredenotedby hhshC1 hQS.

More on thecomplex structure.Recall thatthecomplexstructure ofT(1)B isthe triv- ial oneinduced by the assumption that the projection B1 T(1)B is a holomorphic submersion.Thereforethecomplexstructure operatorissimplymultiplicationbyi.We denote byJ the complexstructureoperatorinducedontheBanachmanifoldQS(S1)Bfix. Thefollowingtheorem dueto[30]showsthatJ takesaremarkablysimpleexpressionin termsofFourierseries.

Theorem 2.10. The complex structure on the Banach manifold QS(S1)Bfix is the right- invariantstructure givenattheidentity bythemapJ :hQShQS definedby

(18)

J

n=1,0,1

uneinx

⎠=i

n=1,0,1

sgn(n)uneinx.

TheoperatorJ isinfacttheHilberttransformonthecircle J(u)(x) = 1

2π ˆ

S1

u(s) cot s−x

2

ds.

For J,we keep the sign conventions in[37] which differ byan overall minussign from theonein[30].

TheWeil–Peterssonmetric.TheWeil–PeterssonHermitianmetriconT(1)Bistheright- invariantmetricwhosevalueattheidentity[0] isgivenby

μ, ν:=

ˆ

D

μ(z)ν(z) 4

(1− |z|2)2d2z. (2.15) This metric was introduced by Nag and Verjovsky [30] as a direct generalization of the Weil–Petersson metric on the finite dimensional Teichmüller spaces. As remarked by these authors,this Hermitian metric doesnot make sense for all μ,ν Ω−1,1(D).

Indeed,itconvergesonlyforμ,ν intheHilbertspaceH−1,1(D)Ω−1,1(D) definedby

H−1,1(D) =

⎧⎨

μ∈Ω−1,1(D) ˆ

D

|μ(z)|2 1

(1− |z|2)2d2z <∞

⎫⎬

=

μ(z) = (1− |z|2)2φ(z)φ∈A2(D)

,

where

A2(D) =

⎧⎨

φ holomorphic inD ˆ

D

|φ(z)|2(1− |z|2)2d2z <∞

⎫⎬

.

Usingtheidentifications

TidQS(S1)Bfix=hQS

T[0]Φ

←−−−− T[0]T(1)B

T[0]β

−−−−→ A(D), themetriconhQS hastheexpression

hid(u, v) =π 2

n=2

n(n21)unvn (2.16)

Références

Documents relatifs

The investigation of the asymptotic behav- ior of stretch lines involves a series of estimates on the length functions of simple closed geodesics and of geodesic laminations

But the fact is that the most of Sasaki manifolds do not have definite basic first Chern class and the question is, how can we find the canonical metric (generalized

We define the intersection i(g, p) of the Riemannian metric of negative curvature g with the geodesic current ^ as the total mass of SM for the measure ^p(^).. The following theorem

By a translation of the base point we can compute the tangent vector …eld on (the real manifold) T (R) associated with the FN deformation with respect to C. Namely, @=@ C is the

Making use of the dual Bonahon-Schläfli formula, we prove that the dual volume of the convex core of a quasi-Fuchsian manifold M is bounded by an explicit constant, depending only

We consider in this section the uniqueness of maximal graphs with given boundary at infinity and bounded second fundamental form in AdS 3. The ar- gument has two parts. The first is

Theorem 1.6 says that the Weil–Petersson volume of any Weil–Petersson geodesic ball in the thick part of moduli space will decay to 0 as g tends to infinity.. It would be

C7 So Royden’s theorem about biholomorphic isometries of finite dimensional Teichmfller spaces is just a particular case of this result, because we have already