• Aucun résultat trouvé

A generalization of the quantum Bohm identity: Hyperbolic CFL condition for Euler–Korteweg equations

N/A
N/A
Protected

Academic year: 2021

Partager "A generalization of the quantum Bohm identity: Hyperbolic CFL condition for Euler–Korteweg equations"

Copied!
6
0
0

Texte intégral

(1)

HAL Id: hal-01870745

https://hal.archives-ouvertes.fr/hal-01870745

Submitted on 9 Sep 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives| 4.0 International License

A generalization of the quantum Bohm identity:

Hyperbolic CFL condition for Euler–Korteweg equations

Didier Bresch, Frédéric Couderc, Pascal Noble, Jean-Paul Vila

To cite this version:

Didier Bresch, Frédéric Couderc, Pascal Noble, Jean-Paul Vila. A generalization of the quantum Bohm

identity: Hyperbolic CFL condition for Euler–Korteweg equations. Comptes Rendus. Mathématique,

Académie des sciences (Paris), 2015, �10.1016/j.crma.2015.09.020�. �hal-01870745�

(2)

Contents lists available atScienceDirect

C. R. Acad. Sci. Paris, Ser. I

www.sciencedirect.com

Partial differential equations

A generalization of the quantum Bohm identity: Hyperbolic CFL condition for Euler–Korteweg equations

Généralisation de l’identité de Bohm quantique : condition CFL hyperbolique pour équations d’Euler–Korteweg

Didier Brescha,1, Frédéric Coudercb,Pascal Nobleb,2,Jean-Paul Vilab

aLAMAUMR5127CNRS,bâtimentLeChablais,campusscientifique,73376LeBourget-du-Lac,France bIMT,INSAToulouse,135,avenuedeRangueil,31077Toulousecedex9,France

a r t i c l e i n f o a b s t r a c t

Articlehistory:

Received30March2015 Accepted24September2015 PresentedbyOlivierPironneau

Inthisnote,weproposeasurprisingandimportantgeneralizationofthequantumBohm potential identity. This formula allows us to design an original conservative extended formulationofEuler–Kortewegsystemsandtheconstructionofanumericalschemewith entropy stability property under a hyperbolic CFL condition in the multi-dimensional setting. To the authors’ knowledge, this generalization of the quantum Bohm identity stronglyimproveswhatisalreadyknownforsimulationofsuchadispersivesystemand is also important for theoretical studies on compressible Navier–Stokes equations with degenerateviscosities.

©2015PublishedbyElsevierMassonSASonbehalfofAcadémiedessciences.Thisisan openaccessarticleundertheCCBY-NC-NDlicense (http://creativecommons.org/licenses/by-nc-nd/4.0/).

r é s um é

Danscettenote,onproposeuneimportantegénéralisationdel’identitéditedupotentiel de Bohm quantique. Cette dernière permet de définir une formulation augmentée des systèmes d’Euler–Korteweg, qui est sous forme conservative dans le cas multi- dimensionnel. Uneconséquencetrès importantede cetteformulationest laconstruction deschémasavecstabilitéentropiquesousconditionCFLhyperboliquedusystèmed’Euler–

Korteweg.Cettegénéralisationdel’identitédeBohmévitedoncledéveloppementd’ondes parasitespour cessystèmes detypedispersifetestaussiimportante,par exemple,dans l’étudedeséquationsdeNavier–Stokescompressiblesàviscositésdégénérées.

©2015PublishedbyElsevierMassonSASonbehalfofAcadémiedessciences.Thisisan openaccessarticleundertheCCBY-NC-NDlicense (http://creativecommons.org/licenses/by-nc-nd/4.0/).

E-mailaddresses:Didier.Bresch@univ-savoie.fr(D. Bresch),frederic.couderc@math.univ-toulouse.fr(F. Couderc),pascal.noble@math.univ-toulouse.fr (P. Noble),vila@insa-toulouse.fr(J.-P. Vila).

1 ResearchofD.B.waspartiallysupportedbytheANRprojectDYFICOLTIANR-13-BS01-0003-01.

2 ResearchofP.N.waspartiallysupportedbytheANRprojectBoNDANR-13-BS01-0009-01.

http://dx.doi.org/10.1016/j.crma.2015.09.020

1631-073X/©2015PublishedbyElsevierMassonSASonbehalfofAcadémiedessciences.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense (http://creativecommons.org/licenses/by-nc-nd/4.0/).

