• Aucun résultat trouvé

Origine, fonctions et évolution de l'iridescence chez les oiseaux : exemple chez les colibris

N/A
N/A
Protected

Academic year: 2021

Partager "Origine, fonctions et évolution de l'iridescence chez les oiseaux : exemple chez les colibris"

Copied!
283
0
0

Texte intégral

(1)

HAL Id: tel-02481178

https://tel.archives-ouvertes.fr/tel-02481178

Submitted on 17 Feb 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Origine, fonctions et évolution de l’iridescence chez les oiseaux : exemple chez les colibris

Hugo Gruson

To cite this version:

Hugo Gruson. Origine, fonctions et évolution de l’iridescence chez les oiseaux : exemple chez les colibris. Agricultural sciences. Université Montpellier, 2019. English. �NNT : 2019MONTG046�.

�tel-02481178�

(2)

7+ˆ6( 3285 2%7(1,5 /( *5$'( '( '2&7(85 '( /ȏ81,9(56,7‰ '( 02173(//,(5

)LOL¨UH ((5*3 ‰FRORJLH ‰YROXWLRQ 5HVVRXUFHV *©Q©WLTXHV 3DO©RELRORJLH

&KDPS GLVFLSOLQDLUH 6FLHQFHV GH Oȏ‰YROXWLRQ HW GH OD %LRGLYHUVLW©

‰FROH GRFWRUDOH *$,$

8QLW© GH UHFKHUFKH &()(

2ULJLQ DQG IXQFWLRQV RI LULGHVFHQW FRORXUV LQ KXPPLQJELUGV 6FLHQWLILF SXEOLFDWLRQ LQ WKH WHFKQRORJLFDO HUD

3U©VHQW©H SDU +XJR *UXVRQ /H

6RXV OD GLUHFWLRQ GH &ODLUH 'RXWUHODQW HW 'RULV *RPH]

'HYDQW OH MXU\ FRPSRV© GH

0DWKLHX -RURQ GLUHFWHXU GH UHFKHUFKH &156 3U©VLGHQW GX MXU\

'DQLHO & 2VRULR SURIHVVRU 8QLYHUVLW\ RI 6XVVH[ 5DSSRUWHXU

$QGUHZ - 3DUQHOO UHVHDUFK IHOORZ 8QLYHUVLW\ RI 6KHIILHOG 5DSSRUWHXU

1LFROD 1DGHDX UHVHDUFK IHOORZ 8QLYHUVLW\ RI 6KHIILHOG ([DPLQDWULFH

0DULDQQH (OLDV GLUHFWULFH GH UHFKHUFKH &156 ,QYLW©H

&KULVWLQH $QGUDXG SURIHVVHXUH 01+1 ,QYLW©H

&ODLUH 'RXWUHODQW GLUHFWULFH GH UHFKHUFKH &156 'LUHFWULFH

'RULV *RPH] FKDUJ©H GH UHFKHUFKH &156 'LUHFWULFH

(3)
(4)

-ȶȥʋơȥʋɽ

áɭơŔȟŹȍơ

ƃȇȥȶˁȍơƎnjơȟơȥʋɽ

¶ɭǫnjǫȥ ŔȥƎ ljʠȥƃʋǫȶȥɽ ȶlj ǫɭǫƎơɽƃơȥʋ ƃȶȍȶʠɭɽ ǫȥ ǠʠȟȟǫȥnjŹǫɭƎɽ ࠀࠀ

òƃǫơȥʋǫ˪ƃ ɢʠŹȍǫƃŔʋǫȶȥ ǫȥ ʋǠơ ʋơƃǠȥȶȍȶnjǫƃŔȍ ơɭŔ ࠁࠁࠆ

èƢɽʠȟƢ njɭŔȥƎ ɢʠŹȍǫƃ ơȥ ljɭŔȥƇŔǫɽ ࠁࠆࠆ

(5)
(6)

áɭơŔȟŹȍơ

ʶƟɧ˃ ŸɧǨƟ˪˃

-ȶȍȶʠɭ ƃȶƎơ

(7)
(8)

ƃȇȥȶˁȍơƎnjơȟơȥʋɽ

TpQ

(9)
(10)

áơơɭ࢛ɭơʽǫơˁơƎ ɢʠŹȍǫƃŔʋǫȶȥɽ

DʶȲȊʙʄǨȲȢ ?iiTb,ff/QBXQ`;fRyXRRRRf2pQXRje38

wȢʄƟɧLJŔƂƟ `ȲƂʙɷ ?iiTb,ff/QBXQ`;fRyXRyN3f`b7bXkyR3Xyy9N

ŠȲʙɧȢŔȊ ȲLJ

°ɝƟȢ êȲʙɧƂƟ êȲLJʄʺŔɧƟ ?iiTb,ff/QBXQ`;fRyXkRRy8fDQbbXyR38d

žƟʄǝȲƌɷ ǨȢ DƂȲȊȲNJ˃ ŔȢƌ DʶȲȊʙʄǨȲȢ ?iiTb,ff/QBXQ`;f RyXRRRRfky9R@kRysXRjRd9

áɭơ࢛ɢɭǫȥʋɽ

ŸǨȲá˂Ǩʶ ?iiTb,ff/QBXQ`;fRyXRRyRfeNNd99

ŸǨȲá˂Ǩʶ

?iiTb,ff/QBXQ`;fRyXRRyRf83ejek

zȥʽǫʋơƎ Źȍȶnj ɢȶɽʋɽ

ĤǝƟȢ êʄŔȢƌŔɧƌɷ cȲ ĤǨȊƌ ࢙ êȲLJʄʺŔɧƟ áƟʶǨƟʺ LJȲɧ Ŕ žŔȢʙɷƂɧǨɝʄ ?iiTb,ff`QT2Mb+BXQ`;f#HQ;fkyRNfy9fR3frBH/@

biM/`/bf

ƂƂƟɷɷ ɝʙŸȊǨɷǝƟɧ ƂȲɝ˃ɧǨNJǝʄ ॻ ɷƟȊLJ࢙ŔɧƂǝǨʶǨȢNJ ɝȲȊǨƂǨƟɷ ʶǨŔ ʄǝƟ ࢪêoDáÚࡸáȲžD°ࢪ Úw ?iiTb,ff`QT2Mb+BXQ`;f#HQ;fkyRNfyefy9f``QK2Qf

-ȶȥljơɭơȥƃơɽ ŔȥƎ ƃȶȥnjɭơɽɽơɽ

(11)
(12)

¶ɭǫnjǫȥ ŔȥƎ ljʠȥƃʋǫȶȥɽ ȶlj ǫɭǫƎơɽƃơȥʋ

ƃȶȍȶʠɭɽ ǫȥ ǠʠȟȟǫȥnjŹǫɭƎɽ

(13)

ࠀࡳࠀ zȥʋɭȶƎʠƃʋǫȶȥ࡫ ĭǠŔʋ ǫɽ ƃȶȍȶʠɭࡴ

°Ȣ ʄǝƟ °ɧǨNJǨȢ ȲLJ êɝƟƂǨƟɷ Ÿ˃ žƟŔȢɷ ȲLJ ¢ŔʄʙɧŔȊ êƟȊƟƂʄǨȲȢ

ɷʄɧʙNJNJȊƟ LJȲɧ ȊǨLJƟ

õǝƟ ƌƟɷƂƟȢʄ ȲLJ ȜŔȢ࡬ ŔȢƌ ɷƟȊƟƂʄǨȲȢ ǨȢ ɧƟȊŔʄǨȲȢ ʄȲ ɷƟ˂

NJȊŔǨɷ ǨȲ

(14)

ࢧoƟȢƂƟ w ʄǝǨȢȄ ʄǝŔʄ ʄǝƟɷƟ ʄŔɷʄƟɷ࡬ ȲƌȲɧɷ࡬ ƂȲȊȲɧɷ࡬ ƟʄƂࡲ࡬ ȲȢ ʄǝƟ ɷǨƌƟ ȲLJ ʄǝƟ ȲŸǼƟƂʄ ǨȢ ʺǝǨƂǝ ʄǝƟ˃

ɷƟƟȜ ʄȲ Ɵ˂Ǩɷʄ࡬ ŔɧƟ ȢȲʄǝǨȢNJ ƟȊɷƟ ʄǝŔȢ ȜƟɧƟ ȢŔȜƟɷ࡬ Ÿʙʄ ǝȲȊƌ ʄǝƟǨɧ ɧƟɷǨƌƟȢƂƟ ɷȲȊƟȊ˃ ǨȢ ʄǝƟ ɷƟȢɷǨʄǨʶƟ ŸȲƌ˃ࡷ ɷȲ ʄǝŔʄ ǨLJ ʄǝƟ ŔȢǨȜŔȊ ʺƟɧƟ ɧƟȜȲʶƟƌ࡬ ƟʶƟɧ˃ ɷʙƂǝ ɣʙŔȊǨʄ˃ ʺȲʙȊƌ ŸƟ ŔŸȲȊǨɷǝƟƌ ŔȢƌ ŔȢȢǨǝǨȊŔʄƟƌࡲࢨ ࢇcŔȊǨȊƟȲ࢈

(15)
(16)
(17)
(18)

Wavelength ()

Reectance

Coll ection

UV/Visible light source

Illumination

SAMPLE

spectrometer

Brightness

Hue

Brightness

Saturation

(19)

ࠀࡳࠁ ĭǠŔʋ ǫɽ ǫɭǫƎơɽƃơȥƃơ ŔȥƎ Ǡȶˁ ʋȶ ȟơŔɽʠɭơ ǫʋࡴ

Ҵ ̢

Ҵ ̢

žȲɧɝǝȲ

ĭǠˊ ɽʋʠƎˊ ǫɭǫƎơɽƃơȥƃơ Ŕɽ ơʽȶȍʠʋǫȶȥŔɭˊ Źǫȶȍȶnjǫɽʋɽࡴ

(20)
(21)

ÚǝŔȢŔƟʙɷ ʶǨȢƌƟ˂ ƟʄǝȲɝ˃NJŔ ȢǨɝŔȊƟȢɷǨɷ

žŔɧŔʄʙɷ ʶȲȊŔȢɷ žȲɧɝǝȲ ɷɝࡲ

ÚŔʶȲ ƂɧǨɷʄŔʄʙɷ īƟȢȲɝƟȊʄǨɷ ɷɝࡲ

°ƌȲȢʄȲƌŔƂʄ˃Ȋʙɷ ɷƂ˃ȊȊŔɧʙɷ oƟƌ˃࢙

ƂǝɧʙȜ ɧʙʄǨȊŔȢɷ DȊŔƂŔʄǨȢʙɷ ƟʶƟȊ˃ȢŔƟ

qȶˁ ʋȶ ȟơŔɽʠɭơ ǫɭǫƎơɽƃơȥƃơࡴ þǠơ ˪ɭɽʋ ȶŹɽʋŔƃȍơ ǫȥ ǫʋɽ ɽʋʠƎˊ

(22)

ҕ ֮ҕ ҏ

֮ҏ Һ Ҡ

žȲɧɝǝȲ

(23)
(24)

