• Aucun résultat trouvé

THE INTERACTION OF NAKED IRON ATOMS WITH SMALL MOLECULES

N/A
N/A
Protected

Academic year: 2021

Partager "THE INTERACTION OF NAKED IRON ATOMS WITH SMALL MOLECULES"

Copied!
7
0
0

Texte intégral

(1)

HAL Id: jpa-00219624

https://hal.archives-ouvertes.fr/jpa-00219624

Submitted on 1 Jan 1980

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

THE INTERACTION OF NAKED IRON ATOMS WITH SMALL MOLECULES

M. Pasternak, P. Barrett

To cite this version:

M. Pasternak, P. Barrett. THE INTERACTION OF NAKED IRON ATOMS WITH SMALL MOLECULES. Journal de Physique Colloques, 1980, 41 (C1), pp.C1-79-C1-84.

�10.1051/jphyscol:1980114�. �jpa-00219624�

(2)

THE

INTERACTION OF NAKED IRON ATOMS

WIM

SMALL

MOLECULES

M. Pasternak and P.H. ~ a r r e t t ~

Department of Physics and Astronomy, [Pel Aviv University, Ramat Aviv, IsraeZ.

x Department of Physics, University of CaZifornia, Santa Barbara, CA. 93106, U.S.A.

Abstract

-

The Mossbauer Effect in 5 7 ~ e is used to discover and characterize chemical species formed between bare iron atoms or molecules with molecules of quasi-inert gases at low temperatures. Experiments were conducted with N 2, CH4, C2H49 C2H6, C6H6 and NH3. The later product: was U.V. irradiated and its photoproducts were analyzed. It was found that cryochemical species with N2, CH4 and C H are formed

2 4

with Fez or higher polymer, solely. Monomers bind to a single molecule of MI and 3 both monomers and dimers form a distinct bonding with ethane. The experimental part is described with emphasis in new developments.

1. INTRODUCTION In 1977 Barrett and Montano [6] proposed the form- The technique of matrix isolation, orig-

inally devised to trap chemical species for spectroscopic observations, had been introduced by Porter [I] and Pimentel [2] during the 50's.

In the past years there has been a renaissance in matrix isolation research emphasizing the aspects of synthesis, structure and reactivity [3]. The Mossbauer Effect spectroscopy is a relatively newcomer in this field. Following the natural path of Rare Gas Matrix Isolation (RGMI) pioneered by works of I2 [4], Fe, and Sn [5] in solid argon, it is now being shifted towards cryochemistry.

The disperse medium at low temperatures (4

-

20 K)

provides excellent conditions for trapping isol- ated atoms, molecules and exotic chemical react- ants and study the nature of their chemical bond.

The RGMI technique is now being extended to non- rare gases, mixtures of rare and normal gases and studies combined with photolysis. Naturally, the most prominent isotope studied so far was 57~e.

ation of Iron-Nitrogen species formed by Fe with 2 the nitrogen host.

The subject of this work is to present recent results which unequivocally suggest the formation of chemical bond of atoms and molecules of iron with basic simple molecules. The studies are based on the observation of the isomer shift, quadrupole interaction and sometimes of the temp- erature dependence of -£-. In what follows, the experimental part will be described and then examples will be given of cryospecies formation of iron with N2, NH3, CH4, C2H4, and C2H6.

2. EXPERIMENTAL

The experimental aspects of RGMI tech- niques [71 and in particular of the application of Mossbauer Effect has been described elsewhere.

[a].

Here we describe an experimental set-up used at our laboratory in recent studies, which has some advantages over others published so far [9]. A picture of the system is shown in Fig. 1.

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1980114

(3)

C1-80 JOURNAL DE PHYSIQUE

f u r n a c e s . (See F i g . 2 ) .

FIG.1.-A p i c t u r e o f t h e e x p e r i m e n t a l s e t - u p . ( 1 )

-

a commercial e v a p o r a t o r ; (2)

-

c o l l a r where ( a ) d e t e c t o r and ( b ) d r i v e r i s mounted, and ( 3 ) a r o t a t a b l e He c r y o s t a t .

