• Aucun résultat trouvé

Effect of Secondary Bending and Internal Compressions on the Life of Stranded Wire Ropes with Hemp Core

N/A
N/A
Protected

Academic year: 2021

Partager "Effect of Secondary Bending and Internal Compressions on the Life of Stranded Wire Ropes with Hemp Core"

Copied!
67
0
0

Texte intégral

(1)

Publisher’s version / Version de l'éditeur:

Technical Translation (National Research Council of Canada), 1951

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE. https://nrc-publications.canada.ca/eng/copyright

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

NRC Publications Archive

Archives des publications du CNRC

For the publisher’s version, please access the DOI link below./ Pour consulter la version de l’éditeur, utilisez le lien DOI ci-dessous.

https://doi.org/10.4224/20331669

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at Effect of Secondary Bending and Internal Compressions on the Life of Stranded Wire Ropes with Hemp Core

Wyss, Th.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

NRC Publications Record / Notice d'Archives des publications de CNRC: https://nrc-publications.canada.ca/eng/view/object/?id=6065e929-658c-4247-a434-14047e3590f2 https://publications-cnrc.canada.ca/fra/voir/objet/?id=6065e929-658c-4247-a434-14047e3590f2

(2)

Title:

NATIONAL RESEARCH COUNCIL

OF

CANADA Technical Translation TT-208

Effect of secondary bending and internal compressions on the life of stranded wire ropes with hemp core, (Einfluss der

sekundBren Biegung und der inneren Pressungen auf die Lebensdauer von Stahlchaht-Litzenseilen mit Hanf seele, )

Professor Dr, Tho Vtyss,

Swiss Federal Materials Testing Institute,

(EMPA),

ZBrich,

Reference : Schweizerf sche Bauzeitung,

-

67, pp, 193-8, 212-5 and 225-8,

(3)

The s t r e s s e s due t o s e c o n d a r y b e n d i n g and t h e com-

p r e s s i o n s between w i r e r o p e and s h e a v e and where two s t r a n d s come i n t o c o n t a c t a r e t h e b a s i c d e t e r m i n i n g f a c t o r s f o r

t h e l o a d and l i f e of s t r a n d e d w i r e r o p e s w i t h hemp c o r e . Formulae f o r c a l c u l a t i n g t h e s e s t r e s s e s and c o m p r e s s i o n s a r e d e r i v e d and d a t a a r e g i v e n on t h e i r a d m i s s i b l e mag- n i t u d e @ I n a d d i t i o n t o t h i s , t h e p l a s t i c d e f o r m a t i o n i s i n v e s t i g a t e d , I t i s shown how t h e formulae c a n be a p p l i e d t o e l e v a t o r r o p e s , t y p e B e However, t h e f o r m u l a e may a l s o be a p p l i e d q u i t e g e n e r a l l y t o c a b l e s f o r mountain r a i l w a y s and t o t r a c t i o n c a b l e s ( d r a g l i n e s ) o f c a b l e r a i l w a y s , s p a n r o p e s , r o p e s i n mines, e t c , The p r e s e n t t r e a t i s e i s p a r t o f a more comprehensive work e n t i t l e d 'Untersuchungen Uber d i e Beanspruchungen und Berechnung von S t a h l d r a h t s e i l e n d e r Schwebe- und S t a n d s e i l b a h n e n " ( I n v e s t i g a t i o n s r e g a r d i n g t h e l o a d and c a l c u l a t i o n o f c a b l e s of suspended r a i l w a y s and c a b l e w a y s ) which w i l l be p u b l i s h e d a s EMPA r e p o r t No, 1 6 6 i n t h e n e a r f u t u r e .