ࠀࡳࠂ zɭǫƎơɽƃơȥƃơ ǫȥ ǠʠȟȟǫȥnjŹǫɭƎɽ࡫ ɢɭȶˉǫȟŔʋơ ŔȥƎ ʠȍʋǫȟŔʋơ ƃŔʠɽơɽ

DʙNJƟȢƟɷ LJʙȊ࢙

NJƟȢɷ

ࢧĤƟ ʺƟɧƟ Ɵ˂ŔȜǨȢǨȢNJ Ŕ oʙȜȜǨȢNJŸǨɧƌ࡬ ʄǝƟ NJȲɧNJƟʄ ȲLJ ʺǝǨƂǝ ʺŔɷ ŔȢ ǨȢʄƟȢɷƟ ƟȜƟɧŔȊƌ࢙NJɧƟƟȢ࡬

Ÿʙʄ ȲȢ ƂǝŔȢNJǨȢNJ ʄǝƟ ȊǨNJǝʄ ࢇʄǝŔʄ Ǩɷ ŔȊʄƟɧǨȢNJ Ǩʄɷ ŔȢNJȊƟ ȲLJ ǨȢƂǨƌƟȢƂƟ࢈ ʄǝƟ ƟȜƟɧŔȊƌ ʺŔɷ ƂǝŔȢNJƟƌ ǨȢʄȲ ʶƟȊʶƟʄ ŸȊŔƂȄࡲࢨ cȲʙȊƌ࡬ࠃࠊࠆࠋ

,ŔȊ˃ɝʄƟ ŔȢȢŔ

?iiTb,ff7HB+XF`fTfC.r?NE

ࢧõǝƟ ǝʙƟ ȲLJ ƟʶƟɧ˃ ɝɧƟƂǨȲʙɷ ɷʄȲȢƟ ŔȢƌ ʄǝƟ ȊʙɷʄɧƟ ȲLJ ƟʶƟɧ˃ ȜƟʄŔȊ Ǩɷ ǝƟɧƟ ɧƟɝɧƟɷƟȢʄƟƌࡷ ŔȢƌ ɷʙƂǝ ʄƟɧȜɷ Ŕɷ ʄȲɝŔˏ࡬ ŔȜƟʄǝ˃ɷʄ࡬ ŸƟɧ˃Ȋ࡬ ƟȜƟɧŔȊƌ࡬ NJŔɧȢƟʄ࡬ ɧʙŸ˃࡬ ɷŔɝɝǝǨɧƟࡷ NJȲȊƌƟȢ࡬ NJȲȊƌƟȢ࢙

NJɧƟƟȢ࡬ ƂȲɝɝƟɧ˃࡬ ˩Ɵɧ˃࡬ NJȊȲʺǨȢNJ࡬ ǨɧǨƌƟɷƂƟȢʄ࡬ ɧƟLJʙȊNJƟȢʄ࡬ ƂƟȊƟɷʄǨŔȊ࡬ NJȊǨʄʄƟɧǨȢNJ࡬ ɷǝǨȢǨȢNJ࡬ ŔɧƟ ƂȲȢɷʄŔȢʄȊ˃ ʙɷƟƌ ʄȲ ȢŔȜƟ Ȳɧ ƌƟɷƂɧǨŸƟ ʄǝƟ ƌǨLJLJƟɧƟȢʄ ɷɝƟƂǨƟɷࡲࢨ ĤŔȊȊŔƂƟ࡬ࠃࠊࠋࠇ

(25)

,ǝǨɧȲ˂ǨɝǝǨŔ ȊǨȢ࢙

ƟŔɧǨɷ

(26)

ɧƂǝǨȊȲƂǝʙɷ ŔȊƟ˂ŔȢƌɧǨ

?iiTb,ff7HB+XF`fTfEvt;r_

,ŔȊ˃ɝʄƟ ŔȢȢŔ

ࢧDʶƟɧ˃ ȲŸɷƟɧʶƟɧ ʺǝȲ ǝŔɷ ʺɧǨʄʄƟȢ ʙɝȲȢ ʄǝƟȜ ǝŔɷ ȢȲʄ LJŔǨȊƟƌ ʄȲ ƌƟɷƂŔȢʄ ʙɝȲȢ ʄǝƟǨɧ ŸȲȊƌȢƟɷɷ ŔȢƌ ɝʙNJȢŔƂǨʄ˃࡫ ȢȲʄ ȲȢȊ˃ ƌȲ ʄǝƟ˃ ŔʄʄŔƂȄ ŸǨɧƌɷ ȲLJ ȜʙƂǝ ȊŔɧNJƟɧ ɷǨˏƟ ʄǝŔȢ ʄǝƟȜ࢙

ɷƟȊʶƟɷ࡬ Ÿʙʄ Ǩʄ Ǩɷ ƟʶƟȢ ŔɷɷƟɧʄƟƌ ʄǝŔʄ ʄǝƟ˃ ʺǨȊȊ ʄǨȊʄ Ŕʄ ʄǝƟ DŔNJȊƟ ǨLJ ǝƟ ŔɝɝɧȲŔƂǝƟɷ ʺǨʄǝǨȢ ʄǝƟ ɝɧƟƂǨȢƂʄɷ ȲLJ ʄǝƟ ȢƟɷʄࡷ ȢȲɧ Ǩɷ ȜŔȢ Ɵ˂ƟȜɝʄ LJɧȲȜ ʄǝƟǨɧ ŔɷɷŔʙȊʄɷࡲࢨ cȲʙȊƌ࡬ࠃࠊࠆࠋ

(27)

McGuire Jetz

Clade Bees Brilliants

Coquettes Emeralds

Hermits Mangoes

MtGems Patagona

Topazes

čȍʋǫȟŔʋơ ƃŔʠɽơɽ ࢏eɭʠɽȶȥ ơʋ Ŕȍࡳ࡬ࠁ߿ࠀࠈƃ࢐

(28)

Trait 1

Trait 2

Trait 1

Trait 2

(29)

ֿҠҡ

ֿҠҡ ֿҠҡ

(30)

űҠҡ ֿҠҡ

ֿҠҡ ҫҪֿҠҡ

ֿҠҡ ҫҪֿҠҡ

°ƂɧƟŔʄʙɷ ʙȢƌƟɧʺȲȲƌǨǨ

(31)

áɭȶˉǫȟŔʋơ ƃŔʠɽơɽ ࢏eɭʠɽȶȥ ơʋ Ŕȍࡳ࡬ࠁ߿ࠀࠈŹ࢐

DʙȊŔȜɝǨɷ ǼʙNJʙȊŔɧǨɷ

(32)

KK-Type

keratin

melanin air

SS-Type RS-Type

,ŔȊ˃ɝʄƟ ŔȢȢŔ

°ƂɧƟŔʄʙɷ ʙȢƌƟɧʺȲȲƌǨǨ

žƟȊƟŔNJɧǨɷ NJŔȊȊȲɝŔʶȲ

(33)
(34)

Space of optically possible colours

Space of realised

colours

evolution acting

as a lter

(35)
(36)
(37)

ࠀࡳࠃ bʠʋʠɭơ Ǝǫɭơƃʋǫȶȥɽ

qʠȟȟǫȥnjŹǫɭƎ ɢɭơƎŔʋȶɭɽ ŔȥƎ ʽǫɽʠŔȍ ɽˊɽʋơȟ

ɧƂǝǨȊȲƂʙɷ ƂȲȊʙŸɧǨɷ êƟɝǝŔȢȲǨƌƟɷ ɷƟɝǝŔȢǨȲƌƟɷ

ÚǝŔƟʄǝȲɧȢǨɷ ɝɧƟʄɧƟǨ oƟȊǨȲƌȲ˂Ŕ ɧʙŸǨȢȲǨƌƟɷ o˃ȊȲƂǝŔɧǨɷ Ƃǝɧ˃ɷʙɧŔ

(38)
(39)
(40)

֬

(41)

TpQ

TpQ

¶ʋǠơɭ ɢȶɽɽǫŹȍơ ơʽȶȍʠʋǫȶȥŔɭˊ Ǝɭǫʽơɭɽ ȶlj ǫɭǫƎơɽƃơȥʋ ƃȶȍȶʠɭɽ

(42)

ġȲȊŔʄǨȢǨŔ ǼŔƂŔ࢙

ɧǨȢŔ

(43)

ȢŔɷ ɝȊŔʄ˃ɧǝ˃ȢƂǝȲɷ

ֳҪ p ֳҪ p

ֳҪ p ,ŔȊȲƟȢŔɷ ȢǨƂȲŸŔɧǨƂŔ

ȲɝʄǨ˂

oƟȊǨƂȲȢǨʙɷ ƟɧŔʄȲ cŔȊȊʙɷ NJŔȊȊʙɷ zȥʋɭŔɽɢơƃǫ˪ƃ ʽŔɭǫŔʋǫȶȥ

DʙȊŔȜɝǨɷ ǼʙNJʙȊŔɧǨɷ

ȢŔɷ ƂɧƟƂƂŔ

(44)

õƟȊȜŔʄǝƟɧǨȢŔ ŔȢʄǝȲȢǨŔƟ

qʠȟȟǫȥnjŹǫɭƎɽ ŔȥƎ ɽʠȥŹǫɭƎɽ Ŕɽ Ŕ ɽʋʠƎˊ ɽˊɽʋơȟ ʋȶ ǫȥʽơɽʋǫnjŔʋơ ơʽȶȍʠʋǫȶȥŔɭˊ ƃȶȥʽơɭnjơȥƃơ

,ǨȢȢ˃ɧǨɷ ƂǝŔȊ˃ŸƟʙɷ õǝŔȊʙɧŔȢǨŔ ƂȲȊȲȜŸǨƂŔ

(45)

ࠀࡳࠄ òơȟŔȥʋǫƃɽ࡫ ˁǠŔʋ ǫɽ ǫɭǫƎơɽƃơȥƃơࡴ

(46)

ȊƂƟƌȲ ŔʄʄǝǨɷ

(47)

ࠀࡳࠅ -ȶȥƃȍʠɽǫȶȥ

TpQ

֬

(48)

