• Aucun résultat trouvé

Stability of periodic progressive gravity wave solutions of the Whitham equation in the presence of vorticity

N/A
N/A
Protected

Academic year: 2021

Partager "Stability of periodic progressive gravity wave solutions of the Whitham equation in the presence of vorticity"

Copied!
7
0
0

Texte intégral

(1)

HAL Id: hal-02550499

https://hal.archives-ouvertes.fr/hal-02550499

Submitted on 15 May 2020

HAL

is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire

HAL, est

destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons

Attribution| 4.0 International License

Stability of periodic progressive gravity wave solutions of the Whitham equation in the presence of vorticity

C. Kharif, M. Abid, J.D. Carter, H. Kalisch

To cite this version:

C. Kharif, M. Abid, J.D. Carter, H. Kalisch. Stability of periodic progressive gravity wave solutions

of the Whitham equation in the presence of vorticity. Modern Physics Letters A, World Scientific

Publishing, 2020, 384 (2), pp.126060. �10.1016/j.physleta.2019.126060�. �hal-02550499�

(2)

Stability of periodic progressive gravity wave solutions of the Whitham equation in the presence of vorticity

C. Kharifa,, M. Abida, J.D. Carterb, H. Kalischc

aAixMarseilleUniversité,CNRS,CentraleMarseille,IRPHEUMR7342,F-13384,Marseille,France bMathematicsDepartment,SeattleUniversity,USA

cDepartmentofMathematics,UniversityofBergen,Norway

The modulational instability of two-dimensional nonlinear traveling-wave solutions of the Whitham equationinthepresenceofconstantvorticityisconsidered.Itisshownthatvorticityhasasignificant effectonthegrowthrateoftheperturbationsandontherangeofunstablewavenumbers.Waveswith khgreaterthanacriticalvalue,wherekisthewavenumberofthesolutionandhisthefluiddepth,are modulationallyunstable.Thiscriticalvaluedecreasesasthevorticityincreases.Additionally,itisfound thatwaveswithlargeenoughamplitudearealwaysunstable,regardlessofwavelength,fluiddepth,and strengthofvorticity.Furthermore,thesenewresultsareinqualitativeagreementwiththoseobtainedby consideringfullynonlinearsolutionsofthewater-waveequations.

1. Introduction

Itis well known that small-amplitude,two-dimensional, peri- odicwavetrainsarestablewithrespecttothemodulationalinsta- bilitywhenthedispersiveparameterkh,wherekisthewavenum- berand his themean fluid depth,is lessthan thecritical value 1.363.Nevertheless,McLean [1] foundthatStokeswavesaremod- ulationallyunstable when kh=1 andak=0.29, where a is the wave amplitude. We can conjecture that strongly nonlinear uni- formwave trainsaremodulationally unstablewithrespect toin- finitesimalperturbations in shallow water. To extend the results ofMcLean [1] toshallowerwater,FranciusandKharif [2] investi- gated instabilitiesof periodic gravity wavesin shallowwater us- ingthefullynonlinearpotential Eulerequations.Forsmallvalues of ak, they found that the dominant instabilities are quasi-two- dimensionalwhereasformoderateandlargesteepness,thedomi- nantinstabilitiesarethree-dimensional.

Whitham [3] proposed an extension of the KdV equation by using the full linear dispersion instead of its third-order trun- cated expression. Consequently, the Whitham equation presents an improvement over the KdV equation for shortwaves. In fact, Carter [4] showed that the Whitham equation provides a more accurate modelforexperimental initial wavesof depressionthan does the KdV equation. Similarly, Moldabayev, Kalisch and Du-

* Correspondingauthor.

E-mailaddress:kharif@irphe.univ-mrs.fr(C. Kharif).

tykh [5] showedthatsolutionsoftheWhithamequationstayclose to solutions of the Euler equations, and Klein et al. [6] gave a mathematicalproof thatsolutions oftheEulerequationsare well approximated by solutions ofthe Whitham equation on smallto intermediatetimescales.