It c o n s i s t s of a commercial e v a p o r a t o r w i t h custom-made s t a i n l e s s s t e e l c o l l a r and v a r i a b l e t e m p e r a t u r e c r y o s t a t . The c o l l a r was d e s i g n e d h a v i n g i n mind o p t i m a l ( 1 ) g e o m e t r i c a l c o n d i t i o n s f o r c o u n t i n g ( 2 ) h i g h e v a p o r a t i o n e f f i c i e n c y and a l s o t o e n a b l e t h e u s e o f s p a r e e n t r a n c e windows f o r o t h e r p u r p o s e s . The c r y o s t a t , which c a n b e r o t a t e d , h a s i t s a b s o r b e r t a i l made of p u r e copper i n t o which a ' b e r y l l i u m s u b s t r a t e i s t h e r m a l l y anchored. The t a i l i s c o o l e d by a f o r c e d s t r e a m o f l i q u i d h e l i u m and t h e t e m p e r a t u r e may b e v a r i e d e i t h e r by h e a t i n g o r by c o n t r o l l i n g t h e helium s t r e a m . The m a t r i x g a s e n t e r s t h e cryo- s t a t t h r o u g h a n e e d l e v a l v e and i t i s mixed w i t h one o r two m e t a l vapour beams emanating from two alumina c r u c i b l e s . The c r u c i b l e s a r e c o n t a i n e d i n two i n d e p e n d e n t r e s i s t a n t h e a t e d t a n t a l u m

FIG.2.-A c r o s s s e c t i o n view of t h e c o l l a r ; (1) Be s u b s t r a t e t h e r m a l l y anchored t o ( 2 ) copper t a i l , ( 3 ) and (4) LH and LN r a d i a t i o n s h i e l d s

2

r e s p e c t i v e l y ; (5) water-cooled r a d i a t i o n s h i e l d o f f u r n a c e s ; (6) c r u c i b l e s i n s i d e t a n t a l u m furnace's;

(7) mylar windows; (8) s o u r c e ; ( 9 ) d r i v e r ; (10) s c i n t i l l a t i o n d e t e c t o r ; (11) g a s o u t l e t . The h i g h c o o l i n g power of t h e t a i l a l l o w s u s t o a c h i e v e a h i g h e v a p o r a t i o n e f f i c i e n c y (12-15%/cm 2 ) which i s a n i m p o r t a n t f a c t o r c o n s i d e r i n g t h e p r i c e s of e n r i c h e d i s o t o p e s . The s o u r c e used was e i t h e r

5 7 57

Pd( Co) o r Rh( Co) a t room t e m p e r a t u r e w i t h a c o n v e n t i o n a l Mossbauer system i n c o r p o r a t i n g i n on- l i n e PDP-8A computer.

3 . THE CRYOCHEMISTRY OF RARE IRON ATOMS AND MOLECULES

The h y p e r f i n e c o n s t a n t s of RGMI Feo and Fe2 (monomer and dimer) a r e w e l l e s t a b l i s h e d [S]

and may b e u s e d a s r e f e r e n c e f o r t h e e x t e n t of f o r m a t i o n o f chemical bond w i t h t h e h o s t m o l e c u l e s . I n t a b l e 1 we summarize t h e d a t a o f i.s. and quad- r u p o l e s p l i t t i n g of c r y o c h e m i c a l s p e c i e s r e p o r t e d s o f a r . A common e x p e r i m e n t a l f e a t u r e i s t h a t upon e l e v a t i o n of t e m p e r a t u r e of t h e m a t r i c e s , when t h e m o b i l i t y o f t h e m o l e c u l e s i n c r e a s e , t h e s p e c t r u m u s u a l l y b r o a d e n s , , s m e a r s , and t h e o r i g i n a l

(4)

(63' = e2qQ/2) i n mm.s -1 for uarious cryochemica2 species

one, cannot b e reproduced by r e t u r n i n g t o low t e m p e r a t u r e s . Another i n t e r e s t i n g f e a t u r e i s t h e tendency of Fez o r h i g h e r polymers, i n s t e a d of

M a t r i x i . ~ . QS Remarks

R e f s .

monomers, t o form chemical bond w i t h t h e h o s t mol-

C2H4

e c u l e s .