èơljơɭơȥƃơɽ

ÚɧȲƂƟƟƌǨȢNJɷ ȲLJ ʄǝƟ ¢ŔʄǨȲȢŔȊ ƂŔƌƟȜ˃ ȲLJ êƂǨƟȢƂƟɷ

?iiTb , f f /QB X Q`; f Ry X Rydj f TMb X y9y8keyRyR R88N3d93

ÚǨƟɧǨɷ ɧŔɝŔƟ ƂɧʙƂǨʶȲɧŔ ŠȲʙɧȢŔȊ ȲLJ

¢ƟʙɧȲɷƂǨƟȢƂƟ ?iiTb,ff/QBXQ`;fRyXR8kjfCL1l_Pa*AXRje9@ y8Xkyy8 R8Ndey3k

ŠȲʙɧȢŔȊ ȲLJ D˂ɝƟɧǨȜƟȢʄŔȊ %ǨȲȊȲNJ˃ ?iiTb,ff/QBXQ`;f RyXRk9kfD2#XyRjyN9 R3ekeyde

ȜŔˏǨȊǨŔ ʄˏŔƂŔʄȊ DɧǨȲɝǝȲɧŔ LJʙȊǨNJǨȢƟŔ °ɧȢǨʄȲȊȲNJǪŔ

¢ƟȲʄɧȲɝǨƂŔȊ

ġǨɷǨȲȢ áƟɷƟŔɧƂǝ

?iiTb,ff/QBXQ`;fRyXRyRefyy9k@eN3NUNRVNyy8N@1

õǝƟ ,ȲȢƌȲɧ

?iiTb,ff/QBXQ`;fRyXkjydfRje89RN

ŠȲʙɧȢŔȊ ȲLJ DƂȲȊȲNJ˃ ?iiTb,

ff/QBXQ`;fRyXRRRRfDXRje8@kd98XkyRkXyRNeeXt

õƟɧɷǨȢŔ ʶǨɧǨƌǨɷ õǝƟ ʙȄ ?iiTb,ff/QBXQ`;fRyXRe9kflE@R8@RdyXR

õǝƟ ȜƟɧǨƂŔȢ ¢ŔʄʙɧŔȊǨɷʄ ?iiTb,ff/QBXQ`;fRyXRy3efk38dRR

ȢǨȜŔȊ %ƟǝŔʶǨȲʙɧ ?iiTb,ff/QBX

Q`;fRyXRyRefDXM#2?pXkyReXyjXyj8

DƂȲNJɧŔɝǝ˃

?iiTb,ff/QBXQ`;fRyXRRRRf2+Q;XyjR3d

(49)

cȊȲŸŔȊ DƂȲȊȲNJ˃ ŔȢƌ %ǨȲNJƟȲNJɧŔɝǝ˃ ?iiTb,ff/QBXQ`;fRyXRRRRf;2#XRkR9e

žǨȢƌ

?iiTb,ff/QBXQ`;fRyXRyNjfKBM/fs*oAAAXj3NX3R

wȢʄƟɧLJŔƂƟ `ȲƂʙɷ

?iiTb,ff/QBXQ`;fRyXRyN3f`b7bXkyR3Xyy9d

oƟȊƂǨȲȢ ɝɧʙǨȢȲɷʙɷ ɝɝȊǨƟƌ °ɝʄǨƂɷ ?iiTb,ff/QBXQ`;f RyXRje9fPX9RXyyydRd

ŠȲʙɧȢŔȊ ȲLJ ,ȲȜɝŔɧŔʄǨʶƟ Úǝ˃ɷǨȲȊȲNJ˃ ?iiTb,ff/QBX Q`;fRyXRyydfbyyj8N@yRd@RRd8@d

ÚɧȲƂࡲ áࡲ êȲƂࡲ % ?iiTb ,

ff/QBXQ`;fRyXRyN3f`bT#XkyRjXk3ek k98dj39d

õɧƟȢƌɷ ǨȢ DƂȲȊȲNJ˃ ॻ DʶȲȊʙʄǨȲȢ ?iiTb , ff/QBXQ`;fRyXRyRefyReN@8j9dU3dVNyRNj@8

õǝƟ ȜƟɧǨƂŔȢ ¢ŔʄʙɧŔȊǨɷʄ

?iiTb,ff/QBXQ`;fRyXRy3efdyRejk

õɧƟȢƌɷ ǨȢ DƂȲȊȲNJ˃ ॻ DʶȲȊʙʄǨȲȢ ?iiTb,ff/QBXQ`;fRyXRyRefDXi`22XkyReXRyXyyj

¢ŔʄʙɧƟ ?iiTb,ff/QBXQ`;fRyXRyj3f

b9R83e@yR3@yjdd@d

NJȊŔƟŔƂʄǨɷ ƂʙɝɧǨɝƟȢȢǨɷ õǝƟ ĤǨȊɷȲȢ

ŠȲʙɧȢŔȊ ȲLJ °ɧȢǨʄǝȲȊȲNJ˃ ?iiTb,ff/QBXQ`;fRyXRedefR3@dN

ŠȲʙɧȢŔȊ ȲLJ D˂ɝƟɧǨȜƟȢʄŔȊ %ǨȲȊȲNJ˃ N93dRyR

(50)

oŔȢƌŸȲȲȄ ȲLJ ʄǝƟ %Ǩɧƌɷ ȲLJ ʄǝƟ ĤȲɧȊƌ ȊǨʶƟ

ŠȲʙɧȢŔȊ ȲLJ ,ȲȜɝŔɧŔʄǨʶƟ Úǝ˃ɷǨȲȊȲNJ˃ ?iiTb,ff/QBXQ`;fRyXRyydf"6yyey9Red

õǝƟ ʙȄ ?iiTb,ff/QBX

Q`;fRyXR8k8fmFXkyyNXyNydj

,ʙɧɧƟȢʄ ĸȲȲȊȲNJ˃ ?iiTb,ff/QBXQ`;fRyXRyNjf+xQQHQf8dXkXR3d

êƂǨƟȢƂƟ ?iiTb,ff/QBXQ`;fRyXRRkefb+B2M+2XRky8kkk kRNyj3Ry

ÚɧȲƂƟƟƌǨȢNJɷ ȲLJ ʄǝƟ áȲ˃ŔȊ êȲƂǨƟʄ˃ ȲLJ ’ȲȢƌȲȢ %࡫ %ǨȲȊȲNJǨƂŔȊ êƂǨƟȢƂƟɷ

?iiTb,ff/QBXQ`;fRyXRyN3f`bT#XkyydXReRN R3kjy8Nk

êƟ࢙

ȊŔɷɝǝȲɧʙɷ ɷƂǨȢʄǨȊȊŔ êࡲ ˪ŔȜȜʙȊŔ õǝƟ ĤǨȊɷȲȢ ŠȲʙɧȢŔȊ ȲLJ °ɧȢǨʄǝȲȊȲNJ˃

?iiTb,ff/QBXQ`;fRyXRedefRy@ydeXR

ÚɧȲɷȲɝȲƂƟɧŔ

ȊŔƂʄŔʄȲɧ Úǝ˃ɷǨƂŔȊ áƟʶǨƟʺ D ?iiTb,ff/QBXQ`;fRyXRRyjfS?vb_2p1X

38XyRRNyd

DƂȲȊȲNJ˃ ?iiTb,ff/QBXQ`;fRyXR3NyfyyRk@Ne83UkyyeV3d(R9e8, hh6>6)kXyX*Pck

êƂǨƟȢƂƟ

?iiTb,ff/QBXQ`;fRyXRRkefb+B2M+2XMykkR k3dd9NyR

žƟȊȲɝɷǨʄʄŔƂʙɷ ʙȢƌʙȊŔʄʙɷ

(51)

ŠȲʙɧȢŔȊ ȲLJ D˂ɝƟɧǨȜƟȢʄŔȊ %ǨȲȊȲNJ˃ ?iiTb,ff/QBXQ`;fRyXRk9kfD2#X ye9Nyd kk99kje9

Úǝ˃ɷǨȲȊȲNJǨƂŔȊ áƟʶǨƟʺɷ ?iiTb,ff/QBXQ`;fRyXRR8kfT?vb`2pXyyy8NXkyRd

%ƟǝŔʶǨȲɧŔȊ DƂȲȊȲNJ˃ ?iiTb , f f /QB X Q`; f Ry X RyNj f

#2?2+Qf`iy98

DƂȲȊȲNJǨƂŔȊ žȲȢȲNJɧŔɝǝɷ ?iiTb,ff/QBXQ`;fRyXRyykf2+KX Rk3d

°Ȣ ʄǝƟ ȲɧǨNJǨȢ ȲLJ ɷɝƟƂǨƟɷ Ÿ˃ ȜƟŔȢɷ ȲLJ ȢŔʄʙɧŔȊ ɷƟȊƟƂʄǨȲȢ࡬ Ȳɧ ʄǝƟ ɝɧƟɷƟɧʶŔʄǨȲȢ ȲLJ LJŔʶȲʙɧƟƌ ɧŔƂƟɷ ǨȢ ʄǝƟ ɷʄɧʙNJNJȊƟ LJȲɧ ȊǨLJƟࡲ

õǝƟ ƌƟɷƂƟȢʄ ȲLJ ȜŔȢ࡬ ŔȢƌ ɷƟȊƟƂʄǨȲȢ ǨȢ ɧƟȊŔʄǨȲȢ ʄȲ ɷƟ˂

žƟʄǝȲƌɷ ǨȢ DƂȲȊȲNJ˃ ŔȢƌ DʶȲȊʙʄǨȲȢ ?iiTb,ff/QBXQ`;fRyXRRRRfky9R@

kRysXRkdj8

êƂǨƟȢʄǨ˩Ƃ áƟɝȲɧʄɷ ?iiTb,ff/QBXQ`;fRyXRyj3fb`2TR38R9

ŠȲʙɧȢŔȊ ȲLJ ʶǨŔȢ %ǨȲȊȲNJ˃ ?iiTb,ff/QBXQ`;fRyXRRRRfDpXykkkk

DƂȲȊȲNJ˃ ’ƟʄʄƟɧɷ

?iiTb,ff/QBXQ`;fRyXRRRRf2H2XRjkjj

õǝƟ ,ȲȢƌȲɧ ?iiTb,ff/QBXQ`;fRyXRe8yfyyRy@ 89kkUkyykVRy9(yyjy, aS*J"a)kXyX*Pck

,ǝǨɧȲ˂ǨɝǝǨŔ ȊǨȢƟŔɧǨɷ

(52)

ŠȲʙɧȢŔȊ ȲLJ ʶǨŔȢ %ǨȲȊȲNJ˃ ?iiTb,ff/QBXQ`;fRyXRRRRfDXReyy@y93sXkyyNXyjdejXt

ŠȲʙɧȢŔȊ ȲLJ õǝƟ áȲ˃ŔȊ êȲƂǨƟʄ˃ wȢʄƟɧLJŔƂƟ ?iiTb,ff/QBXQ`;fRyXRyN3f`bB7Xkyy3XyjN8X7Q+mb RNjjej99

%ƟǝŔʶǨȲɧŔȊ DƂȲȊȲNJ˃

?iiTb,ff/QBXQ`;fRyXRyNjf#2?2+Qf`;yj8

ŠȲʙɧȢŔȊ ȲLJ D˂ɝƟɧǨȜƟȢʄŔȊ %ǨȲȊȲNJ˃ ?iiTb,ff/QBXQ`;fRyXRk9kf D2#XykdRj RdkNdRjN

DƂȲȊȲNJ˃ ’ƟʄʄƟɧɷ ?iiTb,ff/QBXQ`;fRyX

RRRRf2H2XRk833

ÚŔʄʄƟɧȢ áƟƂȲNJȢǨʄǨȲȢ

?iiTb,ff/QBXQ`;fRyXRyRefDXTi+Q;Xkyy3XyjXykj

,ǝɧ˃ɷȲƂȲƂƂ˃˂ ƂʙɝɧƟʙɷ ĸƟǨʄɷƂǝɧǨLJʄ LJʠɧ ĸƟȊȊLJȲɧɷƂǝʙȢNJ ʙȢƌ žǨȄɧȲɷȄȲɝǨɷƂǝƟ ȢŔʄȲȜǨƟ

?iiTb,ff/QBXQ`;fRyXRyydf"6ykkkeNRk

áƟʶ êʙǨɷɷƟ ĸȲȲȊ

ÚɧȲƂƟƟƌǨȢNJɷ ȲLJ ʄǝƟ ¢ŔʄǨȲȢŔȊ ƂŔƌƟȜ˃ ȲLJ êƂǨƟȢƂƟɷ

?iiTb,ff/QBXQ`;fRyXRydjfTMbXy8yR3NRRyk Reyjj3dy

wDDD õɧŔȢɷŔƂʄǨȲȢɷ ȲȢ wȢLJȲɧȜŔʄǨȲȢ õǝƟȲɧ˃ ?iiTb,ff/QBXQ`;fRyXRRyNfhAhXRN3jX Ry8edR9