(3)

40 D. Bresch et al. / C. R. Acad. Sci. Paris, Ser. I 354 (2016) 39–43

Versionfrançaiseabrégée

Danscettenote,nousprésentonsunegénéralisationimportantedel’identitédupotentielquantiquedeBohm.Nousmon- tronsensuitecommentcetterelationpermetd’introduirede nouvellesformulationsaugmentées(sousformeconservative) dusystèmed’Euler–Korteweg(2)–(4)enplusieursdimensionsd’espace.Selonlechoixdescoefficientsdecapillarité,cetype desystèmeintervientdanslamodélisationdesmélangesdetypeliquide–vapeur,dessuper-fluidesoudel’hydrodynamique quantique par exemple.Ces nouvellesformulations permettent de construire un schéma numérique d’ordre1 à stabilité entropique sousconditionCFLhyperboliquealorsquelesystèmeprimalestdispersif.Àtitred’illustration,nousprésentons desrésultatsnumériquespourdesfilmsmincesavectensiondesurfacemodélisésparleséquationsdeSaint-Venant.Nous expliquons égalementrapidementcommentcette généralisationde l’identitéde Bohmpeut êtreutiliséedans lecadrede résultatsthéoriquessurNavier–Stokescompressiblesàviscositésdégénérées.

1. IntroductionandgeneralizationofthequantumpotentialBohmidentity

In thisnote, wepresentan importantgeneralization ofthequantumpotential Bohmidentity. Then weshow howthis relation allows usto introduce a newextended formulationof (2)–(3) by considering the conservativevariables u,w insteadofu,w.ItallowsonetotransformtheEuler–Kortewegsystemintoahyperbolicsystemperturbedbyasecond-order skew symmetricterminamulti-dimensionalsetting.Themainmotivationistheconstructionofanumericalschemethat iseasilyproved“entropy”stableunderahyperbolicCFLcondition.Wepresentpreliminarynumericalresultsforthinfilms with surface tension modeled by the shallow water equations illustrating this important property. We then finish by a remarkontheimportanceofthegeneralizationofthequantumpotentialBohmidentityforthecompressibleNavier–Stokes systemwithdegenerateviscosities.

1.1. GeneralizationofthequantumpotentialBohmidentity

LetusfirstpresentanextensionofthequantumpotentialBohmidentity 2div

/

=div

∇∇log

stronglyusedinquantumfluidmechanics.Moreprecisely,wecanprovethefollowingresult.

Lemma1.1.Let ϕ,K andF bethreesmoothfunctionsfromR+R+suchthat

ϕ()=

K(), F()= K().

Then

K() (

0

K(s)ds)

=div

F()∇∇ϕ() − ∇

F()F()ϕ()

(1)

Thisrelationisanon-trivialextensionofthequantumBohmidentity,whichcorrespondstothecaseK()=c/.Itsproof reliesonsomealgebraiccalculations.

2. Euler–Kortewegsystem

UsingthenewgeneralizationofthequantumpotentialBohmidentity,letusnowintroduce(new)extendedformulations oftheso-calledEuler–Kortewegsystem,which,inseveralspacedimensions,reads

t+div(u)=0, (2)

t(u)+div(uu)+ ∇p()=div(K), (3)

where denotesthefluiddensity,uthefluidvelocity, p()thefluidpressureandKtheKortewegstresstensordefinedas K=

div(K()∇)+1

2(K()K())|∇|2 IRnK()∇⊗ ∇. (4) with K() thecapillarycoefficient. Then we show the importance ofsuch formulations froma numericalpoint ofview, allowing tocontrol numericalinstabilities.Thesemodels comprisea liquid–vapormixture(forinstancehighly pressurized andhotwaterinnuclearreactorscoolingsystem)[8],superfluids(heliumneartheabsolutezero)[7]orevenregularfluids at sufficiently small scales (think ofripples on shallow waters) [9].In quantum hydrodynamics, the capillarycoefficient

(4)

is chosen so that K()=constant: in thiscase, the Euler–Kortewegequations correspond to thenonlinear Schrödinger equationafterMadelungtransform.Inclassicalfluidmechanics,thecapillarycoefficientK()ischosenconstant.