A , S t r e s s e s R e s u l t i n g from Secondary Bending

I n s t e e l w i r e r o p e s s e c o n d a r y b e n d i n g o c c u r s a t a l l p o i n t s where t h e i n d i v i d u a l l a y e r s of w i r e i n t e r s e c t and t h e t r a n s v e r s e f o r c e Po a c t i n g on a n o u t e r w i r e ( F i g , 1 ) makes i t s e l f f e l t , e , g o a t t h e c e n t r e o f s u c h a f i e l d ,

(4)

f o l l o w s : d = d + d + d t o t 0 Z b l b2 +

fi(0

+

f ( 0

2 where = t e n s i l e s t r e s s due t o t h e t e n s i o n i n t h e Z w i r e rope, S,

d = i n t e n s i t y of s t r e s s due t o primary bending,

b 1

.L

a s d e f i n e d by Reuleaux o r I s a a c h s e n ,

fl = i n t e n s i t y o f s t r e s s due t o secondary bending

b2 r e s u l t i n g from t h e t r a n s v e r s e l o a d Po, f l ( 7 ) = s t r e s s due t o t w i s t , f 2 ( ? ) = s t r e s s due t o f r i c t i o n . The i n v e s t i g a t i o n d e s c r i b e d below d e a l s w i t h 6 b2

°

Taking i n t o account t h a t Po i s d i s t r i b u t e d o v e r a c e r t a i n d i s t a n c e , t h a t ' t h e span

1

i s s l i g h t l y reduced by t h e deforma- t i o n of t h e w i r e and t h a t t h e w i r e i s continuous, i t i s

assumed t h a t t h e maximum bending moment a t t h e c e n t r e of t h e f i e l d i s

M

max.

-

Po

J

Po

8

16 1 6 s i n @ where Po = t r a n s v e r s e l o a d of a w i r e ,

6

=' d i a m e t e r of a w i r e , O = t h e i n t e r s e c t i n g a n g l e o f two l a y e r s of w i r e s , T h i s bending moment was d e l i b e r a t e l y assumed t o be s m a l l e By i n t r o d u c i n g t h e moment o f r e s i s t a n c e of t h e outermost

(5)

w i r e

-

assuming t h a t t h e w i r e s of t h e two l a y e r s have i d e n t i c a l d i a m e t e r

-

t h e f o l l o w i n g i s o b t a i n e d :

The magnitude of t h e f o r c e Po, which depends on t h e manner i n which t h e t r a n s v e r s e l o a d i s a p p l i e d , i s a n i m p o r t a n t f a c t o r . The c o n s t r u c t i o n o f t h e w i r e r o p e ,

e x p r e s s e d by t h e a n g l e of l a y , w , and t h e t h i c k n e s s o f w i r e ,

8 ,

a r e a l s o i m p o r t a n t ,

1. Wire Rope

-

a s Defined by Reuleaux

-

C l o s e l y F i t t e d

a Over a Sheave

I n t h i s c a s e a n approximate formula f o r t h e f o r c e s Po may be o b t a i n e d from t h e t r e a d s shown i n F i g . 2, t a k i n g i n t o

a c c o u n t t h e width of t h e sheave grooves ( I o r 11) and t h e l a y of t h e r o p e , Po = f o r c e a c t i n g t r a n s v e r s e l y on a s i n g l e w i r e , S = t e n s i o n i n t h e w i r e r o p e , z = number of s t r a n d s i n t h e r o p e , m = number of w i r e s i n t h e r o p e

-

assuming t h a t t h e w i r e s a r e i d e n t i c a l , a = d i s t a n c e between t h e crowns ( A , B, C , e t c . ) of t h e s t r a n d s (a = L / z ) , n = number of p o i n t s o f c o n t a c t w i t h i n t h e d i s t a n c e a , L = l e n g t h of l a y of t h e s t r a n d s ,

(6)

D

= d i a m e t e r of sheave, d = d i a m e t e r of w i r e r o p e , t h e n

With r e s p e c t t o n i t i s assumed t h a t f o r t i g h t groove i n t h e sheave Po max, e q u a l s a mean v a l u e , which i s o b t a i n e d when t h e p r e s s u r e d i s t r i b u t i o n o v e r t h e w i d t h d/2 i s uniform,

I n t h i s c a s e

a p p l i e s f o r r e g u l a r l a y r o p e s and may a l s o be a p p l i e d w i t h good approximation t o l a n g l a y r o p e s , Hence, a s t h e mean v a l u e , whence, by e q u a t i o n ( 3 ) , For w i r e r o p e s c o n s i s t i n g o n l y of i d e n t i c a l w i r e s t h e t e n s i l e s t r e s s may be s u b s t i t u t e d , Then, f o r m w i r e s e q u a t i o n ( 5 ) becomes

= 2Lm

1

C Z

.