õǝƟ ŠȲʙɧȢŔȊ ȲLJ D˂ɝƟɧǨȜƟȢʄŔȊ %ǨȲȊȲNJ˃ ?iiTb,ff/QBX Q`;fRyXRk9kfD2#Xy883kk kRe8j3yN

(53)

ŠȲʙɧȢŔȊ ȲLJ õǝƟ áȲ˃ŔȊ êȲƂǨƟʄ˃ wȢʄƟɧLJŔƂƟ ?iiTb , ff/QBXQ`;fRyXRyN3f`bB7XkyRkXyRR3 kk9NRN3R

DʶȲȊʙʄǨȲȢ ?iiTb , f f /QB X Q`; f Ry X RRRR f 2pQ X Rk388 key99dye

DƂȲȊȲNJ˃ ŔȢƌ DʶȲȊʙʄǨȲȢ

?iiTb,ff/QBXQ`;fRyXRyykf2+2jXjyyy

DʶȲȊʙʄǨȲȢŔɧ˃ %ǨȲȊȲNJ˃

?iiTb,ff/QBXQ`;fRyXRyydfNd3@R@9eR8@eN8e@8n8

DƂȲȊȲNJǨƂŔȊ žȲȢȲNJɧŔɝǝɷ

?iiTb,ff/QBXQ`;fRyXkjydfkNjdRkR

%ǨȲȊȲNJǨƂŔȊ ŠȲʙɧȢŔȊ ȲLJ ʄǝƟ ’ǨȢȢƟŔȢ êȲƂǨƟʄ˃ ?iiTb,ff/QBXQ`;fRyXRRRRfDXRyN8@3jRkXkyRkXyRNjdXt

žƟʄǝ࢙

Ȳƌɷ ǨȢ DƂȲȊȲNJ˃ ŔȢƌ DʶȲȊʙʄǨȲȢ ?iiTb,ff/QBXQ`;fRyXRRRRf

ky9R@kRysXRjydj

õǝƟ ȜƟɧǨƂŔȢ ¢ŔʄʙɧŔȊǨɷʄ

?iiTb,ff/QBXQ`;fRyXRy3efk38Nj9 989

ȢǨȜŔȊ %ƟǝŔʶǨȲʙɧ

?iiTb,ff/QBXQ`;fRyXRyRefayyyj@j9dkUy8V3ykkN@8

õƟƂʄȲƂȲɧǨɷ ƌǨȲɝʄǝŔȊȜʙɷ

ڒ°ê °¢D ?iiTb,ff/QBXQ`;fRyXRjdRfDQm`MHX TQM2Xyye9y3k kjed88ky

õǝƟ ȜƟɧǨƂŔȢ ¢ŔʄʙɧŔȊǨɷʄ

?iiTb,ff/QBXQ`;fRyXRy3efk39jk8

(54)

,ŔȊȲɝʄƟɧ˃˂

ȜŔƂʙȊŔʄŔ ȢǨȜŔȊ %ƟǝŔʶǨȲʙɧ ?iiTb,ff/QBXQ`;fRyXRyyefM#2XkyyyXR893

ÚɧȲƂƟƟƌǨȢNJɷ ȲLJ ʄǝƟ ĸȲȲȊȲNJ࢙

ǨƂŔȊ êȲƂǨƟʄ˃ ȲLJ ’ȲȢƌȲȢ ?iiTb,ff/QBXQ`;fRyXRRRRfDXRyNe@je9kXR33kXi#ykd93Xt

cƟȲNJɧŔɝǝǨƂ wȢLJȲɧȜŔʄǨȲȢ êƂǨƟȢƂƟ

ƂʄŔ °ɧȢǨʄǝȲȊȲNJǨƂŔ

?iiTb,ff/QBXQ`;fRyXjReRfyyyRe98Rjsedyyyd

,ŔȊ˃ɝʄƟ ŔȢȢŔ ŠȲʙɧȢŔȊ ȲLJ ,ȲȜɝŔɧŔʄǨʶƟ Úǝ˃ɷǨȲȊȲNJ˃

?iiTb,ff/QBXQ`;fRyXRyydfbyyj8N@yR3@RkN8@3

ȢȢŔȊɷ ȲLJ %ȲʄŔȢ˃ ?iiTb,ff/QBXQ`;fRyXRyNjfQ#f K+[yyd

êƂǨƟȢƂƟ ?iiTb,

ff/QBXQ`;fRyXRRkefb+B2M+2Xdj8kkNy dj8kkNy

DƂȲȊȲNJ˃ ’ƟʄʄƟɧɷ ?iiTb,

ff/QBXQ`;fRyXRRRRfDXR9eR@yk93Xkyy9Xyy839Xt

õǝƟ ȜƟɧǨƂŔȢ ¢ŔʄʙɧŔȊǨɷʄ ?iiTb , f f /QB X Q`;fRyXRy3ef8RyRj3

ȜȲȢȲNJɧŔɝǝ ȲLJ ʄǝƟ õɧȲƂǝǨȊǨƌŔƟ࡬ Ȳɧ LJŔȜǨȊ˃ ȲLJ ǝʙȜȜǨȢNJ࢙ŸǨɧƌɷ

?iiTb,ff/QBXQ`;fRyX8Nekf#?HXiBiH2X8Ry8e

oƟȊǨȲƌȲ˂Ŕ ȊƟŔƌŸƟŔʄƟɧǨ oƟ࢙

ȊǨŔȢNJƟȊʙɷ ŔȜƟʄǝ˃ɷʄǨƂȲȊȊǨɷ õǝƟ ,ȲȢƌȲɧ ?iiTb,ff/QBX

Q`;fRyXkjydfRje3eN8

ŠȲʙɧȢŔȊ ȲLJ ʄǝƟ °ɝʄǨƂŔȊ êȲƂǨƟʄ˃ ȲLJ ȜƟɧǨƂŔ ?iiTb,ff/QBXQ`;fRyXRje9fCPaX8yXyyRyy8

(55)

õǝƟ ßʙŔɧʄƟɧȊ˃

áƟʶǨƟʺ ȲLJ %ǨȲȊȲNJ˃ ?iiTb,ff/QBXQ`;fRyXRy3ef8Ny8Ry DʶȲȊʙʄǨȲȢ ?iiTb,ff/QBXQ`;fRyXRRRRf2pQXRje38

?iiTb,ff/QBXQ`;fRyXey39fKNX7B;b?`2X+X9kd8NRRXpk

wȢʄƟɧLJŔƂƟ `ȲƂʙɷ ?iiTb,ff/QBXQ`;fRyXRyN3f`b7bXkyR3Xyy9N

ŸǨȲá˂Ǩʶ ?iiTb,ff/QBXQ`;fRyXRRyRfeNNd99

ŸǨȲá˂Ǩʶ

?iiTb,ff/QBXQ`;fRyXRRyRf83ejek

ŠȲʙɧȢŔȊ ȲLJ ʄǝƟ ȜƟɧǨƂŔȢ ,ǝƟȜǨƂŔȊ êȲƂǨƟʄ˃

?iiTb,ff/QBXQ`;fRyXRykRfD8yNj9y+

ȢNJƟʺŔȢƌʄƟ ,ǝƟȜǨƟ wȢʄƟɧȢŔʄǨȲȢŔȊ DƌǨʄǨȲȢ ?iiTb,ff/QBXQ`;fRyXRyykfMB2XkyR8ykke3

Úǝ˃ɷǨ࢙

ȲȊȲNJǨƂŔȊ ĸȲȲȊȲNJ˃ ?iiTb,ff/QBXQ`;fRyXRy3efT?vbxQQHX8yXjXjyR88dk9

õǝƟ ĤǨȊɷȲȢ %ʙȊȊƟʄǨȢ 9R8Nj9k

ʶǨŔȢ %ǨȲȊȲNJ˃ áƟ࢙

ɷƟŔɧƂǝ ?iiTb,ff/QBXQ`;fRyXjR39fRd83R88RjsRjeRdkdN33jNdj

(56)

ŠȲʙɧȢŔȊ ȲLJ DƂȲȊȲNJ˃ ?iiTb,ff/QBX Q`;fRyXRRRRfDXRje8@kd98XkyydXyRkkkXt

ÚŔɧʙɷ ƂŔƟɧʙȊƟʙɷ õʙɧƌʙɷ ȜƟɧʙȊŔ ŠȲʙɧȢŔȊ ȲLJ ,ȲȜɝŔɧŔʄǨʶƟ Úǝ˃ɷǨȲȊȲNJ˃

?iiTb,ff/QBXQ`;fRyXRyydfbyyj8Nyy8y9jd

%ƟǝŔʶǨȲɧŔȊ DƂȲȊȲNJ˃ ŔȢƌ êȲƂǨȲŸǨȲȊȲNJ˃

?iiTb,ff/QBXQ`;fRyXRyydfbyyke8@yyk@y8ek@j

%ǨȲȊȲNJǨƂŔȊ ŠȲʙɧȢŔȊ ȲLJ ʄǝƟ ’ǨȢȢƟŔȢ êȲƂǨƟʄ˃

?iiTb,ff/QBXQ`;fRyXRRRRfDXRyN8@3jRkXkyyjXyyke9Xt 9Ry

êƟɝǝŔȢȲǨƌƟɷ ɷƟɝǝŔȢǨȲƌƟɷ ŠȲʙɧȢŔȊ ȲLJ ,ȲȜɝŔɧŔʄǨʶƟ Úǝ˃ɷǨȲȊȲNJ˃ ?iiTb,ff/QBXQ`;fRyXRyydfbyyj8N@yy3@yj9N@3 R3839R3R

ȢǨȜŔȊ %ƟǝŔʶǨȲʙɧ ?iiTb , f f /QB X Q`; f Ry X RyRe f D X M#2?pXkyy9XyjXyRj

%Ǩɧƌ ƂȲȊȲɧŔʄǨȲȢ࡬ ʶȲȊʙȜƟ ࠃ࡫ žƟƂǝŔȢǨɷȜɷ ŔȢƌ ȜƟŔɷʙɧƟȜƟȢʄɷ

¢ŔʄʙɧƟ ,ȲȜȜʙȢǨƂŔʄǨȲȢɷ ?iiTb , f f /QB X Q`; f Ry X Ryj3fb9R9ed@yR3@yd8ek@d

¢ŔʄʙɧʺǨɷ࢙

ɷƟȢɷƂǝŔLJʄƟȢ ?iiTb,ff/QBXQ`;fRyXRyydf"6yyeyN88N

¢ŔʄʙɧƟ ?iiTb,ff/QBXQ`;fRyXRyj3fMim`2RRejR

kjRkj38d

ÚɧȲƂƟƟƌǨȢNJɷ ȲLJ ʄǝƟ ¢ŔʄǨȲȢŔȊ ƂŔƌƟȜ˃ ȲLJ êƂǨƟȢƂƟɷ ?iiTb,ff/QBXQ`;fRyXRydjf TMbXRdRekR9RR8 kN9dk98R