EhrnströmandKalisch [7,8] provedrigorouslythattheWhitham equationadmitssmallandlargeamplitude,periodictraveling-wave solutionsandnumericallycomputedtraveling-wavesolutionswith avarietyofamplitudesincludingthoseclosetothehighestwave.

Later on, Kharifand Abid [9] computed steadily propagating pe- riodic waves in the presence of constant vorticity. The method of computing these solutions was developed by Ehrnström and Kalisch [8] andisalsofoundinSanfordet al. [10] andKharifand Abid [9]. Sanford et al. [10] studied the Whitham equation and foundthat two-dimensional,periodicwavetrainswithkh=1 are stable when the wave steepness, ak, is less than approximately 0.142 and are unstable when the wave steepness is larger than thisthreshold.Toacertainextent,thisresultissurprisingbecause theWhitham equationisvalidforweaklynonlinearwaterwaves.

The latter authors numericallycorroborated the stability analysis of Hur andJohnson [11] whofound that small-amplitude waves withkh<1.145 arestableandareunstablewhenkh>1.145.Note thatBenjaminandFeir [12] andWhitham [13] showedthatStokes wavesareunstablewithrespecttolongwavelengthperturbations ifkh>1.363.Lateron,HurandJohnson [14] incorporated inthe Whithamequation theeffectofconstantvorticity whichmodifies thethresholdvalueofthedispersiveparameter.

(3)

Following Whitham [3], Kharif et al. [15] and Kharif and Abid [9] proposed a new model derived from the Euler equa- tions for fullynonlinear waterwaves propagating on a vertically sheared currentofconstant vorticity in shallowwaterthat satis- fiesthe unidirectional lineardispersionrelation. Fromthis model they derived, within the framework of weakly nonlinear waves, ageneralization ofthe Whithamequation whichthey namedthe vor-Whitham equation. At the same time, Hur [16] and Bjørnes- tadandKalisch [17] derivedshallowwaterwave equationsinthe presenceofconstantvorticity.

InordertoextendthepreviousstudiesofSanfordet al. [10] and Hur andJohnson [14], we consider the spectral stability of two- dimensional, periodic traveling-wave solutions of the Whitham equation in thepresence of constant vorticity.Ourstudy focuses on the modulational instability. The second aim is to show that theWhitham equation, whichis anapproximate equation thatis easiertoworkwiththanthefullynonlinearwaterwaveequations, mayprovidereliable stabilityresultsthatareinqualitativeagree- mentwiththoseofthefullequations.

In section 2, we present the vor-Whitham equation. In sec- tion 3, we describe how to compute the stationary solutions to thisequation.Additionally, wepresentthestability ofthesesolu- tionswithrespecttoinfinitesimal perturbations,thegrowthrates ofinstabilities, andthe ranges ofunstable Floquet parameters as functionsofvorticity.Section4containsaconclusionofthiswork.

2. Thevor-Whithamequation

Weconsidertwo-dimensionalgravity wavesthatpropagateon thesurfaceofaninviscid,incompressiblefluidwithashearcurrent paralleltothedirectionofwavepropagationthatvarieslinearlyin theverticaldirection. Weassume thatthewavestravel alongthe xaxis and that the zaxis is oriented upward with z=0 rep- resenting the unperturbedfree surface. In order to focus on the effectsduetovorticity,weassumethatthecurrentvelocityiszero atthefreesurface.Inthissituation,thecurrentvorticity,,iscon- stantandthevor-Whithamequationisgivenby

ηt+c1()ηηx+Kηx=0, (1) where η(x,t)representsthe freesurface displacementandt rep- resentstime.Thecoefficientofthenonlineartermis

c1()= 3gh+h22 h

4gh+h22,

where g is thegravitationalconstant of acceleration.The disper- sivetermisgivenbytheconvolutionproduct, Kηx,whichisthe inverseFouriertransformoftheproductoftheFouriertransforms ofK(x)and ηx(x,t).Theintegralkernelis

K(x)= 1 2π

+∞

−∞

c(k)eikxdk,

wheretheunidirectionaldispersionoflinearwavesinthepresence ofvorticityis

c(k)=tanh(kh)

2k +

gtanh(kh)

k +2tanh2(kh) 4k2 .

