• Aucun résultat trouvé

Approximation scheme for solutions of backward stochastic differential equations via the representation theorem

N/A
N/A
Protected

Academic year: 2022

Partager "Approximation scheme for solutions of backward stochastic differential equations via the representation theorem"

Copied!
14
0
0

Texte intégral

(1)

BLAISE PASCAL

Mohamed El Otmani

Approximation scheme for solutions of backward stochastic differential equations via the representation theorem

Volume 13, no1 (2006), p. 17-29.

<http://ambp.cedram.org/item?id=AMBP_2006__13_1_17_0>

© Annales mathématiques Blaise Pascal, 2006, tous droits réservés.

L’accès aux articles de la revue « Annales mathématiques Blaise Pas- cal » (http://ambp.cedram.org/), implique l’accord avec les condi- tions générales d’utilisation (http://ambp.cedram.org/legal/). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Publication éditée par les laboratoires de mathématiques de l’université Blaise-Pascal, UMR 6620 du CNRS

Clermont-Ferrand — France

cedram

Article mis en ligne dans le cadre du

Centre de diffusion des revues académiques de mathématiques

(2)

Approximation scheme for solutions of backward stochastic differential equations via the

representation theorem

Mohamed El Otmani

Abstract

We are interested in the approximation and simulation of solutions for the backward stochastic differential equations. We suggest two approximation schemes, and we study theL2induced error.

1. Introduction

Backward Stochastic Differential Equations (BSDEs in short) have been introduced by Pardoux and Peng [16]. One of the main motivations for studying the BSDE’s has been to use it to solve diverse problems in mathe- matical finance [8], in optimal stochastic control [11] and stochastic games [6].

In this paper, we propose to simulate the solution(X, Y, Z)of the coupled Forward-Backward SDE defined for all 0≤t≤T by

(F BSDE)

( Xt=x+R0tb(s, Xs)ds+R0tσ(s, Xs)dWs F orward Yt=g(XT) +RtTf(s, Xs, Ys, Zs)ds−RtTZsdWs Backward where x ∈ R and W is a Brownian motion defined on some complete filtered probability space(Ω,F,P,(Ft)0≤t≤T). The forward componentX will be approximated by the Euler or the Milshtein Scheme. The simulation of the couple (Y, Z) is more delicate. Douglas et al presented in [7] a numerical method for a class of Forward-Backward SDEs based on the finite difference approximation of the associated PDE and the four steps scheme developed in [13]. In [5], Chevance proposed a numerical method for BSDE’s where the generatorf is not dependent on the control gradient Z. The difficulty is in the approximation of the processZ that comes only from the martingale representation Theorem. In the case wheref depends only on Z, Bally has developed in [1] a discretization scheme considers a

(3)

random time partition. His method is more difficult to implement. The work of Zhang [17] is more interesting but doesn’t answer the question of approximation of Z. Bouchard and Touzi [3] invested this work to give an implicit approximation scheme. Recently, Gobet et al [10] propose a new numerical scheme based on iterative regression function basis which coefficients are evaluated using Monte Carlo simulation.

Our approach is to give an approximation scheme via the representation for the solution(Y, Z)of the Backward SDE. We suggest a pseudo approx- imation scheme then an explicit discretization scheme, and we calculate the L2 error induced to these approximations.

Throughout the paper, we use the following notation:

Notation 1.1. Let π : 0 =t0 < t1 < ... < tn =T be a regular partition of the time interval [0, T]such that |π|=T /n and ti =i|π|for i= 0, ..., n.

We denote by ∆Wti+1 =Wti+1−Wti and Ei = E[./Fti]for all i. Finally, C will denote a generic constant independent ofπ that may take different values from line to line.