(57)

`ʙȢƂʄǨȲȢŔȊ DƂȲȊȲNJ˃ ?iiTb,ff /QBXQ`;fRyXRRRRfDXRje8@k9j8XkyyeXyRRyyXt

DʙɧƟȜŔ ǝƟƂŔŸƟ %ƟǝŔʶǨȲɧŔȊ DƂȲȊȲNJ˃ ?iiTb,ff/QBXQ`;fRyXRyNjf#2?2+Qf`KyN9

DʶȲȊʙʄǨȲȢ ?iiTb,ff

/QBXQ`;fRyXRRRRfDXR883@8e9eXkyydXyyyR9Xt

,ƟȊȊʙȊȲɝǝŔNJŔ Ȋ˃ʄǨƂŔ êƂǨƟȢʄǨ˩Ƃ áƟɝȲɧʄɷ ?iiTb , f f /QB X Q`; f Ry X Ryj3 f b`2TRNNye

áƟɝȲɧʄɷ ȲȢ ÚɧȲNJɧƟɷɷ ǨȢ Úǝ˃ɷǨƂɷ ?iiTb,ff/QBXQ`;fRyXRy33fyyj9@9338fdRfdfyde9yR

ÚɧȲƂƟƟƌǨȢNJɷ ȲLJ ʄǝƟ ¢ŔʄǨȲȢŔȊ ƂŔƌƟȜ˃ ȲLJ êƂǨƟȢƂƟɷ

?iiTb,ff/QBXQ`;fRyXRydjfTMbXN8XR8X39ky NedReNk

ÚȊŔʄ˃ƂƟɧƂʙɷ ƟȊƟNJŔȢɷ êƂǨƟȢʄǨ˩Ƃ áƟɝȲɧʄɷ ?iiTb,ff/QBXQ`;fRyXRyj3fb`2T9R998

ÚŔȊƟȲŸǨȲȊȲNJ˃ ?iiTb,ff/QBXQ`;fRyXRyRdfT#XkyR9X9

ÚɧȲNJɧƟɷɷ ǨȢ %ǨȲɝǝ˃ɷǨƂɷ ŔȢƌ žȲȊƟƂʙȊŔɧ

%ǨȲȊȲNJ˃ ?iiTb,ff/QBXQ`;fRyXRyRefyydN@eRydUdkVNyyy9@R 983R383

ÚɧȲƂƟƟƌǨȢNJɷ ȲLJ ʄǝƟ áȲ˃ŔȊ êȲƂǨƟʄ˃ %࡫ %ǨȲȊȲNJǨƂŔȊ êƂǨƟȢƂƟɷ

?iiTb,ff/QBXQ`;fRyXRyN3f`bT#XkyRyXkjNR

Úǝ˃ɷ࢙

ǨȲȊȲNJǨƂŔȊ ĸȲȲȊȲNJ˃ ?iiTb,ff/QBXQ`;fRyXRy3efT?vbxQQHXjeXkXjyR889je

¢ŔʄʙɧƟ ,ȲȜȜʙȢǨƂŔʄǨȲȢɷ ?iiTb, ff/QBXQ`;fRyXRyj3fM+QKKbee99

(58)

%ƟǝŔʶǨȲɧŔȊ DƂȲȊȲNJ˃

?iiTb,ff/QBXQ`;fRyXRyNjf#2?2+Qf`mRyN

°ɝʄǨƂɷ D˂ɝɧƟɷɷ

?iiTb,ff/QBXQ`;fRyXRje9fP1XRNXyk9yeR

ŠȲʙɧȢŔȊ ȲLJ ʶǨŔȢ %ǨȲȊȲNJ˃ ?iiTb,ff/QBXQ`;fRyXRRRRfDXReyy@y93sXkyRkXy8eeeXt

%ƟǝŔʶǨȲʙɧŔȊ ÚɧȲƂƟɷɷƟɷ

?iiTb,ff/QBXQ`;fRyXRyRefDX#2T`Q+XkyRyXyRXyRd

ڒ°ê °¢D ?iiTb,ff/QBXQ`;fRyXRjdRfDQm`MHXTQM2Xyy8Ndd9

õǝƟ ĤǨȊɷȲȢ %ʙȊȊƟʄǨȢ

ŸǨȲá˂Ǩʶ

?iiTb,ff/QBXQ`;fRyXRRyRfRyy3ed

ÚɧȲƂƟƟƌǨȢNJɷ ȲLJ ʄǝƟ áȲ˃ŔȊ êȲƂǨƟʄ˃ %࡫ %ǨȲȊȲNJǨƂŔȊ êƂǨƟȢƂƟɷ

?iiTb,ff/QBXQ`;fRyXRyN3f`bT#XkyRjXkkyN

%ƟǝŔʶǨȲɧŔȊ DƂȲȊȲNJ˃ ?iiTb,ff/QBXQ`;fRyXRyNjf#2?2+Qf`Tyd9

ɧƂǝǨȊȲƂǝʙɷ ŔȊƟ˂ŔȢƌɧǨ êƟȊŔɷɝǝȲɧʙɷ ɷŔɷǨȢ õǝƟ ,ȲȢƌȲɧ ?iiTb,ff/QBXQ`;fRyXkjydfRjeeejj

ŠȲʙɧȢŔȊ ȲLJ D˂ɝƟɧǨȜƟȢʄŔȊ %ǨȲȊȲNJ˃

žƟʄǝȲƌɷ ǨȢ DƂȲȊȲNJ˃ ŔȢƌ DʶȲȊʙʄǨȲȢ ?iiTb,ff/QBXQ`;f RyXRRRRfky9R@kRysXRjRd9

(59)

ŠȲʙɧȢŔȊ ȲLJ õǝƟ áȲ˃ŔȊ êȲƂǨƟʄ˃ wȢʄƟɧLJŔƂƟ ?iiTb,ff/QBXQ`;fRyXRyN3f`bB7XkyRRXy98e

ÚɧȲƂƟƟƌǨȢNJɷ ȲLJ ʄǝƟ ¢ŔʄǨȲȢŔȊ ƂŔƌƟȜ˃ ȲLJ êƂǨƟȢƂƟɷ

?iiTb,ff/QBXQ`;fRyXRydjfTMbXRkkyd39RRy kjd89jN8

DʶȲȊʙʄǨȲȢ

?iiTb,ff/QBXQ`;fRyXRRRRf2pQXRkNRk

%ƟǝŔʶǨȲɧŔȊ DƂȲȊȲNJ˃

?iiTb,ff/QBXQ`;fRyXRyNjf#2?2+Qf`vyRd

wŸǨɷ ?iiTb,ff/QBXQ`;fRyX

RRRRfB#BXRk8yR

%ƟǝŔʶǨȲɧŔȊ DƂȲȊȲNJ˃ ?iiTb,ff/QBXQ`;fRyX RyNjf#2?2+Qf`ByRk

ŸǨȲá˂Ǩʶ ?iiTb,

ff/QBXQ`;fRyXRRyRfdNNd3j

oƟȊǨƂȲȢǨʙɷ ƟɧŔʄȲ ŠȲʙɧȢŔȊ

ȲLJ D˂ɝƟɧǨȜƟȢʄŔȊ %ǨȲȊȲNJ˃ ?iiTb , f f /QB X Q`; f Ry X Rk9k f D2# X Rje8kj kdk9djR3

ŠȲʙɧȢŔȊ ȲLJ D˂ɝƟɧǨȜƟȢʄŔȊ %ǨȲȊȲNJ˃ Rk9yN8yR

ê˃ɷʄƟȜŔʄǨƂ %ǨȲȊȲNJ˃ ?iiTb,

ff/QBXQ`;fRyXRy3yfRyej8R8ydyRe8ejey RdNj9NN3

,ʙɧɧƟȢʄ %ǨȲȊȲNJ˃

?iiTb,ff/QBXQ`;fRyXRyRefDX+m#XkyR9XyjXyRe k9dy9yd3

(60)

õǝƟ ʙȄ ?iiTb,ff/QBXQ`;fRyX RyNjfmFfRkkXjXdNj

%ƟǝŔʶǨȲɧŔȊ DƂȲȊȲNJ˃ ŔȢƌ êȲƂǨȲŸǨȲȊȲNJ˃ ?iiTb , f f /QB X Q`; f Ry X Ryyd f byyke8 @ yRy @ RRj8 @ 8 3de

,ŔȊ˃ɝʄƟ ŔȢȢŔ ŠȲʙɧȢŔȊ ȲLJ D˂ɝƟɧǨȜƟȢʄŔȊ %ǨȲȊȲNJ˃

?iiTb,ff/QBXQ`;fRyXRk9kfD2#XyeNj8R kk3jd99e

¢ŔʄʙɧƟ ,ȲȜȜʙȢǨƂŔʄǨȲȢɷ ?iiTb, ff/QBXQ`;fRyXRyj3fb9R9ed@yR3@y83N3@3

ŸǨȲá˂Ǩʶ ?iiTb,ff/QBXQ`;fRyXRRyRf93N9RN

õǝƟ ʙȄ

?iiTb,ff/QBXQ`;fRyXkjydf9y3e39y 9y3e39y

DʶȲȊʙʄǨȲȢ

?iiTb,ff/QBXQ`;fRyXRRRRfDXR883@8e9eXRNN3Xi#yjdRyXt

%Ǩɧƌ ,ȲȊȲɧŔʄǨȲȢ࡬ ġȲȊʙȜƟ ࠃ࡫ žƟƂǝŔȢǨɷȜɷ ŔȢƌ žƟŔɷʙɧƟ࢙

ȜƟȢʄɷ

õǝƟ ,ȲȢƌȲɧ ?iiTb,ff/QBXQ`;fRyXkjydfRjed8dd

DʶȲȊʙʄǨȲȢ ?iiTb,ff/QBXQ`;fRyX

RRRRf2pQXRk99R k9deeRyd

ÚɧȲƂƟƟƌǨȢNJɷ ȲLJ ʄǝƟ áȲ˃ŔȊ êȲƂǨƟʄ˃ %࡫ %ǨȲȊȲNJǨƂŔȊ êƂǨƟȢƂƟɷ

?iiTb,ff/QBXQ`;fRyXRyN3f`bT#XkyRNXykj9

(61)

DʶȲȊʙʄǨȲȢ

?iiTb,ff/QBXQ`;fRyXRRRRf2pQXRje9R

ŠȲʙɧȢŔȊ ȲLJ ,ȲȜɝŔɧŔʄǨʶƟ Úǝ˃ɷǨȲȊȲNJ˃ ?iiTb,ff/QBXQ`;fRyXRyydfbyyj8N@yy3@yjN8@k

ŠȲʙɧȢŔȊ ȲLJ ,ȲȜɝŔɧŔʄǨʶƟ Úǝ˃ɷǨȲȊȲNJ˃ ?iiTb,ff/QBXQ`;fRyXRyydfbyyj8N@yyN@y9d9@x

ÚɧȲƂƟƟƌǨȢNJɷ ȲLJ ʄǝƟ áȲ˃ŔȊ êȲƂǨƟʄ˃ %࡫ %ǨȲȊȲNJǨƂŔȊ êƂǨƟȢƂƟɷ ?iiTb, ff/QBXQ`;fRyXRyN3f`bT#XkyRRXRddd kRNdee3j