* - t r i m e r (?) * r e a c t i n g monomer

p r e s e n t w o r k

Feo -.73, 3.392

NH3 C2H6

Fe-N2

-

With i r o n c o n c e n t r a t i o n of 0.6% atomic,

C6H6

.25 1.05

1 6 .64

1 . 9 3

*-phc

Feo

-

.82

2.73 RGMI

B a r r e t t and Montano [6] r e p o r t e d t h e o b s e r v a t i o n

Fe2 . 5 1 .81 pe

-.75 0

5

CH4

Feo Fe2

of a n a b s o r p t i o n spectrum c l e a r l y p o i n t i n g t o a

Fe* X .37 1.59

Fe:,

-

. 4 1

2.60 Fez

-.I1 4.05

5

FeNH3FeNH2FeNHFeo -.67

0

1 0

N2

Fez Fe2

f o r m a t i o n of a n Fe2-(N2) molecule. Evidences

X

t h a t Fe i s r e q u i r e d t o form a chemical bond w i t h 2

F e z ' - 8 4 1.57 .73

1.64 1.42, .58

0,O

1 2

-.78 2.70

6

N were found by c o n t r o l l i n g t h e c o n c e n t r a t i o n of 2

.98 2.15

.71 1.17

Fe. A t v e r y low c o n c e n t r a t i o n , o n l y t h e monomer t o l y z e d

1 3

was o b s e r v e d w i t h i.s. s i m i l a r t o t h a t o f Fe-Rare- g a s .

Fe-C2H4

-

The spectrum o f F e ( l % ) i n e t h y l e n e

-

(C2H4) a t 4.2 K i s shown i n F i g . 3 .

FIG .3 .-Absorption spectrum of 5 7 ~ e ( l % ) i n e t h y l e n e a t 4.2 K. Doublets: c o r r e s p o n d t o ( 1 ) n o n - r e a c t i n g monomer; (2) Fe2-(C H ) and (3) r e a c t i n g t r i m e r s

2 4 x o r h i g h e r polymers.

The spectrum c o n s i s t s of t h r e e components. One component [ I ] c o r r e s p o n d s t o t h e n o n - r e a c t i n g mon- omer w i t h i.s. similar t o t h a t of RGMI and quadru- p o l e s p l i t t i n g (QS) somewhat l a r g e r t h a n t h a t of Fe i n N2. The prominent component i s t h a t of Fez- (C 2 4 x H ) c o r r e s p o n d i n g t o a c h e m i c a l l y bound i r o n molecule t o one o r more e t h y l e n e m o l e c u l e s . The l a r g e QS, t h e p o s i t i v e v a l u e of t h e isomer s h i f t and t h e r e l a t i v e l y narrow l i n e w i d t h ( 2 P 0 . 3 5 -+

0.01 m . s - l ) p o i n t ' t o a s p e c i f i c s p e c i e s formed by Fe2+ nC2H4 -t Fe (C H ) A t h i r d weak component

2 2 4 x '

is a l s o observed y e t w i t h lower v a l u e s of i.s. and 9.9. T h i s component may b e t h e r e s u l t of a t r i m e r o r h i g h e r polymer i n t e r a c t i o n w i t h t h e h o s t . Pe-C2Hg

-

U n l i k e t h e d o u b l e bonded c a r b o n e t h y l e n e

(d(C=C) = 1.33A), e t h a n e w i t h s i n g l e bonded c a r b o n (d(C-C) = 1.54A) form c h e m i c a l bonds w i t h b o t h t h e monomer'and t h e dimer of Fe. The spectrum i n F i g . 4 is composed o f t h r e e components. The f i r s t c o r r e s p o n d s t o a n o n - r e a c t i n g i r o n monomer. The second d o u b l e t h a s a similar QS y e t a l e s s negat- i v e isomer s h i f t ( i . s . = -0.41 mm.s -1 ) . We i n t e r - p r e t t h i s r e s u l t a s a monomer and chemical r e a c t - i o n w i t h t h e h o s t . The t h i r d component h a s a pos- i t i v e isomer s h i f t and a QS v e r y s i m i l a r t o t h o s e of Fe2(N2)x. We i n t e r p r e t t h i s component a s a Fe2-(C H ) s p e c i e s . Both monomers have narrow