Weconsidertraveling-wavesolutionsofthevor-Whithamequation oftheform η(x,t)= ¯η(xc0t)foragivenphasevelocityc0.Sub- stitutingthisansatzintoequation(1) andintegratingonceleadsto theequationthatdefinesc andη¯

c0η¯+c1()η¯2

2 +K∗ ¯η=B, (2)

Fig. 1.Plotsofperiodictraveling-wavesolutionstothevor-Whithamequationwith L=2π,waveheight,H(seecaptions),and(a)= −1.0,(b)=1.0.Notethatthe verticalscalesinthetwoplotsaredifferent.

where B is theconstant ofintegration. Wechoose B so that the solutionη¯ haszeromean.

3. Stabilityanalysis 3.1. Steadywaves

Intheframeofreferencemovingwiththetraveling-wavesolu- tion,thevor-Whithamequationisgivenby

ητc0ηX+c1()ηηX+KηX=0, (3) where X =xc0t and τ =t. In this frame of reference, the traveling-wavesolution,η¯(X),isstationary(independentof τ)and satisfiesequation (2).Tocomputethesesolutions,we usethenu- merical methodof Ehrnströmand Kalisch [7]. Details of the nu- mericalmethodanditsvalidationarefoundinKharifandAbid [9].

However, herein we add asupplementary equation that fixes the waveamplitudewhenfollowingsolutionsusingc0asthecontinu- ationparameter.

In order to put the equations in dimensionless form, h and h/g are chosen asthe referencelength andreferencetime, re- spectively.Thischoicecorrespondstosettingh=1 and g=1.We consider2π-periodictraveling-wavesolutionstothevor-Whitham equation.Consequently,thewavenumberofthesesolutionsisk= 1.

Fig. 1 shows profiles of traveling-wave solutions to the vor- Whitham equation for two values of and four values of the wavesteepness.Theseplots,alongwithothersleftoutforbrevity, demonstratethat:(i)solutionscorrespondingtodifferentvaluesof and L are qualitatively similar, (ii) for solutions with a given periodandvorticity,increasing wavespeedincreaseswave height andsteepness,and(iii)thereappearstobeasolutionofmaximal heightforallwaveperiodsandvaluesofvorticity.

Fig. 2 shows profiles of traveling-wave solutions to the vor- Whitham equation withwave height 0.34 andfour values of . These plots, along with others left out for brevity, demonstrate that: (i) for solutions with a given period and wave height, in- creasingvorticitycausesthewidthofthesolutiontoincreaseand (ii) forsolutionswitha givenperiodandwave height,increasing vorticitycausesboththeminimaandmaximaofη¯ todecrease.

Fig.3 displaysthephase velocityasa functionofwave steep- ness for five values of the vorticity. These plots show that the phasevelocitydecreasesasthewavesteepnessincreases.Forfixed

(4)

Fig. 2.Plotsofperiodictraveling-wavesolutionstothevor-Whithamequationwith waveheight,H=0.34,L=2π,andfourdifferentvaluesof.

Fig. 3.Phase velocityofthe traveling-wave solutionsas afunctionofthe wave steepnessforseveralvaluesofthevorticity.=0(◦),0.1(∗),0.1(),0.2(), 0.2().

valuesofthewavesteepness,c0 increasesasincreases.Thisfea- turewasobservedbyKharifandAbid [9] withintheframeworkof afullynonlinear,generalizedvor-Whitham equation,whereas the profilesshowninFig.1areweaklynonlinear.