6b2 s i n o d z D

From t h i s i t i s evgdent t h a t t h e secondary bending, b b 2 , depends on t h e c o n s t r u c t i o n of t h e r o p e , t h e l e n g t h of l a y o f t h e s t r a n d s and w i r e s , t h e v a l u e 6 / ~ and on 6,. It d e c r e a s e s a s t h e l e n g t h of l a y d e c r e a s e s ,

For i n s t a n c e , i f L = 7,5d, z = 6 and w = BOO, t h e

(7)

m = 6 x 1 9 = 114 w i r e s ,

ob2

= 570 cZd/D ( 6 a ) Ill = 6 X 37 = 222 w i r e s , 6 b 2 = 1 1 1 0 f l Z d / ~ ( 6 b )

m

= 6 x 6 1 = 366 w i r e s , #b2 = 1830 @ z s / D ( 6 ~ ) For L = 8.0d t h e v a l u e s f o r Ob2 w i l l be g r e a t e r by a p p r o x i m a t e l y 6%. It w i l l be found t h a t t h e v a l u e s f o r r o p e s of mountain r a i l w a y s a r e s i m i l a r (assuming normal l a y , o f c o u r s e ) , I n a c t u a l c a s e s t h e i n t e r s e c t i n g a n g l e may be c o n s i d e r a b l y s m a l l e r , t h e r e b y g r e a t l y i n c r e a s i n g t h e a t r e s s e s due t o secondary bending, C b2 The f a c t t h a t t h e s t r e s s e s due t o 6 do p l a y a n b2

i m p o r t a n t r o l e i s e v i d e n t from F i g , 3, where N, t h e number of bends t o c a u s e f a i l u r e of t h e r o p e , has been p l o t t e d a s o r d i n a t e , These d a t a were o b t a i n e d from f a t i g u e t e s t s made by Vioernle and Herbst (1) w i t h r o p e s of v a r i o u s c o n s t r u c t i o n . Here t h e r o p e s have been a r r a n g e d a c c o r d i n g t o D/ 6

,

t h i s r a t i o v a r y i n g between 100 and 1070, Furthermore, t h e t e n s i l e s t r e s s ,

,

t h e t e n s i l e s t r e n g t h of t h e wire and t h e sum C t o t o l

z

= O J

+

cbl a r e g i v e n i n kgm, p e r s q , mm, F i g o 3 a l s o shows t h e l a y of t h e r o p e s ( l a n g l a y r o p e , r e g u l a r l a y r o p e o r S e a l e r o p e ) , t h e r o p e d i a m e t e r and t h e c o n s t r u c t i o n of t h e s t r a n d s , b u t t h e r e a r e no d a t a on t h e l e n g t h of l a y of t h e s t r a n d s and w i r e s , A s i s e v i d e n t from t h e f i g u r e , t h e shape of t h e N l i n e i s markedly u n d u l a t e , There i s o n l y a rough g e n e r a l

(8)

r e l a t i o n s h i p between D/$ and t h e number o f dends t o f a i l u r e , N, n o t t a k i n g i n t o a c c o u n t t h e c o n s t r u c t f on of t h e r o p e , I t c a n e a s i l y be s e e n t h a t t h e f a c t o r N i s v e r y low f o r v a l u e s of