We shall make use of the following assumptions:

Condition 1. σ ∈ Cb0,2([0, T]×R,R) and b ∈ Cb0,1([0, T]×R,R), and all derivatives (respect to x) are uniformly bounded by a common constant K > 0. Further, there exists a constant κ > 0 such that for any x ∈ R and t∈[0, T] κ≤ |σ(t, x)| ≤K and |b(t,0)| ≤K.

Condition 2. The functionsf ∈ C([0, T]×R×R×R,R) andg∈ C(R,R) are uniformly K-Lipschitz i.e ∀x, x0, y, y0, z, z0 ∈R andt, t0∈[0, T]

|f(t, x, y, z)−f(t0, x0, y0, z0)| ≤K |t−t0|+|x−x0|+|y−y0|+|z−z0| and

|g(x)−g(x0)| ≤K|x−x0|.

Under these assumptions, there exists a unique adapted process(X, Y, Z) solution of the (F BSDE)such that

E sup

0≤t≤T

|Xt|2+ sup

0≤t≤T

|Yt|2+ Z T

0

|Zs|2ds

!

≤C(1 +|x|2), (1.1) The following estimates are standard [17]

1≤i≤nmax sup

t∈(ti−1,ti]

E

|Xt−Xti−1|2+|Yt−Yti−1|2≤C(1 +|x|2)|π|, (1.2)

(4)

and

n

X

i=1

E Z ti

ti−1

|Zs−Zti−1|2+|Zs−Zti|2ds≤C(1 +|x|2)|π|. (1.3) We shall cite main representation of the solution(X, Y, Z).

To begin with, let us define for 0< t < r < T the process Nrt= 1

r−t Z r

t

σ−1(s, Xs)∇XsdWs(∇Xt)−1, where ∇X is the unique solution of the following Linear SDE

∇Xt= 1 + Z t

0

xb(s, Xs)∇Xsds+ Z t

0

xσ(s, Xs)∇XsdWs. It is known that ∇X is invertible and

(∇Xt)−1 = 1− Z t

0

xb(s, Xs)− |∂xσ(s, Xs)|2(∇Xs)−1ds

Z t

0

xσ(s, Xs)(∇Xs)−1dWs.

As a consequence of these notations, one has the following estimates [15]:

E|Nrt|2

1

2 ≤ C

√r−t, E|Nrt1−Nrt2|2 ≤C |r1−r2|

(r1−t)(r2−t). (1.4) The representation formula can be written P- almost surely [14]:

Yt=E

g(XT) +RtTf(s, Xs, Ys, Zs)ds/Ft, Zt=E

g(XT)NTt +RtT f(s, Xs, Ys, Zs)Nstds/Ftσ(t, Xt).

Remark 1.2. A direct consequence of the representation formula of the matringale integrand Z that: If condition 1 and condition 2 hold; for all p≥2, there exists a constantCp >0 depending only onT, K and psuch that

E sup

0≤t≤T

|Zt|p ≤Cp(1 +|x|p).

(see [15] Lemma 2.5).

Now, we are ready to give the approximation schemes.

(5)

2. Backward approximation schemes

2.1. Pseudo-discretization

In this part, we consider that the forward component X will be approxi- mated by the classical Euler scheme

0=x,

ti+1 = ¯Xti+b(ti,X¯ti)|π|+σ(ti,X¯ti)∆Wti+1 for any i= 0, ..., n−1.

We set for all ti ≤t≤ti+1

t= ¯Xti+b(ti,X¯ti)(t−ti) +σ(ti,X¯ti)(Wt−Wti), and we have the following estimates for all p≥2