2 6 x

l i n e w i d t h b u t t h e dimer r e a c t a n t h a s a b r o a d l i n e

(5)

C1-82 JOURNAL DE PHYSIQUE

s u g g e s t i n g t h e p o s s i b i l i t y of a d i s t r i b u t i o n of Fe2 chemical r e a c t i o n . S i m i l a r t r e n d s were obs-

s i t e s . erved w i t h CD4.

1

Fe-Amonia and its photofragments

-

With t h e excep-

230L count$ (xl(r6)

t i o n of a l k a l i and a l k a l i n e e a r t h s , ammonia i n i t s v a r i o u s phases does n o t r e a c t w i t h b u l k m e t a l s . However, almost a l l m e t a l s w i l l adsorb ammonia s t r o n g l y on t h e i r s u r f a c e s . With t r a n s i t i o n m e t a l s such a s i r o n , s u r f a c e chemical r e a c t i o n s proceed 225

-

even a t room temperature, forming Fe-NH2, Fe-NH and

J t

4 -2 0 2 4 Fe-H 1131. Molecules c o n t a i n i n g NH 3 bind t o zero-

FIG -4 .-Absorption spectrum of 5 7 ~ e (1%) i n e t h a n e a t 4.2 K. Doublet No.1 w i t h t h e more n e g a t i v e i.s.

corresponds t o t h e n o n - i n t e r a c t i n g monomer. Second d o u b l e t 1 corresponds t o t h e i n t e r a c t i n g monomer and d o u b l e t 2 cotresponds t o t h e i n t e r a c t i n g i r o n molecule w i t h C2H6.

Fe-CHq

-

The spectrum of i s o l a t e d i r o n atoms i n CH4 has been r e p o r t e d t o have t h e same isomer s h i f t a s i n RGMI [ l o ] . We have confirmed t h i s r e s u l t and a l s o shown t h a t t h e Fe atoms f o l l o w t h e l a t t i c e

-4 -2 0 2 4

dynamics of s o l i d methane a s manifested i n t h e VELOCITY ( m m - i ' ) order-disorder phase t r a n s i t i o n of 22 KO [ l l ]

.

On

i n c r e a s i n g t h e i r o n c o n c e n t r a t i o n t o form a dimer, FIG.5.-Absorption spectrum of 57Fe (O.lZ) i n q u i t e unexpected r e s u l t s were found. Lines a t ammonia a t 4.2 K. The lower p o r t i o n d e p i c t s t h e .

-1 spectrum of a Fern3 s p e c i e s ; t h e upper p o r t i o n - I - 0 . 5 m m . ~ - ~ a n d a t + 1 . 4 2 mm.s were found, b u t

d e p i c t s t h e photolyzed spectrum c o n s i s t i n g of two no l i n e s c h a r a c t e r i s t i c t o Fe2 i n RGMI d o u b l e t s belonging t o Fern2 and FeNH ( s e e t e x t ) . (-0.11 mm.s -1 ) were observed. T h i s i s a s t r o n g The inset r e p r e s e n t s t h e u n i t c e l l of s o l i d ammonia evidence t h a t chemical r e a c t i o n between Fe2 and v a l e n t m e t a l s , w h i l e n o t numerous, a r e known, For CH4 h a s occured. A p l a u s i b l e r e a c t i o n i s t h e oxi- example, Ir(NH3)5, Pd(W ) [14] and Fe(C0I4 NH3.

3 4

d a t i v e cleavage of t h e CH bond, namely: Experiments done w i t h 0.1% Fe a t 5K r e s u l t e d i n a Fe2+CH4&-Fe-Fe-CH3 o r Fe- e-CH3.