DƂȲȊȲNJ˃ ŔȢƌ DʶȲȊʙʄǨȲȢ ?iiTb,ff/QBXQ`;fRyX Ryykf2+2jXRN8y

ŠȲʙɧȢŔȊ ȲLJ õǝƟ áȲ˃ŔȊ êȲƂǨƟʄ˃ wȢʄƟɧLJŔƂƟ ?iiTb,ff/QBXQ`;fRyXRyN3f`bB7XkyRRX yey3 kkydk99d

ÚɧȲƂƟƟƌǨȢNJɷ ȲLJ ʄǝƟ áȲ˃ŔȊ êȲƂǨƟʄ˃ %࡫ %ǨȲȊȲNJǨƂŔȊ êƂǨƟȢƂƟɷ ?iiTb , ff/QBXQ`;fRyXRyN3f`bT#XkyRkXRk38

ŠȲʙɧȢŔȊ ȲLJ D˂ɝƟɧǨȜƟȢʄŔȊ %ǨȲȊȲNJ˃ Rky3Nkyd

ġǨɷǨȲȢ áƟɷƟŔɧƂǝ ?iiTb ,

ff/QBXQ`;fRyXRyRefDXpBb`2bXkyy3XyeXyR3 R3ekdddj

ɝŔʄʙɧŔ ǨɧǨɷ ࡲ ǨȊǨŔ

°ɝʄǨƂɷ D˂ɝɧƟɷɷ ?iiTb,ff/QBXQ`;fRyXRje9fP1XRNXyy83Rd

ŠȲʙɧȢŔȊ ȲLJ D˂ɝƟɧǨȜƟȢʄŔȊ %ǨȲȊȲNJ˃

N89djRk

ŠȲʙɧȢŔȊ ȲLJ °ɝʄǨƂɷ ࡫ ÚʙɧƟ ŔȢƌ ɝɝȊǨƟƌ °ɝʄǨƂɷ

?iiTb,ff/QBXQ`;fRyXRy33fR9e9@9k83fkfefkyR

(62)

ŠȲʙɧȢŔȊ ȲLJ õǝƟ áȲ˃ŔȊ êȲƂǨƟʄ˃ wȢʄƟɧLJŔƂƟ ?iiTb,ff/QBXQ`;fRyXRyN3f`bB7X kyRdXyN93 kNeeN3Nk

êƂǨƟȢʄǨ˩Ƃ áƟɝȲɧʄɷ

?iiTb,ff/QBXQ`;fRyXRyj3fb`2TR3jRd

,ǝŔɧǨƌȲʄƟȊȊŔ ŔȜŸǨʄŔ ɧʄǝɧȲɝȲƌ êʄɧʙƂʄʙɧƟ ॻ 5ƟʶƟȊȲɝȜƟȢʄ ?iiTb,ff/QBXQ`;fRyXRyRefDXb/XkyReXRyXyy3

%Ŕʄʄʙɷ ɝǝǨȊƟȢȲɧ ŠȲʙɧȢŔȊ ȲLJ wȢɷƟƂʄ êƂǨƟȢƂƟ

?iiTb,ff/QBXQ`;fRyXRedjfyjRXyRjXRRyyR

ŠȲʙɧȢŔȊ ȲLJ DʶȲȊʙʄǨȲȢŔɧ˃ %ǨȲȊȲNJ˃ ?iiTb,ff/QBXQ`;fRyXRRRRfD2#XRkR38

o˃ƌɧȲŸǨȲȊȲNJǨŔ ?iiTb,ff/QBXQ`;fRyXRyydfbRyd8y@yRj@R88d@v

ڒ°ê °¢D ?iiTb,ff

/QBXQ`;fRyXRjdRfDQm`MHXTQM2XyRe838d

õǝƟ ,ȲȢƌȲɧ

?iiTb,ff/QBXQ`;fRyXkjydfRje9RkN Rje9RkN

žȲɧɝǝȲ ɧǝƟʄƟȢȲɧ

ŠȲʙɧȢŔȊ ȲLJ õǝƟ áȲ˃ŔȊ êȲƂǨƟʄ˃ wȢʄƟɧLJŔƂƟ ?iiTb,ff/QBXQ`;fRyXRyN3f`bB7Xkyy9Xyyye Re39NR8k

(63)

ŠȲʙɧȢŔȊ ȲLJ ,ȲȜɝŔɧŔʄǨʶƟ Úǝ˃ɷǨȲȊȲNJ˃ % ?iiTb , f f /QB X Q`; f Ry X Ryyd f byyjey@yRk@yedd@9

,ŔȊȲƟȢŔɷ ȢǨƂȲŸŔɧǨƂŔ ƌʶŔȢƂƟƌ

°ɝʄǨƂŔȊ žŔʄƟɧǨŔȊɷ ?iiTb,ff/QBXQ`;fRyXRyykf/QKXkyRdyRkR3

`ʙȢƂʄǨȲȢŔȊ DƂȲȊȲNJ˃ ?iiTb , f f /QB X Q`; f Ry X RRRR f Rje8 @ k9j8XRky3e

%ǨȲȊȲNJǨƂŔȊ áƟʶǨƟʺɷ ?iiTb,ff/QBXQ`;fRyXRRRRf#`pXRkkjy

õ˃ʄȲ ŔȊŸŔ ÚʙȊɷŔʄɧǨ˂ ɝƟɧɷɝǨƂǨȊȊŔʄŔ

êʄɧǨ˂ ŔȊŸǨʄŔɧɷǨɷ °ɧȢǨʄȲȊȲNJǪŔ ¢ƟȲʄɧȲɝǨƂŔȊ

õǝƟ ĤǨȊɷȲȢ ŠȲʙɧ࢙

ȢŔȊ ȲLJ °ɧȢǨʄǝȲȊȲNJ˃ ?iiTb,ff/QBXQ`;fRyXRedefyk@Ry8

cȊȲŸŔȊ ,ǝŔȢNJƟ

%ǨȲȊȲNJ˃ ?iiTb,ff/QBXQ`;fRyXRRRRf;+#XRk8N9 k9dyydNj

oƟȊǨŔȢNJƟȊʙɷ ’ȲɝǝȲɝǝȲ࢙

ɧʙɷ ĸƟǨʄɷƂǝɧǨLJʄ LJʠɧ ĸƟȊȊLJȲɧɷƂǝʙȢNJ ʙȢƌ žǨȄɧȲɷȄȲɝǨɷƂǝƟ ȢŔʄȲȜǨƟ ?iiTb,ff/QBXQ`;fRyXRyydf

"6yyjj3Nke

oŔȢƌŸȲȲȄ ȲLJ ʄǝƟ %Ǩɧƌɷ ȲLJ ʄǝƟ ĤȲɧȊƌ ȊǨʶƟ

`ʙȢƂʄǨȲȢŔȊ DƂȲȊȲNJ˃ ?iiTb ,

ff/QBXQ`;fRyXRRRRfDXRje8@k9j8XkyyNXyR839Xt

%ǨȲȊȲNJ˃

’ƟʄʄƟɧɷ ?iiTb,ff/QBXQ`;fRyXRyN3f`b#HXkyRkXykej kked8R9R

ÚǝǨȊȲɷȲɝǝǨƂŔȊ õɧŔȢɷŔƂʄǨȲȢɷ ȲLJ ʄǝƟ áȲ˃ŔȊ êȲƂǨƟʄ˃ %࡫

%ǨȲȊȲNJǨƂŔȊ êƂǨƟȢƂƟɷ ?iiTb , f f /QB X Q`; f Ry X RyN3 f `bi# X kyRe X y8je

(64)

ŠȲʙɧȢŔȊ ȲLJ žȲɧɝǝȲȊȲNJ˃ ?iiTb, ff/QBXQ`;fRyXRyykfDKQ`Xkyj9d k89kdN8R

õǝƟ êƂǨƟȢƂƟ ȲLJ ¢ŔʄʙɧƟ ?iiTb,ff/QBXQ`;fRyXRyydfbyyRR9@yRd@R9NN@3

ŠȲʙɧȢŔȊ ȲLJ õǝƟ áȲ˃ŔȊ êȲƂǨƟʄ˃ wȢʄƟɧLJŔƂƟ ?iiTb,ff/QBX Q`;fRyXRyN3f`bB7Xkyy3Xy98NX7Q+mb RNR9R9jy

%ǨȲȊȲNJ˃ ’ƟʄʄƟɧɷ

?iiTb,ff/QBXQ`;fRyXRyN3f`b#HXkyy9Xyk3N

DƂȲȊȲNJ˃ ’ƟʄʄƟɧɷ

?iiTb,ff/QBXQ`;fRyXRRRRf2H2XRjRk8

%ƟǝŔʶǨȲɧŔȊ DƂȲȊȲNJ˃ ?iiTb,ff/QBXQ`;fRyXRyNjf#2?2+Qf`vyRe

DʶȲȊʙʄǨȲȢ ?iiTb,ff/QBX

Q`;fRyXRRRRf2pQXRjeek

õǝƟ ȜƟɧǨƂŔȢ ¢ŔʄʙɧŔȊǨɷʄ ?iiTb,ff/QBXQ`;f RyXRy3efdy9dd9

õǝƟ ȜƟɧǨƂŔȢ ¢ŔʄʙɧŔȊǨɷʄ

?iiTb,ff/QBXQ`;fRyXRy3efe33de8

%ǨȲȊȲNJ˃ ’ƟʄʄƟɧɷ

?iiTb,ff/QBXQ`;fRyXRyN3f`b#HXkyRRXRRe3 kkkdNR89

õǝƟ ȜƟɧǨƂŔȢ ¢ŔʄʙɧŔȊǨɷʄ ?iiTb,ff/QBXQ`;fRyXRy3efee8yjR

žŔʄƟɧǨŔȊɷ õȲƌŔ˃࡫ ÚɧȲƂƟƟƌǨȢNJɷ

(65)

?iiTb,ff/QBXQ`;fRyXRyRefDXKiT`XkyR9X yNXyyd

cɧŔɝǝǨʙȜ ɷŔɧɝƟƌȲȢ

ŠȲʙɧȢŔȊ ȲLJ D˂ɝƟɧǨȜƟȢʄŔȊ %ǨȲȊȲNJ˃ ?iiTb,ff/QBXQ`;fRyX Rk9kfD2#Xy9R9j9 ky9j83k9

ÚɧȲƂƟƟƌǨȢNJɷ ȲLJ ʄǝƟ áȲ˃ŔȊ êȲƂǨƟʄ˃ ȲLJ ’ȲȢƌȲȢ %࡫ %ǨȲȊȲNJǨƂŔȊ êƂǨƟȢƂƟɷ ?iiTb,ff/QBXQ`;fRyXRyN3f

`bT#XkyRyXkkNj kRR8Nede

’ǨNJǝʄ࡫ êƂǨƟȢƂƟ ॻ ɝɝȊǨƂŔʄǨȲȢɷ ?iiTb , ff/QBXQ`;fRyXRyj3fHbXkyR8XRe

ŠȲʙɧȢŔȊ ȲLJ D˂ɝƟɧǨȜƟȢʄŔȊ %ǨȲȊȲNJ˃

?iiTb,ff/QBXQ`;fRyXRk9kfD2#Xyekeky kkydRR3e ȢǨȜŔȊ ƂŔȜȲʙ˪ŔNJƟ࡫ ȜƟƂǝŔȢǨɷȜɷ ŔȢƌ LJʙȢƂʄǨȲȢ