E sup

0≤t≤T

|X¯t|p<+∞ and E sup

0≤t≤T

|Xt−X¯t|p≤Cp|π|p/2. (2.1) To approximate the solution of the Backward SDE, we consider the natural discrete time scheme

tn =g( ¯Xtn), and for i=n−1, ...,0

ti =Eiti+1+f(ti+1,X¯ti+1,Y¯ti+1,Z¯ti+1)|π|

ti = Ei

hti+1Ntti+1i +f(ti+1,X¯ti+1,Y¯ti+1,Z¯ti+1)Ntti+1i |π|iσ(ti,X¯ti), By a backward induction argument, we can see that ( ¯Yti,Z¯ti) ∈ L2 for any i, and they are deterministic functions of X¯ti. For later use, we need to introduce a continuous time approximation for (Y, Z). Since, from the classical martingale representation Theorem, there exists a predictable process Z˜∈L2([0, T]×Ω)such that

ti+1+f(ti+1,X¯ti+1,Y¯ti+1,Z¯ti+1)|π|= ¯Yti+ Z ti+1

ti

sdWs. We then define for all t∈(ti, ti+1)

(t= ¯Yti+1+f(ti+1,X¯ti+1,Y¯ti+1,Z¯ti+1)(ti+1−t)−Rtti+1sdWs

t= ¯Zti. (2.2)

The following Theorem provides the error estimates due to this approxi- mation

(6)

Theorem 2.1. There exists a constant C >0 depending only on T and K such that

sup

0≤t≤TE|Yt−Y¯t|2+E Z T

0

|Zt−Z¯t|2dt≤C|π|.

Proof. We denoteΘs= (Xs, Ys, Zs)and Θ¯s= ( ¯Xs,Y¯s,Z¯s). From the Itô’s formula and the Lipschitz property of f, we get

E|Yt−Y¯t|2+E Z ti+1

t

|Zs−Z˜s|2ds = E|Yti+1−Y¯ti+1|2 + 2E

Z ti+1

t

(Ys−Y¯s)(f(s,Θs)−f(ti+1,Θ¯ti+1))ds

≤ E|Yti+1−Y¯ti+1|2 +C

αE Z ti+1

t

|s−ti+1|2+|Xs−Xti+1|2+|Xti+1−X¯ti+1|2ds

+αE Z ti+1

t

|Ys−Y¯s|2ds+C αE

Z ti+1

t

|Ys−Yti+1|2+|Yti+1−Y¯ti+1|2ds

+C αE

Z ti+1

t

|Zs−Zti+1|2+|Zti+1−Z¯ti+1|2ds

for every t ∈ (ti, ti+1) and α > 0. Applying the Gronwall Lemma, we obtain by (1.2)

E|Yt−Y¯t|2

(1 +C|π|)E|Yti+1−Y¯ti+1|2+C αΛi

eα|π| (2.3) where Λi =|π|2+ERttii+1|Zs−Zti+1|2ds+|π|E|Zti+1−Z¯ti+1|2.

In particular for t=ti, we have E|Yti−Y¯ti|2+E

Z ti+1

ti

|Zs−Z˜s|2ds

≤(1 +Cα|π|)

(1 +C|π|)E|Yti+1−Y¯ti+1|2+C αΛi

.

(7)

Iterating the last inequality to get

E|Yti−Y¯ti|2 + E Z tn

ti

|Zs−Z˜s|2ds

≤ (1 +C|π|)n−i(1 +Cα|π|)n−iE|g(Xtn)−g( ¯Xtn)|2 + (1 +Cα|π|)C

α

n−i−1

X

j=0

(1 +C|π|)j(1 +Cα|π|)jΛi+j,

≤ C

E|Xtn−X¯tn|2+|π|+

n−1

X

j=0

E Z tj+1

tj

|Zs−Ztj+1|2ds

+ (1 +Cα|π|)C α|π|

n−1

X

j=0

E|Ztj−Z¯tj|2,

≤ C|π|+ (1 +Cα|π|)C α|π|

n−1

X

j=0

E|Ztj−Z¯tj|2 (2.4)

by the condition 2, (1.3) and (2.1). On the other hand, from the expression of Z and Z, if we denote by¯

Σj =|σ−1(tj, Xtj)Ztj −σ−1(tj,X¯tj) ¯Ztj| we can write

Σj =Ej

h(Ytj+1−Y¯tj+1)Nttj

j+1

+ Z tj+1

tj

f(s,Θs)Nstj−f(tj+1,Θ¯tj+1)Nttj+1j dsi

=Ej

"

Ytj−Y¯tj + Z tj+1

tj

(Zs−Z˜s)dWs

# Nttj

j+1

+Ej

Z tj+1

tj

f(s,Θs)(Nstj−Nttj

j+1)ds.