W

s h a r p d o u b l e t a b s o r p t i o n spectrum ( s e e F i g . 5 ) . Evidences f o r a Fe-H bond were found from The i r o n low c o n c e n t r a t i o n and presence of one com- I R s t u d i e s [12]. By i n c r e a s i n g t h e concentration ponent s u g g e s t t h a t t h e i r o n s i t e is w e l l defined of Fe i n a methane m a t r i x , weak l i n e s n o t d e t e c t e d and unique i n a non-cubic symmetry. From t h e l a c k i n pure methane were found a t 2041, 2038 and of temperature dependence of t h e QS ahd from t h e 1891 cm-l. T h e i r i n t e n s i t y v a r i e d a s t h e s q u a r e of v a l u e s of t h e 1.8. we concluded t h a t t h i s i s a t h e i r o n c o n c e n t r a t i o n confirming t h e concept of "covalent diamagnetic" compound [15]. The sample

(6)

spectrum r e v e a l e d no remnants of t h e o r i g i n a l doub- l e t . The spectrum i s composed of two s i t e s ( s e e F i g . 5) which were a t t r i b u t e d t o Fe-NH2 and Fe-NH.

The o b s e r v a t i o n of only two d o u b l e t s invokes t h e model where a n i r o n atom i s bonded t o one s i n g l e ammonia molecule.

4. DISCUSSION AND CONCLUSIONS

Our s t u d i e s and t h e s t u d i e s u s i n g o t h e r methods [3] t o c h a r a c t e r i z e chemical r e a c t i o n s of m e t a l atoms i n low temperatures m a t r i c e s , s u g g e s t a new and e x c i t i n g a p p l i c a t i o n of t h e Mossbauer Spectroscopy. This a p p l i c a t i o n i s of paramount i n t e r e s t . The i n f o r m a t i o n o b t a i n e d from t h e hyp- e r f i n e i n t e r a c t i o n g i v e s s t r a i g h t evidence f o r p o s s i b l e bond formation. How and when i s t h i s chemical bond formed? We have evidence t h a t once t h e m a t r i x i s formed and kept a t low temperature, t h e s p e c i e s formed i s s t a b l e . During t h e evapor- a t i o n , t h e p r o b a b i l i t y t h a t a metal atom w i l l i n t - e r a c t i n t h e beam w i t h a gas molecule i s extremely low. W e propose a model where a " r e a c t i o n zone"

i s formed immediately upon condensation and b e f o r e s o l i d i f i c a t i o n . Within a s h o r t time, b e f o r e t h e

mobile enough t o form dimers and/or chemically r e a c t w i t h t h e h o s t m a t r i x . Once t h e l a y e r s ' r i g i d i t y i n c r e a s e s t h e f r o z e n s p e c i e s s t a b i l i z e . The h e a t of r e a c t i o n c a n b e e a s i l y absorbed by t h e m a t r i x . Few q u e s t i o n s though remain. Why dimers o r h i g h e r polymers of Fe a r e needed t o form a bond w i t h m a t r i c e s l i k e CH4, C2H4 and N2. T h i s i s un- expected s i n c e Fe2 i s 30 kcal/mole more s t a b l e t h a n 2 Fe. Are t h e new s p e c i e s formed an i n t e r - mediate chemical s t a t e , o r do t h e y r e p r e s e n t a n o x i d a t i v e c l e a v a g e of t h e h o s t molecules? I n t h e c a s e of NH we have evidence t h a t indeed an FeNH

3 3

molecule is formed, b u t is i t a l s o t h e c a s e w i t h CH4, C2H6 C2H4, e t c . ? P h o t o l y s i s s t u d i e s may h i n t t o a mechanism of chemical r e a c t i o n s a t t h i s low temperature. Undoubtedly more experiments and sys- t e m a t i c a c q u i s i t i o n of d a t a a r e needed. The r e - wards of t h e s e s t u d i e s a r e numerous. They may l e a d t o t h e understanding of m i c r o s c o p i c mechanism of c a t a l y s i s and chemisorption, and t o t h e e l l u c i d - a t i o n of t h e b a s i c i n t e r m e d i a t e s t e p s i n t h e chem- i c a l bond formation.