3.2.Stabilityofsteadysolutions

Inordertostudythestabilityofthesesolutionswithrespectto infinitesimalperturbations,let

η(X,τ)= ¯η(X)+η(X,τ), |η| | ¯η|, (4)

where η¯(X) and η(X,τ) correspond to the 2π-periodic unper- turbedsteady solutionand infinitesimal square integrabledistur- bance,respectively.Substitutingequation(4) intoequation(3) and linearizinggivesthefollowingequationwhichgovernsthe(linear) evolutionoftheperturbations

ητc0ηX+c1()(ηη¯ X+ ¯ηXη)+KηX=0. (5)

The Fourier-Floquet-Hill method of Deconinckand Kutz [18] and Johnson [19] establishesthatallboundedsolutionsofthisproblem havetheform

η(X,τ)=exp(λτ)exp(ip X)

+∞

j=−∞

ajexp(i j X), (6)

wherepisarealnumberknownastheFloquetparameter.Substi- tutingequation(6) intoequation(5) gives

+∞

−∞

(c0c1()η¯cp+j)i(p+j)ajexp(i j X)

c1()η¯X +∞

−∞

ajexp(i j X)=λ

+∞

−∞

ajexp(i j X), (7) where

cp+j=tanh(p+j) 2(p+j) +

tanh(p+j)

(2(p+j) +2tanh2(p+j) 4(p+j)2 .

Equation(7) istransformedintoageneralizedeigenvalueproblem forλ,whichafter truncationat M Fouriermodescan be written asfollows

Au=λBu, (8)

whereu= (aM,...,a0,...,aM)T isthecorresponding eigenvector.

The 2M+1 unknowncoefficients(aM,...,a0,...,aM)are chosen tosatisfy(7) at2M+1 collocationpointsequallydistributedalong one period of the unperturbed solution. We used M=100 and checkedthattheresultsarethesamewithinsevensignificantfig- ureswhendoublingthisvalue.Thecomplex-valuedmatricesAand B depend on the unperturbedwave, η¯,the vorticity, , and the Floquet parameter, p. Oncethe unperturbedtraveling-wave solu- tion has been computedand p fixed, the generalized eigenvalue problem (8) is solved by using a standard numerical eigenvalue solver.

Theeigenvaluespectrumcorrespondingtotheflatsurface(η¯= 0) is

λj=i(p+j)c0i(p+j)cp+j,

wherethephasevelocityoftheflatsurfaceis c0=tanh(1)/2+

tanh(1)+2tanh2(1)/4.

All ofthese eigenvalues lie onthe imaginary axis.Therefore, the flat surface is spectrally stable. The corresponding eigenfunctions are ηj=ajexpjτ)exp(i(p+ j)X) which representinfinitesimal wavesoffrequency(p+j)c0(p+j)cp+jinthemovingframeof referenceandwavenumber p+j.

Astheamplitudeoftheunperturbedwaveincreasesfromzero, theeigenvalues moveonthe imaginaryaxisandeigenvalue colli- sionsoccur.Anecessary,butnotsufficient,conditionforinstability isthecollision ofeigenvalues.Thecollision ofeigenvalues canbe expressedas

λj1(p)=λj2(p), (9)

wherethe correspondingwavenumbersare k1=p+j1 andk2= p+ j2. McLean et al. [20] divided the solutions of (9) into two classes. Depending upon whether j1j2 is even or odd, insta- bilities belong to class I or class II, respectively. Without loss of generality,itisconvenienttoassumethat j2= −j1 forclassIand j2= −j11 for class II. Herein, we focus only on class I with

(5)

Table 1

Growthrateofthemostunstableperturba- tionasafunctionofthebasicwavesteep- nesswithoutvorticity.

ak p Re(λ)max

0.20 0.101 1.67×103 0.19 0.005 0.811×104 0.18 0.003 4.19×105

0.17 O(1011)

0.15 O(1011)

0.10 O(1012)

0.05 O(1012)

j1=1 whichcorrespondtoinstabilityofmodulationaltype.These assumptionsallowequation(9) toberewrittenas

2c0=(1+p)c1+p+(1p)c1p, (10) with

2k0=k1+k2, (11)

where k0=1, k1=1+p and k2=1p. The subharmonic and superharmonic sidebands correspond to k2 and k1, respectively.