(8)

Since (2.2) and (1.4) we have Σj ≤ E

Z tj+1

tj

|Zs−Z˜s|2ds

!12

E|Nttj

j+1|2

1 2

+

Z tj+1

tj

Ej|f(s,Θs)|2

1 2

E|Nstj−Nttj+1j |2

1 2 ds,

≤ C

p|π| E Z tj+1

tj

|Zs−Z˜s|2ds

!12

+ C Ej(1 + sup

0≤s≤T

s|2)

!12 Z tj+1

tj

s tj+1−s

|π|(s−tj)ds, (2.5)

≤ C

p|π| E Z tj+1

tj

|Zs−Z˜s|2ds

!12

+C Ej(1 + sup

0≤s≤T

s|2)

!12 q|π|.

The Lipschitz property of σ and the condition 1 insure that

|Ztj −Z¯tj| ≤C|Ztj||Xtj −X¯tj|+|Σj|. Taking the L2 estimates and replacing by (2.5), then we have

|π|

n−1

X

j=0

E|Ztj−Z¯tj|2 ≤C

n−1

X

j=0

(E|Xtj−X¯tj|4)12

+E Z tj+1

tj

|Zs−Z˜s|2ds+|π|2

≤CE Z T

0

|Zs−Z˜s|2ds+C|π|.

(2.6) Now, we plug (2.6) in (2.4) to obtain for i= 0

|Y0−Y¯0|2+E Z T

0

|Zs−Z˜s|2ds≤C|π|+ (1 +Cα|π|) C

|π|E Z T

0

|Zs−Z˜s|2ds.

For α sufficiently larger to C we have Pn−1j=0 E|Ztj −Z¯tj|2 ≤ C, and we conclude by (2.4) and (2.3) that

sup

0≤t≤TE|Yt−Y¯t|2 ≤C|π|.

(9)

Together, with (1.3) we conclude that E

Z T 0

|Zs−Z¯s|2ds ≤ 2

n−1

X

j=0

E Z tj+1

tj

|Zs−Ztj|2ds+ 2|π|

n−1

X

j=0

E|Ztj−Z¯tj|2,

≤ C|π|.

This completes the proof of the Theorem.

Remark 2.2. We can obtain a similar result if we replace in the approx- imation of the forward component X the Euler scheme by the Milshtein scheme.

In this scheme, the process N is only dependent on the forward com- ponent X, we henceforth call it a pseudo-approximation. The following backward scheme raises this handicap.

2.2. Explicit Approximation scheme

In this section we consider that the processus X will be approximated by the Milshtein scheme described by

X0π = x,

Xtπi+1 = Xtπi + (b−12xσσ)(ti, Xtπi)|π|+σ(ti, Xtπi)∆Wti+1

+ 1

2(∂xσσ)(ti, Xtπi)(∆Wti+1)2. For t∈(ti, ti+1), let us put

Xtπ = Xtπi + (b−1

2∂xσσ)(ti, Xtπi)(t−ti) +σ(ti, Xtπi)(Wt−Wti) + 1

2(∂xσσ)(ti, Xtπi)(Wt−Wti)2. It is known that [9]

∀ p≥2, sup

0≤t≤TE|Xt−Xtπ|pK(T)|π|p (2.7) where K is an increasing function. Let us define the processes ∇Xπ and (∇Xπ)−1 by∇Xtπ

0 = (∇Xtπ

0)−1 = 1, and for everyt∈(ti, ti+1]