D/S

between 100 and 300 and t h a t o n l y f o r h i g h v a l u e s o f ~ / 6 does i t g r a d u a l l y i n c r e a s e . The shape o f t h e c u r v e f o r i s a l s o noteworthy. F o r v a l u e s of ~ / 6 r a n g i n g from 100 t o 300 t h i s curve a s c e n d s above t h a t f o r

P,

( t e n s i l e s t r e n g t h ) a t some p o i n t s , I t i s not s u r p r i s i n g , t h e r e f o r e , t h a t under t h e s e c o n d i t i o n s t h e v a l u e s f o r N a r e v e r y low, The s t r e s s e s Fz 4- a l o n e do n o t s u f f i c e t o b l e x p l a i n t h e marked u n d u l a t e shape of t h e N-N c u r v e , However, i f t h e s t r e s s e s due t o secondary bending a r e t a k e n i n t o a c c o u n t , i , e o , i f t h e sum d t o t o 2 = 0, +

cbl

+

0' i s formed, i t w i l l be found t h a t t h e l o c a l

b2

d e s c e n t s of t h e N c u r v e always c o i n c i d e w i t h marked a s c e n t s of t h e c u r v e f o r

utoto2

.

This c l e a r l y d i s p l a y s t h e e f f e c t of Gb and i t becomes c l e a r now why t h e N-N

2

c u r v e must be u n d u l a t e f o r some t y p e s of r o p e and i n i t i a l s t r e s s e s , A number of s t r a n d c r o s s - s e c t i o n s a r e shown i n F i g , 3 f o r t h e w i r e r o p e s w i t h hemp c o r e employed i n t h e s e t e s t s ,

For S e a l e r o p e s , which d i f f e r from o t h e r r o p e

t y p e s by t h e f a c t t h a t t h e w i r e s w i t h i n a s t r a n d do n o t i n t e r s e c t ( c f , F i g , 3a, l a s t c r o s s - s e c t i o n ) , o n l y

(9)

t o t o l = Cz

+

b l need be t a k e n i n t o a c c o u n t s i n c e 0' i s z e r o , High N v a l u e s a r e t h e r e f o r e o b t a i n e d f o r b2 t h e s e r o p e s , I n F i g o 3 t h e r o p e s i n q u e s t i o n a r e marked by a n S on t h e l i n e "wire l a y e r s t ' . S i n c e , a s e q u a t i o n ( 6 ) shows, i s d i r e c t l y pro- b2 p o r t i o n a l t o Cz, t h e l o n g i t u d i n a l s t r e s s has a g r e a t e f f e c t on t h e f a t i g u e f a c t o r N o T h i s i s noteworthy and i s a simple e x p l a n a t i o n of t h e f a c t t h a t N d e c r e a s e s a s 0 z i n c r e a s e s ,

For l o o s e sheave grooves t h e s t r e s s e s due t o secondary bending become i n c r e a s i n g l y more u n f a v o u r a b l e , s i n c e i n

t h i s caae t h e number of p o i n t s o f c o n t a c t i s reduced con- s i d e r a b l y and Po i n c r e a s e d a c c o r d i n g l y . T h i s i s e v i d e n t from F i g , 4 which shows t h e r e s u l t s from a number of

t e s t s made by Woernle ( 2 ) w i t h r e g u l a r l a y r o p e s of 1 6 mm, d i a m e t e r and w i t h t i g h t and l o o s e sheave g r o o v e s , The e f f e c t which t h e i n c r e a s e d i n i t i a l l o a d of dz = 30 kgm, p e r s q , mm, has on t h e number of bends t o f a i l u r e i s e v i d e n t from t h i s c u r v e , The l a t t e r i s c o n s i d e r a b l y lower t h a n t h a t f o r

ez

= 10 kgm, p e r s q , mm, It i s a l s o e v i d e n t from F i g o 3 t h a t , a l t h o u g h db2 i s z e r o , t h e r e s t i l l i s c o n s i d e r a b l e s c a t t e r i n t h e N v a l u e s f o r t h e S e a l e r o p e s , This i s due p r i m a r i l y t o t h e compression a l o n g t h e s t r a n d s i n c o n t a c t , T h i s w i l l be d i s c u s s e d i n t h e subsequent s e c t i o n . Moreover, i t must be emphasized t h a t t h e above v a l u e s f o r

cb2

a r e

(10)

o n l y approxfmate v a l u e s , They m e r e l y s e r v e t o show t h e e f f e c t which secondary bending c a n have on t h e l i f e o f normal s t e e l w i r e r o p e s ,