%ǨȲȊȲNJǨƂŔȊ ŠȲʙɧȢŔȊ ȲLJ ʄǝƟ ’ǨȢȢƟŔȢ êȲƂǨƟʄ˃

?iiTb,ff/QBXQ`;fRyXRRRRfDXRyN8@3jRkXkyydXyydk8Xt

õǝƟ ,ȲȢƌȲɧ

?iiTb,ff/QBXQ`;fRyXkjydfRjeded9 Rjeded9

žƟʄ࢙

ŔȊȊʙɧŔ ʄ˃ɧǨŔȢʄǝǨȢŔ NJȊŔǨȲƂƟɧƂʙɷ ȄǨȢNJǨ áƟʶǨɷʄŔ ƌƟ ȊŔ ƂŔƌƟȜǨŔ

,ȲȊȲȜŸǨŔȢŔ ƌƟ ,ǨƟȢƂǨŔɷ D˂ŔƂʄŔɷ࡬ `ǪɷǨƂŔɷ ˃ ¢ŔʄʙɧŔȊƟɷ ?iiTb , f f /QB X Q`; f Ry X R3k8df`++27vMXkey

õǝƟ ʙȄ

?iiTb,ff/QBXQ`;fRyXkjydf9y3jdNR 9y3jdNR

,ʙɧɧƟȢʄ ĸȲȲȊȲNJ˃

?iiTb,ff/QBXQ`;fRyXRyNjf+xQQHQf83X9Xejy

õǝƟ ȜƟɧǨƂŔȢ ¢ŔʄʙɧŔȊǨɷʄ ?iiTb,ff/QBXQ`;fRyXRy3efdyRjyy

(66)

%ƟǝŔʶǨȲɧŔȊ DƂȲȊȲNJ˃ ?iiTb,ff/QBXQ`;fRyXRyNjf#2?2+Qf``y33

¢Ɵʺ Úǝ˃ʄȲȊȲNJǨɷʄ ?iiTb,

ff/QBXQ`;fRyXRRRRfMT?XRkR8d

ÚǝǨȊȲɷȲɝǝǨƂŔȊ õɧŔȢɷŔƂʄǨȲȢɷ ȲLJ ʄǝƟ áȲ˃ŔȊ êȲƂǨƟʄ˃ %࡫ %ǨȲȊȲNJǨƂŔȊ êƂǨƟȢƂƟɷ

?iiTb,ff/QBXQ`;fRyXRyN3f`bi#XkyReXyj98

D˂ɝƟɧǨƟȢʄǨŔ ?iiTb,ff/QBXQ`;fRyXRyydf"6yRNkyk9y

ŠȲʙɧȢŔȊ ȲLJ DʶȲȊʙ࢙

ʄǨȲȢŔɧ˃ %ǨȲȊȲNJ˃ ?iiTb,ff/QBXQ`;fRyXRRRRfDXR9ky@NRyRXkyRyXykReeXt

ŠʙȢȲȢǨŔ

ŸǨȲá˂Ǩʶ ?iiTb,ff/QBXQ`;fRyXRRyRf8398jk

žƟʄǝȲƌɷ ǨȢ DƂȲȊȲNJ˃ ŔȢƌ DʶȲȊʙʄǨȲȢ

?iiTb,ff/QBXQ`;fRyXRRRRfky9R@kRysXRk9jN

°ɝʄǨƂɷ D˂ɝɧƟɷɷ ?iiTb , f f /QB X Q`; f Ry X Rje9 f P1 X ky X yy33dd

ŸǨȲá˂Ǩʶ ?iiTb,ff/QBXQ`;fRyXRRyRf8NkkeR

%ƟǝŔʶǨȲɧŔȊ DƂȲȊȲNJ˃ ŔȢƌ êȲƂǨȲŸǨȲȊȲNJ˃ ?iiTb,ff/QBXQ`;fRyXRyydfbyyke8@yRe@

kRe9@8

žƟʄǝȲƌɷ

(67)

ǨȢ DƂȲȊȲNJ˃ ŔȢƌ DʶȲȊʙʄǨȲȢ ?iiTb,ff/QBXQ`;fRyXRRRRfky9R@ kRysXRk38j

ŠȲʙɧȢŔȊ ȲLJ õǝƟ áȲ˃ŔȊ êȲƂǨƟʄ˃ wȢʄƟɧLJŔƂƟ ?iiTb,ff/QBXQ`;fRyXRyN3f`bB7XkyRjX yjN9 kj33jN9N

DƂȲȊȲNJ˃ ?iiTb,ff/QBXQ`;f

RyXR3Nyfyd@RkyeXR

ÚɧȲƂƟƟƌ࢙

ǨȢNJɷ ȲLJ ʄǝƟ áȲ˃ŔȊ êȲƂǨƟʄ˃ ȲLJ ’ȲȢƌȲȢ %࡫ %ǨȲȊȲNJǨƂŔȊ êƂǨƟȢƂƟɷ ?iiTb,ff/QBXQ`;f RyXRyN3f`bT#XRNN3Xyjyk N8kj9je

ŠȲʙɧȢŔȊ ȲLJ ,ȲȜɝŔɧŔʄǨʶƟ Úǝ˃ɷǨȲȊȲNJ˃ ?iiTb, ff/QBXQ`;fRyXRyydfbyyj8Nyy8yk3e N3jN989

¢ŔʄʙɧƟ ?iiTb,ff/QBXQ`;fRyXRyj3fj8yye8eR

ÚɧȲƂƟƟƌǨȢNJɷ ȲLJ ʄǝƟ áȲ˃ŔȊ êȲƂǨƟʄ˃ ȲLJ ’ȲȢƌȲȢ %࡫ %ǨȲȊȲNJǨƂŔȊ

êƂǨƟȢƂƟɷ ?iiTb,ff/QBXQ`;fRyXRyN3f`bT#XRNNNXydN9

õǝƟ ȜƟɧǨƂŔȢ ¢ŔʄʙɧŔȊǨɷʄ

?iiTb,ff/QBXQ`;fRyXRy3efkdRNdN

¢ŔʄʙɧŔȊ ɷƟȊƟƂʄǨȲȢ ŔȢƌ ʄɧȲɝǨƂŔȊ ȢŔʄʙɧƟࡷ ƟɷɷŔ˃ɷ ȲȢ ƌƟɷƂɧǨɝʄǨʶƟ ŔȢƌ ʄǝƟȲɧƟʄǨƂŔȊ ŸǨȲȊȲNJ˃

Úǝ˃ɷǨƂŔȊ áƟʶǨƟʺ D ?iiTb,ff/QBXQ`;fRyXRRyjfS?vb_2p1Xd8Xy9RNRN

DʶȲȊʙʄǨȲȢŔɧ˃ DƂȲȊȲNJ˃ ?iiTb,ff/QBXQ`;f RyXRyydfbRye3k@yRe@N3de@t

DʶȲȊʙʄǨȲȢ ?iiTb,ff/QBX

Q`;fRyXRRRRf2pQXRk88R

(68)

êƂǨƟȢƂƟ

?iiTb,ff/QBXQ`;fRyXRRkefb+B2M+2XRReek8e RNRRNkj8

`ɧȲȢʄǨƟɧɷ ǨȢ ĸȲȲȊȲNJ˃ ?iiTb,ff/QBXQ`;fRyXRR3efbRkN3j@

yRe@yRe3@d

ĸƟȢŔǨƌŔ ȜŔƂɧȲʙɧŔ

ÚɧȲƂƟƟƌǨȢNJɷ ȲLJ ʄǝƟ ¢ŔʄǨȲȢŔȊ ƂŔƌƟȜ˃

ȲLJ êƂǨƟȢƂƟɷ ?iiTb,ff/QBXQ`;fRyXRydjfTMbXRdyNy83RR9

ÚɧȲƂƟƟƌǨȢNJɷ ȲLJ ʄǝƟ ¢ŔʄǨȲȢŔȊ ƂŔƌƟȜ˃ ȲLJ êƂǨƟȢƂƟɷ ?iiTb,ff/QBX Q`;fRyXRydjfTMbXkRjjjRjRyy R988d89R

(69)
(70)

rsfs.royalsocietypublishing.org

Research

Cite this article:Gruson H, Andraud C, Daney de Marcillac W, Berthier S, Elias M, Gomez D.

2018 Quantitative characterization of iridescent colours in biological studies: a novel method using optical theory.Interface Focus9:

20180049.

http://dx.doi.org/10.1098/rsfs.2018.0049

Accepted: 11 October 2018

One contribution of 11 to a theme issue ‘Living light: optics, ecology and design principles of natural photonic structures’.

Subject Areas:

biomaterials, biophysics, environmental science

Keywords:

iridescence, structural colours, thin-film interferences, hummingbirds, Lepidoptera, visual signals

Author for correspondence:

Hugo Gruson

e-mail: hugo.gruson@normalesup.org

Electronic supplementary material is available online at https://dx.doi.org/10.6084/m9.

figshare.c.4275911.

Quantitative characterization of iridescent colours in biological studies: a novel method using optical theory

Hugo Gruson

1

, Christine Andraud

2

, Willy Daney de Marcillac

3

, Serge Berthier

3

, Marianne Elias

4

and Doris Gomez

1,3

1CEFE, Univ Montpellier, CNRS, Univ Paul Vale´ry Montpellier 3, EPHE, IRD, Montpellier, France

2CRC, MNHN, Ministe`re de la Culture et de la Communication, CNRS, Paris, France

3INSP, Sorbonne Universite´, CNRS, Paris, France

4ISYEB, CNRS, MNHN, EPHE, Sorbonne Universite´, Paris, France

HG, 0000-0002-4094-1476; ME, 0000-0002-1250-2353; DG, 0000-0002-9144-3426

Iridescent colours are colours that change with viewing or illumination geometry. While they are widespread in many living organisms, most evolutionary studies on iridescence do not take into account their full com- plexity. Few studies try to precisely characterize what makes iridescent colours special: their angular dependency. Yet, it is likely that this angular dependency has biological functions and is therefore submitted to evolution- ary pressures. For this reason, evolutionary biologists need a repeatable method to measure iridescent colours as well as variables to precisely quan- tify the angular dependency. In this study, we use a theoretical approach to propose five variables that allow one to fully describe iridescent colours at every angle combination. Based on the results, we propose a new measure- ment protocol and statistical method to reliably characterize iridescence while minimizing the required number of time-consuming measurements.

We use hummingbird iridescent feathers and butterfly iridescent wings as test cases to demonstrate the strengths of this new method. We show that our method is precise enough to be potentially used at intraspecific level while being also time-efficient enough to encompass large taxonomic scales.

1. Introduction

Most interactions between organisms, whether between different species (inter- specific) or different individuals of the same species (intraspecific), involve communication. Communication can have different purposes (e.g. warning, camouflage, display) and use different channels (e.g. olfactory, acoustic, visual) [1]. In particular, colour is a specific kind of communication channel that can be produced through two non-mutually exclusive mechanisms: pigmentary col- ours are generated by the selective absorption of some wavelengths by special molecules called pigments while structural colours are generated by the physical interaction of light with matter, causing dispersion, diffraction or interferences [2].