∇Xtπ = ∇Xtπ

i + (∂xb−1

2∂xσ2)(ti, Xtπi)∇Xtπ

i(t−ti) + ∂xσ(ti, Xtπi)∇Xtπ

i(Wt−Wti) +|∂xσ(ti, Xtπi)|2∇Xtπ

i(Wt−Wti)2

(10)

and

(∇Xtπ)−1 = (∇Xtπ

i)−1−(∂xb−1

2∂xσ2)(ti, Xtπi)(∇Xtπ

i)−1(t−ti)

− ∂xσ(ti, Xtπi)(∇Xtπ

i)−1(Wt−Wti) + 1

2|∂xσ(ti, Xtπi)|2(∇Xtπ

i)−1(Wt−Wti)2.

Now, we are ready to approximate the processN. We put fori= 0, ..., n−1 Ntπ,ti+1i = 1

|π|

Z ti+1

ti

σ−1(s, Xsπ)∇XsπdWs(∇Xtπi)−1, and we have the following estimates

Proposition 2.3.

• sup0≤t≤T E |∇Xt− ∇Xtπ|2+|(∇Xt)−1−(∇Xtπ)−1|2≤C|π|2,

• max0≤i≤n−1E|Ntti

i+1−Ntπ,ti+1i|2 ≤C|π|.

Proof. We denote ∇X¯ the Milshtein approximation of ∇X defined by

∇X¯0= 1, and

∇X¯t = ∇X¯ti+ (∂xb−1

2∂xσ)(ti, Xti)∇X¯ti(t−ti)

+ ∂xσ(ti, Xti)∇X¯ti(Wt−Wti) +|∂xσ(ti, Xti)|2∇X¯ti(Wt−Wti)2 for t∈(ti, ti+1). Then we havesup0≤t≤TE|∇Xt− ∇X¯t|2 ≤C|π|2. On the other hand

E|∇X¯t− ∇Xtπ|2 ≤ C(1 +|π|+|π|2)E|∇X¯ti− ∇Xtπ

i|2

+ C|π|(1 +C|π|)(E|∇X¯ti|4)12E|Xti−Xtπi|4

1 2

+ C|π|2(E|∇X¯ti|4)1

2|EXti−Xtπi|8

1 2.

In particular for t=ti+1 E|∇X¯ti+1− ∇Xtπ

i+1|2 ≤ (1 +C|π|)E|∇X¯ti− ∇Xtπ

i|2+C|π|3,

≤ C|π|2.

(11)

The result is followed by the classical iteration.

By the same argument, we prove that E|(∇Xt)−1−(∇Xtπ)−1|2≤C|π|2. For the second point, we have

|π|2E|Ntti

i+1−Ntπ,ti

i+1|2 ≤CnE|(∇Xti)−1−(∇Xtπi)−1|2Rtti+1

i E|∇Xs|2ds +E|(∇Xtπ

i)−1|2 Z ti+1

ti

E|∇Xs−∇Xsπ|2ds

+E|(∇Xtπ

i)−1|2 Z ti+1

ti

E|Xs−Xsπ|4

1 2

E|∇Xs|2

1 2 ds

,

≤C|π|3

by the condition 1 and the first point. This completes the proof of the

proposition.

Now, we present our explicit backward approximation scheme. We con- sider the process (Yπ, Zπ) defined by

Ytπn =g(Xtπn), and for i=n−1, ...,0 Ytπi =Ei

hYtπi+1+f(ti+1, Xtπi+1, Ytπi+1, Ztπi+1)|π|i Ztπi = Ei

hYtπi+1Ntπ,ti+1i +f(ti+1, Xtπi+1, Ytπi+1, Ztπi+1)Ntπ,ti+1i|π|iσ(ti, Xtπi).