Thesystem(2)–(3)admitstwoadditionalconservationslaws.Oneconservationlawissatisfiedbythefluidvelocity

tu+u· ∇u+ ∇(δE)=0, (5)

withE thepotentialenergyandδE itsvariationalgradient E(,)=F0()+1

2K()|∇|2, δE=F0()1

2K()|∇|2K(). (6)

The local existence of strongsolution to (2),(5) is proved in [1]. Forthat purpose,the authors introduced an extended formulationbyconsideringanadditionalvelocityw= ∇ϕ()withϕ()=

K():

tu+u· ∇u+ ∇

F0()−|w|2

2 = ∇

a()div(w)

, tw+ ∇ uTw

= −∇

a()div(u)

, (7)

wherea()=

K().Thisformulationis particularlyadapted to thederivation ofa prioriestimates,the veryfirst one beingaconservationlawonthetotal(kinematic+ potential)energy:

t

2|u|2+E(,)

+div u

2|u|2+E(,)+p()

=div

F()(∇w u− ∇u w)

div

(F()F())(div(w)udiv(u)w)

. (8)

withF()=ϕ().Remarkthattheleft-handsideof(1)correspondstotheEuler–Lagrangequantityfromthecapillarity term

K()|∇|2/2.Itsufficestoobservethat

K()|∇|2= |∇( 0

K(s))ds|2

andthusasobservedin[3]thevariationalgradientofthepotentialenergymaybewritten

δE=F0()K() (

0

K(s)ds) .

Thisexplainstheimportance ofthegeneralizationofthequantum Bohmpotential.Following nowthestrategyof[1],we introduce a “good” additionalunknown, homogeneous to a velocity. We denotethisadditional velocity w= ∇ϕ() with

ϕ()=

K().InordertowriteasuitableextendedformulationoftheEuler–Kortewegmodel,wealsodefine F()so that F()=

K().UsingthegeneralizationofthequantumBohmpotential(1),theEuler–Kortewegsystemadmitsthe extendedformulation:

⎧⎪

⎪⎩

t+div(u)=0,

t(u)+div(uu)+ ∇p()=div(F()∇wT)− ∇

(F()F())div(w) ,

t(w)+div(wu)= −div(F()∇uT)+ ∇

(F()F())div(u) .

(9)

Thetotalenergyisthentransformedintoaclassicalentropyofthefirst-orderpartof(9)

2u2+E(,)=

2

u2+ w2

+F0():= ¯E(,u,w),

whereasthesecond-orderpartisskewsymmetric.Asaconsequence,theenergyconservationlaw(8)isobtainedthrough acomputationsimilartothatusedinthefirst-ordercase.

2.1. Application:stableschemesunderhyperbolicCFLcondition

In thissection, we introducea numerical schemefor theimportant extendedformulation (9). Thisstrongly improves whathasbeendone in[10].Thenumericaldomainisarectangledefinedby 0xLx and0yLy,whichisdivided into N=nx×ny rectangularcells. Forthesake ofsimplicity,we consideruniformgridwithconstantspatial stepsδx and δy.Wefocusonthespatial discretizationofthesecond-orderterms:they arewrittenasα(f()∂βu)with(α,β)∈ {x,y} and f()=F(),F(),F()F().Forthatpurpose,weintroducethefollowingfinitedifferenceoperators:

(5)

42 D. Bresch et al. / C. R. Acad. Sci. Paris, Ser. I 354 (2016) 39–43

(d1u)i,j=ui+1/2,jui1/2,j

δx , (d+1u)i+1/2,j=ui+1,jui,j

δx , (d¯1u)i,j=ui+1,jui1,j

2δx , (d2u)i,j=ui,j+1/2ui,j1/2

δy , (d+2u)i,j+1/2=ui,j+1ui,j

δy , (d¯2u)i,j=ui,j+1ui,j1

2δy . (10)