Among structural colours, iridescent colours change depending on the illumi- nation or observation angle. They can be produced by interferences of light after reflection by a thin-film or multilayer structure, or diffraction on a grating. Irides- cent colours are present in many taxa, and particularly widespread among bony fishes (Actinopterygii), insects, as well as some birds (see detailed review in table 1 for studies on each one of these taxa). Iridescent colours seem to be involved in many important biological processes [123] and their angular depen- dency is likely under selection to produce complex visual signals [74,87,115,124].

In some cases, however, angular dependency may be selected against [125]. In all those cases, the study of the evolution of iridescent colours requires a precise quantification of the angular dependency. However, the inherent physical com- plexity of iridescent colours has hampered the development of quantitative methods to fully describe them in the angle space.

&

2018 The Author(s) Published by the Royal Society. All rights reserved.

(71)

We reviewed all studies that performed reflectance measurements of biological samples with iridescent colours produced by a multilayer or a thin-film structure in table 1.

We notice two main trends: (i) many studies measure irides- cence at a single fixed angle (first row in table 1). In these studies, authors generally remain cautious and warn they are not attempting to measure angle dependency. However, the multilayer or thin film producing iridescent colours may not be parallel to the sample surface [67,80,96,102,109], and the angle between them and the sample surface may vary between species or even between individuals of the same species [105].

Hence, even though the angle of the measuring optical fibres relative to the macroscopic is constant, the angle relative to the structures is not. This jeopardizes any biological interpret- ation of differences between samples because the effects of many different parameters are intertwined.

(ii) Other studies take measurements at multiple angles but few attempt to precisely quantify angle dependency (‘Literature review’ folder in electronic supplementary material). Even when angle dependency is quantified, variables never stem from a theoretical approach, which leads to a large diversity of custom variables for each author. This heterogeneity in the methods, variable naming and sign conventions has likely hin- dered the spread of new concepts and results among researchers working on iridescence in living organisms.

Osorio & Ham [110] and Meadows et al. [114] started to address this heterogeneity in measurement methods and advocated for the use of a goniometer to reliably measure colour in a controlled angle configuration. However, they did not propose a detailed protocol or statistical tools to study angu- lar dependency. Here, we use the optical laws that govern iridescence to propose a set of parameters to characterize

angle dependency of brightness, hue and saturation of irides- cent colours. Next, we confirm the validity of these equations for complex biological structures using two highly different groups of organisms well known for their iridescent colours:

Trochilidae (hummingbirds) and Lepidoptera (i.e. butterflies and moths), including the iconic Morpho butterflies that harbour large wings with bright iridescent blue colours. The standard framework we propose here makes iridescent colours comparable across taxa and across studies, opening up new perspectives in the study of their biological functions.

2. Model

2.1. Choice of colour variables

Since we want to produce a general method that would not depend on any specific vision system, we use variables directly derived from spectra, without computing vision models. We define brightness Bas the average reflectance over a range between the minimal (lmin) and maximal (lmax) wavelengths (B2in Montgomerie [126]), saturation Sas the full width at half maximum reflectance and hue H as the wavelength at which reflectance is maximal (H1 in Montgomerie [126]).

These three variables are represented in figure 1 and are the most common measures of brightness, hue and saturation in studies about iridescence (see the literature review in the electronic supplementary material).

2.2. Assumptions and equations

Our method relies on three assumptions that greatly simplify the equations for brightness, hue and saturation in the angle Table 1.Review of the methods used in the literature to study iridescent colours from multilayer or thin-film structures. The criteria we used for studies to be included in the table were the following: (i) at least one quantitative reflectance measurement using a spectrometer, (ii) functioning with white light (no monochromatic illumination), and (iii) the patch measured had to be described as iridescent in the article. A more detailed version of this table, with all angle configurations and colour variables used for each study is available in the electronic supplementary material. The terms ‘constant illumination’, ‘constant collection’, ‘constant angle bisector’ and ‘constant span’ are defined in figure 3d.

no. measurements fibre configuration (no. studies) birds arthropods others

single measurement single fixed angle (53) [3 – 33] [34 – 48] bony fishes [49]; mammals [50];

plants [51 – 54]

single measurement relative to the structure orientation (6)

— [55 – 60] —

multiple measurements along a single line

constant illumination (5) [61] [62 – 64] bacteria [65]

constant collection (2) [66] [67] —

constant angle bisector (16) [68 – 78] [79 – 83] —

constant span (16) [84 – 87] [88 – 96] bony fishes [97]; lizards [98,99]

multiple measurement lines

multiple constant illuminations (4) [100] [101,102] bacteria [103]

multiple constant collections (1) [104] —

multiple constant spans (1) [105] —

constant illumination and bisector (3) — [106,107] bacteria [108]

multiple illumination and bisector (1) — [109] —

constant illumination and span (3) [110,111] [112] —

constant span and bisector (6) [113 – 115] [116 – 118] gastropods [119]

constant illumination, span and bisector (4) [120,121] [102,122] —

rsfs.royalsocietypublishing.orgInterfaceFocus9:20180049

2

(72)

space. See appendix A for mathematical proofs of the equations and the role of each one of these assumptions:

(1) Small angles (less than or equal to 308). Outside of this range, the signal due to iridescence is often very low and all that remains is the effect of the underlying pigments, which can be measured through traditional methods.

For all thin films, and in some multilayers (depending on chemical composition), it is possible to consider angles up to 458, as illustrated in the electronic supplementary material. This may help in producing more repeatable parameter estimates. For instance, a 458angle can corre- spond to a viewer standing next to the viewed iridescent patch illuminated from above. Many previous studies have in this way mimicked the position of the bird relative to the sun in their measurements [66,87,98,105,114,118].

(2) The orientation of the layers within the multilayer struc- ture is affected by Gaussian noise. Many developmental processes are controlled by a large array of independent factors of small effect each, causing subsequent errors to often be Gaussian (due to the central limit theorem).

This assumption is also empirically supported by the results of Guret al.[127], who looked at the orientation of guanine crystals in neon tetra fishes (Paracheirodon innesi) using wide-angle X-ray scattering. Fitting a Cauchy distribution (fatter tail distribution) instead of a Gaussian distribution yields similar values of parameter estimates. For simplicity, we here only present the results with Gaussian noise.

(3) Multilayers are ideal, i.e. the optical thickness (layer thickness times optical index) of each layer is constant:

n1e1¼n2e2. This is a common assumption [36,54,67,97, 107,119,128–130] which is thought to be valid for most animal reflectors [131] because it produces the brightest and most saturated signals with a minimal number of layers (but see Schultz & Rankin [35] and Parkeret al.

[132] for beetles, Kinoshitaet al.[133] for neon tetra).

This set of assumptions allows us to formally derive simple analytic expressions of brightnessB, hueHand saturationS (figure 1) in the angle space (Finc,Fcol). All variables used in this study with their notations and their possible values are listed in table 2 and illustrated whenever possible in figure 2.

B(Finc,Fcol)¼Bmaxexp ((Finc Fcol)=2 t)2

2g2B , (A 4 bis) H(Finc,Fcol)¼Hmaxcos gHFincþFcol

2

(A 14 bis) and

S(Finc,Fcol)¼Smax: (2:1) Hereafter, we focus on brightnessBand hueHbecause satur- ation S is constant no matter the angle configuration. The brightnessB(Finc,Fcol) in the angle space is entirely defined by three parameters: Bmax, t and gB. The tiltt is the angle between the multilayer structure and the sample surface (as illustrated in figure 2).Bmaxis the maximum reflectance pro- duced by the multilayer or thin-film structure, reached when the fibres are placed in a symmetrical configuration relative to the normal of the multilayer.gBis the parameter quantifying the disorder in the alignment of the multilayer structure. This disorder in the structure results in a reflected signal that is not purely specular but instead contains a diffuse component, meaning it can be seen at multiple angle configurations. For this reason, from a macroscopic point of view,gBis correlated with the angular dependency of brightness. Earlier studies used a binary classification of iridescent colours depending on the angle range at which the colour was visible (‘diffuse/

directional’ in Osorio & Ham [110], ‘wide-angle/flashing’

in Huxley [55], ‘limited view’ of Vukusic et al.[134]). This classification is positively correlated with 1/gB.

The hueH(Finc,Fcol) in the angle space is defined by two parameters: Hmax which is the hue at coincident geometry (when using a bifurcated probe for example) andgHis the angular dependency of hue.

The variations of brightness and hue in the angle space, according to equations (A 4) and (A 14), respectively, are represented in figure 3.

2.3. Angle and notation conventions

In the rest of this study, we measure the incoming light ray angles (uiandFinc) counter-clockwise and the outgoing light ray angles (urandFcol) clockwise. For both incoming and out- going angles, the origin is the normal to the structures (uiand ur) or the normal to the sample (FincandFcol). These conven- tions are represented in figure 2 where the direction of the arrows on angles represents the positive direction. The tilttcor- responds to the angle between the multilayer and the surface of the sample and is defined as t¼Finc2ui¼ur2Fcol (see appendix A for more details aboutt). In other words,tis posi- tive when the multilayer is tilted towards the illumination and negative otherwise (i.e.tis measured clockwise).

3. Methods

3.1. Study system: hummingbirds and butterflies

We used hummingbirds and butterflies (more precisely some Morpho and Papilio species) as study systems. Hummingbirds make an ideal example to test our framework for numerous reasons.

First, they belong to a speciose family where all species are irides- cent [135], which allows us to work on a large number of species that diverged fairly recently [136]. Upon visual examination, they display highly different types of iridescent colours, with either ‘dif- fuse’ (usually on dorsal patches) or ‘directional’ (usually on facial or hue H

Rmax

Rmax

brightness B saturation S

2

wavelength (l)

reflectance (R)

Figure 1.Graphical representation of the variables we used for hueH(wave- length at peak reflectanceRmax; calledH1in Montgomerie [126]), brightness B(average of reflectance over the wavelength range of interest;B2in Mon- tgomerie [126]) and saturationS(full width at half maximum; no equivalent in Montgomerie [126]). (Online version in colour.)

rsfs.royalsocietypublishing.orgInterfaceFocus9:20180049

3

Références

Documents relatifs

The difference of the squared charge radii of the proton and the deuteron, r d 2 − r 2 p = 3.82007(65) fm 2 , is accurately determined from the precise measurement of the isotope

The second term is of a dynamical nature, and involves certain Riemannian quantities as- sociated to conformal attractors.. Our results are partly motivated by a conjecture in

We bring bounds of a new kind for kernel PCA: while our PAC bounds (in Section 3) were assessing that kernel PCA was efficient with a certain amount of confidence, the two

[r]

Edgar Allan Poe’s short story “The Man of the Crowd” (1840) reflects on the relation of singularity to multiplicity, on the possibility or impossibility of connection between one

On the other hand we can also considere the column profiles as c individuals of a population and its coordinates as values of r variables and than perform a second Principal

The High Court of Justice completely disregarded whether the construction of exclusive Israeli civil communities on an occupied land, over which the Israeli legal regime is

Xieshu WANG, CEPN, UMR-CNRS 7234, Université Paris 13, Sorbonne Paris Cité xieshu.wang@gmail.com.. Joel RUET, CEPN, UMR-CNRS 7234, Université Paris 13, Sorbonne Paris