The continuous version is defined in the same way that the pseudo-approxi- mation:

Ytπ =Ytπi+1+f(ti+1, Xtπi+1, Ytπi+1, Ztπi+1)(ti+1−t)−

Z ti+1

t

sπdWs, Ztπ =Ztπi where Z˜π is the unique square integrable predictable process verifying

Ytπi+1 =Ei[Ytπi+1] + Z ti+1

ti

sπdWs.

With these suggestions, we provide the induce error of this approximation.

Theorem 2.4.

sup

0≤t≤TE|Yt−Ytπ|2+E Z T

0

|Zt−Ztπ|2dt≤C|π|

where C >0 is only dependent on K, κ and T. Proof. To prove the Theorem, it suffices to show that

sup

0≤t≤TE|Y¯t−Ytπ|2+E Z T

0

|Z¯s−Zsπ|2ds≤C|π|.

(12)

We denote Θπs = (Xsπ, Ysπ, Zsπ), and let β >0 be a constant to be chosen later on. From the Lipschitz property of f we get

E|Y¯t−Ytπ|2+E Z ti+1

t

|Z˜s−Z˜sπ|2ds

=E|Y¯ti+1−Ytπi+1|2+ 2E Z ti+1

t

( ¯Ys−Ysπ)f(ti+1,Θ¯ti+1)−f(ti+1πti+1)ds,

≤βE Z ti+1

t

|Y¯s−Ysπ|2ds+C

β|π|E|Z¯ti+1−Ztπi+1|2+(1+C

β|π|)E|Y¯ti+1−Ytπi+1|2. Using Gronwall Lemma and the classical iteration to obtain

E|Y¯ti−Ytπi|2+E Z tn

ti

|Z˜s−Z˜sπ|2ds≤(1 +Cβ|π|)C β|π|

n−1

X

j=0

E|Z¯tj−Ztπj|2 On the other hand, σ is bounded byK, then we can write

|Z¯tj −Ztπj| ≤KEj

htj+1Nttj+1j −Ytπj+1Ntπ,tj+1j +|π|f(tj+1,Θ¯tj+1)Nttj+1j

−f(tj+1πtj+1)Ntπ,tj+1ji

≤KEj

h( ¯Ytj+1−Ytπj+1+|π|f(tj+1,Θ¯tj+1)

−|π|f(tj+1πtj+1))Nttj+1j i +KEj

h(Ytπj+1+|π|f(tj+1πtj+1))(Nttj

j+1−Ntπ,tj

j+1)i

≤KE

Z tj+1

tj

( ˜Zs−Z˜sπ)dWs.Nttj+1j +KEj[Ytπj+1+|π|f(tj+1πtj+1)]2

1

2(E|Nttj

j+1−Ntπ,tj+1j|2)12

≤ C p|π| E

Z tj+1

tj

|Z˜s−Z˜sπ|2ds

!12

+Cp|π|Ej(Ytπj+1+|π|f(tj+1πtj+1))2

1 2 .

By the same way that the pseudo-approximation, we prove forβ larger to C thatPn−1j=0E|Z¯tj−Ztπj|2 ≤C, and we conclude that

E|Y¯t−Ytπ|2+E Z T

0

|Z¯s−Zsπ|2ds ≤ |π|

n−1

X

j=0

E|Z¯tj−Ztπj|2

≤ C|π|.

(13)

This completes the proof of the Theorem.

Remark 2.5. The conditional expectation in the above discretization scheme, reduced to the regression on the random variable X¯ti in the pseudo dis- cretization andXtπi in the explicit scheme. Different methods of regression are developed, see for example [2], [4] and [12].

References

[1] V. Bally– An approximation scheme for BSDEs and applications to control and nonlinear PDE’s,Pitman Research Notes in Mathematics Series (1997), 364, Longman.

[2] B. Bouchard, I. Ekeland et N. Touzi – On the Malliavin ap- proach to Monte Carlo approximation of conditional expectations, Finance Stoch 111 (2)(2004), p. 175–206.