REFERENCES

*

Work supported i n p a r t by The I s r a e l Corn- [4] BUKSHPAN,

s.,

GOLDSTEIN, C., and SONMNO, T.,

i s s i o n f o r Basic Research. J. Chem. Phys.

2

(1968) 5471.

**

Work supported i n p a r t by N.S.F. [ S ] BARRET, P. H., and MICKLITZ, A., i n Perspec- [ I ] NORMAN, I., PORTER, G., Nature

174

(1954)508. t i v e s i n MCssbauer Spectroscopy e d i t e d

by COHEN, S. G., and PAST-, M., [2] WHITTLE, E., DOWS, D. A., PIMENTEL, G.C., Plenum P r e s s , New York, 1973 pp 117-126.

J. Chem. Phys.

2

(1954) 1943.

[6] BARRET, P. H., and MONTANO, P. A., J . Chm.

[3] SKELL, P. S., HAVEL, J. J., McGLINCHEY, M. J . , SOC. Faraday T P ~ . 11,

73

(1977), 378.

Account. Chem. Res. (1973) 97;

[7] m E R , B., Low Temperature Spectroscopy, O Z I N , G. A., VANDER VOET, A.,

$bid

E l s e v i e r , 1971 6 (1973) 313 and Angew. Chem. Int.

14

-

(1975) 5 ( e n t i r e number).

(7)

C1-84 JOURNAL DE PHYSIQUE

[8] IcNAB, T . K . , a n d BARRETT, P. H., i n M8ssbauer E f f e c t MethodoZogy

, 7

P l e n u m P r e s s , New Y o r k 1 9 7 1 .

[ 9 ] PASTERNAK, M., a n d SHAMAI, S . , N m Z . Instrwn.

Meth.

138

( 1 9 7 6 ) 6 7 3 .

[lo]

KLEE, C., McNAB, T . K., LITTERST; F. J . , a n d MICKLITZ, H., J. Physik

270

( 1 9 7 4 ) 31.

[ I l l PASTERNAK, M. a n d BARRETT, P. H., Sol. S t . Corn.

27

(1978) 7 7 1 .

[ I 2 1 BARRETT, P . H., PASTERNAK, M., PEARSON, R. G., J . Am. Chem. Soc. 1 0 1 (1979) 222.

[ I 3 1 BARRETT, P . H., a n d PASTERNAK, M., J. &em.

Soc. ( t o b e p u b l i s h e d )

.

[ I 4 1 HIEBER, W., AND BEUTNER, H., Angew. Chern., 7 4 ( 1 9 6 2 ) 154; WATT, G. H., SHARIP, L . E., a n d HEXVERSTON, E

.

P., J. Inorg. NucZ.

Chem.

2

( 1 9 6 2 ) , 1 0 6 7 .

[ 1 5 ] GREENWOOD, N. N., a n d GIBB, T . C., MrJssbauer Spectroscopy Chapman H a l l , L t d . L o n d o n

1 9 7 1 .

[ 1 6 ] PASTERNAK, M., a n d BARRETT, P. H., u n p u b l i s h e d r e s u l t s .

Références

Documents relatifs

We have calculated the long-range potential energy be- tween two identical lanthanide atoms, one in the ground level and one in a superposition of nearly degenerate ex- cited

— This review deals with three recent developments in the field of inner shell exci- tation of atoms and molecules by electron impact with high energy resolution, namely : (1) the

A la terminaison avant la naissance des collatérales, 46 variations anatomiques ont été notées : tronc commun circonflexe latérale de la cuisse /artère du quadriceps (n = 27) ; pas

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

T. THE INTERACTION BETWEEN 119Sn AND SOLUTE ATOMS IN DI- LUTE IRON ALLOYS.. In general, components are observed in the spectrawith fields greater and less than 82 kOe, the 1 1 9

The calculated electron energy eigenvalues for p-~l' atom are shown in Table 1 for various muonic states and compared with the values for. Table

emission of quanta of the external field are correlated in stimulated transitions, the gradient force is a regular quantity.. Spontaneous emission destroys the

(4) The fourth attractive feature of the LCMBPT procedure is that once one has a basis set for a certain choice of SC,, the same set may be used not only for