Asaresult, thedifferentialoperatorT()u=div(F()∇uT)+ ∇

(F()F())div(u)

isapproximatedby Th()defined as

Th()ui,j=

⎧⎪

⎪⎩ d1

F()d+1u1

i,j+ ¯d2

F()d¯1u2

i,j+ ¯d1

(F()F())d¯2u2

i,j, d¯1

F()d¯2u1

i,j+ ¯d2

(F()F())d¯1u1

i,j+d2

F()d+2u2

i,j

Wediscretize(9)asfollows:

⎧⎪

⎪⎪

⎪⎪

⎪⎪

⎪⎪

⎪⎪

⎪⎪

⎪⎩

ni,+j1ni,j

δt +d1(Fn,1)i,j+d2(Fn,2)i,j=0, (u)ni,+j1(u)ni,j

δt +d1(Fun,1)i,j+d2(Fun,2)i,j=Th(n+1)wni,+j1, (w)ni,+j1(w)ni,j

δt +d1(Fwn,1)i,j+d2(Fwn,2)i,j= −Th(n+1)uni,+j1,

(11)

whereFn,k,Fun,k,Fwn,k(k=1,2)areclassicalRusanovfluxesevaluatedat n,un,wn.Moreprecisely,theconvectionpart istreatedexplicitly,whereasthecapillarytermsaretreatedimplicitly.Remarkthattherearenocapillarytermsinthemass conservationlawsothat theimplicitstepamountstosolvea linear sparsesystemandiseasily provedentropystable. As a consequence,one can prove, by using discrete duality propertiesof the discrete second-order operators, the following entropystabilityresult.

Theorem2.1.Suppose(11)iscompletedwithperiodicboundaryconditions.Assumethehyperbolicscheme(system(11)withF=0) isentropystablethenthefullyhyperbolic/capillaryscheme(11)isentropystable:

nx

i=0 ny

j=0

E¯(ni,+j1,uni,+j1,wni,+j1)

nx

i=0 ny

j=0

E¯(ni,j,uni,j,wni,j).

Thismeansthatthenumericalscheme(11)isentropystableunderaclassicalhyperbolicCourant–Friedrichs–Lewycon- dition.Asanapplication,wecarriedoutanumericalsimulationofathinfilmfallingdownaninclined plane.Aconsistent shallowwatermodel[2]isgivenby

th+div(hu)=0, (12)

t(hu)+div(huu)+ ∇(p(h))+

gsin(θ ) ν

2

x

2h5

225 e1=S(h,u)+σh

ρ ∇(h). (13)

with p(h)=gcos(θ )h2/2 and S(h,u)=ghsin(θ )e13νu/h ande1 thefirst vectorof thecanonical basedirected down- stream. Here g=9.8 is thegravity constant, ρ,ν, σ are respectively thefluid density,the kinematic viscosity, andthe surfacetension,whereasθ istheinclinationoftheplane.Wepickedthevaluesfoundin[9]forasolutionwith31%glycerin byweight: ρ=1.07×103 kg m3, ν=2.3×106m2s1and σ=67×103kg s2.Thesourcetermistreatedimplicitly:

since the sourceterm isonly intheequation for uandis linearwithrespect to u, theimplicit stepremains linear. We first carryout anumericalsimulationoftheoriginalexperiencein[9],butimposed periodicboundaryconditionsinboth directions(seeFig. 1).

In order totest the robustness of thescheme, we alsocarried various numericalexperiments ofa drop falling down a plane inorderto dealwithwet/dryfronts. Forthatpurpose,we introduced aprecursor filmwitha thicknessof1.0× 105 mm (seeFig. 2).

Wewilldealtheproblemsofconsidering physicalboundaryconditions,deriving higherorderschemesandconsidering wet/dryfrontsinaforthcomingpaper[5].Thiswillbeusefultocomputeinstabilitiesinmovingcontactlines.

3. CompressibleNavier–Stokesequationswithdegenerateviscosities

Notethat ourformulation(mainly thegeneralizationofthe quantumBohmpotential)maybe coupledwiththeresult recently obtained in [6], allowing one to write an augmented formulation to the following compressible Navier–Stokes systemwithdragandcapillaryterms

(6)

Fig. 1.(Coloronline.)Numericalsimulationofaroll-waveinpresenceofsurfacetension.Ontheleft:one-dimensionalroll-wavewithouttransversepertur- bations.Ontheright:atwo-dimensionalroll-wave.