Equations(10) and(11) canbeinterpretedastheresonanceoftwo infinitesimalwaves(sidebands)withthebasicwave,i.e. aresonant four-waveinteraction.

3.3. Numericalresults

As a check on our numerical approach, we considered the caseofSanford et al. [10] correspondingtothe2π-periodicsolu- tion shownin their figure 3(b)withc0=0.8002.We found that the maximum rate of growth is 0.000356 and the frequency is 0.00751 corresponding to p= ±0.04056. These values obtained with=0 areveryclosetothoseofSanfordet al. [10].Notethat weusedtheirtransformation η→3η/4 inordertoensurethatour Whithamequationandsolutionwerethesameastheirs.Addition- ally,Sanford et al. [10] showed that thetraveling-wave solutions arestabletothemodulationalinstabilityiftheirwavesteepnessis lessthanapproximately0.142 whichcorresponds toak0.19 in ourscaling(seeTable1).

We carried out the stability computations for solutions with steepness ak=0.05 and ak=0.10 for a range of values. We found that they are both stablewith andwithout vorticity.Con- sequently, we decided to examine the stability oftraveling-wave solutionsofwavesteepnessak=0.20,avaluelargerthanthecrit- icalvalueinthe=0 case.

Figs. 4 and 5 contain plots of Im(λ) andRe(λ) versus p, the wavenumberofthenormalmodeperturbationforthreevaluesof thevorticityandak=0.20.Theupperplotsinthesefiguresshow thecollisionsoftwopurelyimaginaryinthevicinityoftheorigin.

These collisions give rise to instabilities corresponding to inter- valsofinstabilityshowninthelowerplots.Theseplotsshowthat fora fixed value of the wave steepness both the rate of growth andthe sizeoftheintervalofinstabilityincrease asdecreases.

Theseplotsalsoshowthattherearenoinstabilitieswiththesame wavenumberastheunperturbedsolution(i.e. p=0)foranyofthe valuesofvorticityweexamined.

Fig.6showsthemagnitudesofthecoefficientsaj forthemost unstable perturbation corresponding to =0.10 and ak=0.20.

Thetwo dominantcomponents, j= −1 and j=1,correspondto subharmonicandsuperharmonicsidebandstypicalofmodulational instability.Notethatthewavenumbersofthesubharmonicandsu- perharmonic sidebands are 1p and 1+p, respectively. Fig. 7 showstheamplitude spectrum ofthe unperturbedwave ofwave steepnessak=0.20 perturbedbyitsmostunstablenormalmode.

Fig. 4.Radianfrequency(top)andrate ofgrowth(bottom)ofthenormalmode perturbationagainstitswavenumberfor=0 andak=0.20.

The physicalperturbationcorresponds totherealpartoftheper- turbation giveninequation (6). The amplitude ofthe modeshas been normalized so that the fundamental mode, k=1, hasunit amplitude.Themagnitudeofthesuperharmonicmodeoftheper- turbation, |a1|,is onetenth oftheamplitude ofthefundamental mode.

Fig. 8 contains plots of the maximumgrowth rate versus the Floquetparameterfortheperturbationforthreevaluesofthevor- ticity.Theseplotsshow thatthevorticityeffectistwofold:(i) the maximalgrowthrateincreasesasdecreasesexceptforverylong unstable perturbations, (ii) the bandwidthof unstable wavenum- bersincreases as decreases. Notethat thesefeatures were ob- served by Thomaset al. [21] and FranciusandKharif [22] within theframeworkofthenonlinearSchrödingerequationandthefully nonlinearEulerequations,respectively.