[3] B. Bouchard et N. Touzi – Discrete time approximation and Monte-Carlo simulation of backward stochastic differential equations, Stochastic Processes and their Applications 8 (1) (2004), p. 45–71.

[4] J. Carriére – Valuation of the early-exercise price for option using simulations and nonparametric regression, Insurance:Mathematics and Economics 19(1996), p. 19–30.

[5] D. Chevance – Numerical methods for backward stochastic differ- ential equations, Numerical methods in finance (L. Rogers et D.Talay, éds.), Cambridge University Press, 1997, p. 232–244.

[6] J. CvitanicetI. Karatzas– Backward stochastic differential equa- tions with reflection and Dynkin games,The Annals of Probability 24 (1996), p. 2024–2056.

[7] J. Douglas, J. Ma et P. Protter – Numerical methods for forward-backward stochastic differential equations,Annals of Applied Probability 6 (1996), p. 940–968.

[8] N. El Karoui, S. Peng et M. Quenez – Backward stochastic differential equations in finance,Mathematical Finance (1997), p. 1–

71.

[9] O. Faure – Simulation du mouvement brownien et des diffusions, PhD thesis, Ecole Nationale des Ponts et Chaussées, 1992.

(14)

[10] E. Gobet, J. Lemor et X. Warin – A regression-based Monte- Carlo method to solve backward stochastic differential equations,An- nals of Applied Probability 15(3)(2005), p. 2172–2002.

[11] S. Hamadène et J-P.Lepeltier – Zero-sum stochastic differential games and BSDEs, Systems and Control letters 24 (1995), p. 259–

263.

[12] F. Longstaff etE. Schwartz– Valuing american options by sim- ulation: a simple least squares approach, The review of Financial studies 14(1) (2001), p. 113–147.

[13] J. Ma, P. Protter et J. Young– Solving forward backward sto- chastic differential equations explicitly: a four step scheme,Probability Theory and Related Fields 98(1994), p. 339–359.

[14] J. MaetJ. Zhang– Representation theorems for backward stochas- tic differential equations, The Annals of Applied Probability 12(4) (2002), p. 1390–1418.

[15] , Representation and regularities for solutions to BSDE’s with reflections, Stochastic Processes and their Applications 115 (2005), p. 539–569.

[16] E. Pardoux et S. Peng– Adapted solution of backward stochastic differential equations, Systems and control Letters 14 (1990), p. 51–

61.

[17] J. Zhang – A numerical scheme for BSDE’s,The Annals of Applied Probability 14(1)(2004), p. 459–488.

Mohamed El Otmani Faculty of Sciences Semlalia Department of Mathematics Cadi Ayyad University BP 2390

Marrakesh MOROCCO

m.elotmani@ucam.ac.ma

Références

Documents relatifs

Specifically, social and ethical corporate responsibilities are likely to be accorded higher importance in Western European countries given their more developed legal and

Key W ords: Adapted solution, antiipating stohasti alulus, bakward doubly SDEs,.. stohasti partial dierential equation, stohasti

Keywords: Backward stochastic differential equations, Malliavin calculus, dynamic programming equation, empirical regressions, non-asymptotic error estimates.. MSC 2010: 49L20,

Our results are proven under stronger conditions than for the Euler scheme because the use of stronger a priori estimates – Proposition 4.2 – is essential in the proof: one

[9] Gozzi F., Marinelli C., Stochastic optimal control of delay equations arising in advertising models, Da Prato (ed.) et al., Stochastic partial differential equations

Actually, we choose to first approximate stationary solutions of an ergodic discrete model associated with (1). Then, stationary solutions of the SDE are exhibited as limits of

In this paper we design a numerical scheme for approximating Backward Doubly Stochastic Differential Equations (BDSDEs for short) which represent solution to Stochastic

Nadira Bouchemella, Paul Raynaud de Fitte. Weak solutions of backward stochastic differential equations with continuous generator.. The solution is constructed on an