• Aucun résultat trouvé

A resistive soot sensor for mass quantification through a correlation between conductance and soot mass loading

N/A
N/A
Protected

Academic year: 2021

Partager "A resistive soot sensor for mass quantification through a correlation between conductance and soot mass loading"

Copied!
2
0
0

Texte intégral

(1)

HAL Id: emse-03177014

https://hal-emse.ccsd.cnrs.fr/emse-03177014

Submitted on 7 Jun 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

A resistive soot sensor for mass quantification through a correlation between conductance and soot mass loading

Amel Kort, F-X. Ouf, T. Gelain, J. Malet, Philippe Breuil, Riadh Lakhmi, Jean-Paul Viricelle

To cite this version:

Amel Kort, F-X. Ouf, T. Gelain, J. Malet, Philippe Breuil, et al.. A resistive soot sensor for mass quantification through a correlation between conductance and soot mass loading. European Aerosol Conference - EAC 2019, Aug 2019, Gothenburg, Sweden. pp.P1-084, 2019. �emse-03177014�

(2)

A resistive soot sensor for mass quantification through a correlation between conductance and soot mass loading

1

Institut de Radioprotection et de Sûreté Nucléaire (IRSN), BP 68, 91192 Gif-sur-Yvette Cedex, France

2

Ecole Nationale Supérieure des Mines, SPIN-EMSE, CNRS:UMR5307, LGF, 42023 Saint-Etienne, France

A. KORT

1,2

, F-X. OUF

1

, T. GELAIN

1

, J. MALET

1

, P. BREUIL

2

, R. LAKHMI

2

, J-P. VIRICELLE

2

[1] Bourrous S., Bouilloux, L., Ouf, F. X., Lemaitre, P., Nerisson, P., Thomas, D., & Appert-Collin, J. C. (2016). Measurement and modeling of pressure drop of HEPA filters clogged with ultrafine particles. Powder Technology, 289, 109-117 [2] Grondin, D., Geara, S., Breuil, P., Viricelle, J. P., & Vernoux, P. (2016). Influence of Electrodes Polarization on the Response of Resistive Soot Sensor. Procedia Engineering, 168, 31-34

Conclusions

• No influence of polarization voltage lower than 20 V on deposited mass

• Soot mass loading to conductance correlation

Perspectives

• Definition of a measurement strategy to determine the required number of sensors to quantify the deposited mass in a facility during a fire

• Identification of the most relevant polarization voltage

• Application of the correlation to realistic soot particles (TBP/HTP)

Conclusions and perspectives

Nuclear safety

• Fire : one of the most hazardous risks in nuclear facilities

• Assess the consequences of particle emissions on

containment devices, such as High Efficiency Particulate Air (HEPA) filters

Principal consequences of a fire

• Radioactive aerosol release,

• Production of a large amount of soot,

• Clogging of HEPA Filters [1],

• Modification of pressure conditions in the facility,

Lack of experimental and quantitative data on soot deposition during a fire,

No real time sensor to provide soot deposited fraction

Surface of analysis

90x90 mm 3.5x3.5 mm Deposit rate 14 to 340 µg/min 0.2 to 5 µg/min

 Regenerative sensor to avoid saturation Real scale fire tests

Deposit Characteristics

Sensor calibration : electrical response

Experimental correlation of mass loading to conductance Resistive soot sensor

Screen-printed

platinum and engraved IDE

Screen-printed electrodes and

contact pads

Rear face of 10 sensors

Screen-printed dielectric layer

Front face of 10 sensors

10.5 cm

2.5 cm

0 10 20 30 40 50 60 70 80 90 100

0 100 200 300 400 500 600

0 100 200 300 400 500

Relative standard deviation(%)

Conductance (µS)

Time (s) v = 3.2 cm/s

0 10 20 30 40 50 60 70 80 90 100

0 200 400 600 800 1000 1200

0 100 200 300 400 500

Relative standard deviation(%)

Conductance (µS)

Time (s) v = 7.6 cm/s

Polarization voltage (V)

Flow Velocity (cm/s)

Particule’s median diameter (nm)

Concentration ( #/cm³)

Mean percolation Time (s)

Mean reached

Conductance at 500 s (µS)

10 3.2 200 (± 1) 9.106 (± 10%) 132 (± 16) 476 (± 8)

10 7.6 166 (± 0.5) 1.5.107 (± 3%) 129 (± 10) 945 (± 10)

Electrical measurements

Towards real-time quantification : influence of the polarization voltage on deposited mass

Soot production Soot conditioning

Soot characterization

SEM image of a pre- loaded soot sensor

under 30 V of

polarization voltage [2]

Thermo-optical analysis

( determination of Elemental Carbon

(EC) deposited mass)

Electricalcharacterization

Sensor principle

200

100

0

0 2 6 8 10 12 14 16 18

Time (min)

Conductance (µS)

30 V

4

50 V 40 V 20 V

10 V 60 V 150

50 250

Influence of the polarization voltage on the sensor response [2]

Context and aim of the study

5 mm

5.25 cm

A repeatable sensor response that depends on particles’ morphology and concentration

S : mass of soot arriving on HEPA filters (kg), mf : amount of consumed fuel (kg),

𝝶s : soot emission factor (kg of soot per kg of consumed fuel), 1-C2 : fraction of soot deposited on the walls(-),

1-C3 : fraction of soot deposited in the ventilation ducts (-),

• Polarization voltage influence on the deposited mass

• Correlation of the soot mass loading to the sensor electrical response

Aim of the study

Sensor manufacturing

Mass to conductance correlation at a polarization voltage of 10 V

Relatively homogeneous deposit except on the ceiling

Walls deposition fraction from 25 to 40 %

Deposit flux : 2 to 42 mg/m2/min

Deposit rate:

Deposit thickness from 5 to 8 mm

Corresponding author : amel.kort@irsn.fr

Conductance = 2.49 EC deposited mass - 489 R² = 0.9469

0 500 1000 1500 2000 2500 3000 3500 4000

0 500 1000 1500 2000

Conductance (µS)

EC deposited mass (mg/m2) y = -0.0553x + 6.2381

R² = 0.0571

0 1 2 3 4 5 6 7 8 9 10

0 5 10 15 20 25

Deposition velocity (mm/S)

Polarization voltage (V)

Same deposition velocity under low polarization voltage (0 to 20 V)

Références

Documents relatifs

Si certains travaux ont abordé le sujet des dermatoses à l’officine sur un plan théorique, aucun n’a concerné, à notre connaissance, les demandes d’avis

Later in the clinical course, measurement of newly established indicators of erythropoiesis disclosed in 2 patients with persistent anemia inappropriately low

Households’ livelihood and adaptive capacity in peri- urban interfaces : A case study on the city of Khon Kaen, Thailand.. Architecture,

3 Assez logiquement, cette double caractéristique se retrouve également chez la plupart des hommes peuplant la maison d’arrêt étudiée. 111-113) qu’est la surreprésentation

Et si, d’un côté, nous avons chez Carrier des contes plus construits, plus « littéraires », tendant vers la nouvelle (le titre le dit : jolis deuils. L’auteur fait d’une

la RCP n’est pas forcément utilisée comme elle devrait l’être, c'est-à-dire un lieu de coordination et de concertation mais elle peut être utilisée par certains comme un lieu

The change of sound attenuation at the separation line between the two zones, to- gether with the sound attenuation slopes, are equally well predicted by the room-acoustic diffusion

Using the Fo¨rster formulation of FRET and combining the PM3 calculations of the dipole moments of the aromatic portions of the chromophores, docking process via BiGGER software,