Fig. 2.(Coloronline.)Dropfallingdownaninclineplane(θ=60)attimet=0 andt=1 s.Thefluiddensity,kinematicviscosityandsurfacetensionare respectivelyρ=1.0×103kg m3,ν=1.0×106m2s1andσ=67×103kg s2.

t+div(u)=0, (14)

t(u)+div(uu)2div(μ()D(u)− ∇(λ()divu)+ ∇p()+r1|u|αu=div(K), (15) withλ()=2()μ())andK()=c())2/.Suchacompatiblesystemmaybeusedtoprovetheglobalexistence ofweaksolutionstothecompressibleNavier–Stokesequationswithdegenerateviscositieswithoutcapillaryanddragterms, see[4].Thisgivesageneralizationoftheresultin[11]wheretheyconsiderthecase μ()=μ andλ()=0 and where theystronglyusetheusualquantumBohmidentityintheapproximatesystem.

References

[1]S.Benzoni-Gavage,R.Danchin,S.Descombes,Onthewell-posednessfortheEuler–Kortewegmodelinseveralspacedimensions,IndianaUniv.Math.J.

56 (4)(2007)1499–1579.

[2]M.Boutounet,L.Chupin,P.Noble,J.-P.Vila,Shallowwaterflowsforarbitrarytopography,Commun.Math.Sci.6 (1)(2008)73–90.

[3]D.Bresch,B.Desjardins,C.K.Lin,Onsomecompressiblefluidmodels:Korteweg,lubrication,andshallowwatersystems,Commun.PartialDiffer.Equ.

28 (3–4)(2003)843–868.

[4] D.Bresch,A.Vasseur,C.Yu,AremarkontheexistencefordegeneratecompressibleNavier–Stokesequations,2015,inpreparation.

[5] D.Bresch,F.Couderc,P.Noble,J.-P.Vila,Stableschemesforsome compressiblecapillaryfluidsystemsunderhyperbolicCourant–Friedrichs–Lewy condition,inpreparation.

[6]D.Bresch,B.Desjardins,E.Zatorska,Two-velocityhydrodynamicsinfluidmechanics:partII.Existenceofglobalκ-entropysolutionstocompressible Navier–Stokessystemswithdegenerateviscosities,J.Math.PuresAppl.(2015),inpress.

[7]M.A.Hoefer,M.J.Ablowitz,I.Coddington,E.A.Cornell,P.Engels,V.Schweikhard,DispersiveandclassicalshockwavesinBose–Einsteincondensates andgasdynamics,Phys.Rev.A74 (2)(2006)023623.

[8]D.Jamet,D.Torres,J.U.Brackbill,Onthetheoryandcomputationofsurfacetension:theeliminationofparasiticcurrentsthroughenergyconservation inthesecond-gradientmethod,J.Comput.Phys.182(2002)262–276.

[9]J.Liu,J.B.Schneider,J.P.Gollub,Three-dimensionalinstabilitiesoffilmflows,Phys.Fluids7 (1)(1995)55–67.

[10]P.Noble,J.-P.Vila,StabilitytheoryfordifferenceapproximationsofEuler–Kortewegequationsandapplicationtothinfilmflows,SIAMJ.Numer.Anal.

52 (6)(2014)2770–2791.

[11]A.Vasseur,C.Yu,Existenceofglobalweaksolutionsfor3DdegeneratecompressibleNavier–Stokesequations,arXiv:1501.06803,2015.

Références

Documents relatifs

The completeness property was shown to hold for an atomic system where the single particle wave functions of all the electrons are nonzero at the.. same

As we shall explain, a careful analysis of the proof presented in [11] reduce our work to prove an estimate on the distribution of the coalescing time between two walks in the

General Boundary Value problems for Elliptic partial differential

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

Theoretically, the main reason concern the continuity existing for such particles between quan- tum mechanics and classical mechanics: we demonstrate in fact that the density and

Kuttner for his constructive criticism of an earlier version of the paper, which has resulted in the present version. Added in

The purpose of the talk is to provide natural examples of n-distances based on the Fermat point and geometric constructions, and to provide their best constants.. We will also

The dotted vertical lines correspond to the 95% confidence interval for the actual 9n/10 µ A shown in Table 2, therefore that is where the actual size of the tests may be read..