Hur andJohnson [11] foundthat small-amplitude,2π/k-peri- odictraveling-wavesolutionsoftheWhithamequationaremodu- lationally unstable ifkh>khcrit1.146.Lateron,Hur andJohn- son [14] foundaformulafortheboundaryinthe(,k)-planethat separatesstableandunstablesmall-amplitude,periodic,traveling- wavesolutionstothevor-Whithamequation.Aplotofthisbound- ary is included in Fig. 9. We numerically corroborated this an- alytic result for a variety of and k values. For example, we considered solutions justbelow andjust above the criticalvalue of (,k)(5,0.96). We found that a small-amplitude (wave height of 4.3103) solutionto thevor-Whitham equation with (,k)=(5,0.9)isspectrallystable,seeFig.10(a)andthatasmall- amplitude(waveheightof3.3103)solutionwith(,k)=(5,1) is unstable,see Fig. 10(b).Insummary, inthe absence ofvortic- ity we found a critical value inagreement with that ofHur and Johnson [11] and Sanfordet al. [10] andinthepresenceofvortic- ity,wefound criticalvaluesinagreementwiththefindingofHur andJohnson [14]. Themodulationalinstability oflarge-amplitude solutionsinthepresenceofvorticityisanewfinding.

4. Conclusion

The modulationalinstability oftraveling-wavesolutions ofthe Whitham equation in the presence ofvorticity hasbeen investi- gated numerically.The Whitham equation is an extension of the KdVequationwhichtakesintoaccountthefullrangeofdispersion.

We presented a sampling ofour results which show the impor- tant qualitative results related to the modulational instability of

(6)

Fig. 5.Radian frequency (top) and rate of growth (bottom) of the normal mode perturbation against its wavenumber forak=0.20 and (a)= −0.1 (b)=0.1.

Fig. 6.Magnitudeofthecoefficientaj ofthemostunstablenormalmodecorre- spondingto=0.1 andak=0.20.

Fig. 7.Amplitudespectrumoftheunperturbedwaveofwavesteepnessak=0.20 perturbedbyitsmostunstablenormalmodefor=0.1.Theamplitudesofthe Fouriercomponentshavebeennormalizedbytheamplitudeofthefundamental modek=1 oftheunperturbedwave.

Fig. 8.Maximumgrowthrateagainstthewavenumberfor=0 (solidline),=

0.1 (dashedline),=0.1 (dot-dashedline)andak=0.20.

Fig. 9.Stabilitydiagraminthe(,k)-planeforsmall-amplitude,periodic,traveling- wavesolutionstothevor-Whithamequation.

Références

Documents relatifs

Next, we examine the effect of the phases proportion (or volume constraint G v ) upon the estimated upper bound on the parameters α and β of the dispersive tensor. Figure 18 shows

Thanks to the de BROGLIE wave, we have learned to relate the kinematic properties of a point particle to the exact solutions of the DIRAC equation which express the

After verifying that the Serre system has dispersive shock waves that are comparable with the full Euler equations, we examine the interactions of simple DSWs starting with the

where v is the velocity vector of the fluid, u is the fluid velocity with respect to the shock wave, T is the temperature, s is the specific entropy, the indices tg and n indicate

It is shown that plane wave solutions to the cubic nonlinear Schr¨ odinger equa- tion on a torus behave orbitally stable under generic perturbations of the initial data that are

In fact in this case, the metric is induced by the inertia operator Λ := HD (with respect to the L 2 inner product on the tangent bundle).. Moreover, we present a thorough study of

The purpose of the present paper is twofold: (i) to revisit the problem of two-dimensional gravity-capillary waves of solitary type on deep water when the effect of an

We complete the result in [2] by showing the exponential decay of the perturbation of the laminar solution below the critical Rayleigh number and of the convective solution above