2 , Rope

-

a s Defined by I s a a c h s e n

-

T r a n s v e r s e l y S t r e s s e d by a P u l l e x

Thfs t y p e of s t r e s s i s found i n cableways above t h e p u l l e y s of t h e p a s s f n g p l a c e s , A t t h e most u n f a v o u r a b l e p o f n t t h e t r a n s v e r s e f o r c e i s d i s t r i b u t e d h e r e o v e r two

o r p o s s i b l y t h r e e w i r e s , The p r e s s u r e p e r w i r e t h e n becomes Po-Q/2, The s e c o n d a r y bending i s o b t a i n e d from e q u a t i o n ( 3 ) a s where Q = f o r c e of t h e p u l l e y , = w i r e d i a m e t e r . i n t e r s e c t i n g a n g l e of t h e two o u t e r m o s t l a y e r s of w i r e s , For i n s t a n c e , f o r a t r a n s v e r s e f o r c e of 100 kgm,, a = 30' and s u r r o u n d i n g w i r e s of 3 , 5 rnm. d i a m e t e r t h e s e c o n d a r y bending, d b i s 5,25 kgm, p e r s q , mrn, I f 2 9 S e a l e r o p e s a r e used, (332 becomes z e r o h e r e t o o , B, S t r e s s due t o I n t e r n a l Compression

The problem of compressions i n s i d e t h e w i r e r o p e 9

h a s been r e s t r i c t e d h e r e t o two s p e c i a l c a s e s .

%-

(11)

1, F i e l d s of Force i n t h e C r o s s - s e c t i o n a l Area of a Wire An approximate i d e a of t h e f i e l d s of p r i n c i p a l s t r e s s e s i n l a t e r a l l y s t r e s s e d w i r e s may be o b t a i n e d from t h e example of d i s c s s t r e s s e d c o r r e s p o n d i n g l y o F i g u r e 5a shows t h e f i e l d of p r i n c i p a l s t r e s s e s of a c i r c u l a r d i s c t o which two f o r c e s , P, c o u n t e r a c t i n g each o t h e r a r e a p p l i e d , This diagram resembles somewhat t h e m i d s e c t i o n t h r o u g h t h e f i e l d of f o r c e of a wire where t h e l o a d i s a p p l i e d a t two o p p o s i t e p o i n t s and i s c h a r a c t e r i z e d by t h e f a c t t h a t a l l t h e l i n e s i s s u i n g from a p o i n t o f a p p l i c a t i o n o f t h e f o r c e P l e a d t o t h e o p p o s i t e p o i n t , F i g , 5b may be t a k e n approximately f o r a m i d s e c t i o n of a wire which i s s t r e s s e d by P1 and i s supported by

two a d j a c e n t w i r e s and i n F i g , 5c by t h r e e a d j a c e n t w i r e s , I n t h e c a s e of F i g , 5d t h e r e would be many p o i n t s of

s u p p o r t a t t h e lower s i d e of t h e w i r e , From t h i s i t i s e v i d e n t t h a t each s i n g l e load P has a d e f i n i t e l o c a l f i e l d which may be bounded by l i n e s and s i n g u l a r p o i n t s , The f i e l d s a , b and d were determined on sheaves by means of p h o t o e l a s t i c experiments, whereas t h e f i e l d 5c was

9

d e r i v e d by t h e a u t h o r from t h e l i m i t i n g c a s e s b and d o A l l t h e s e f i g u r e s must be c o n s i d e r e d approximations;

(12)

of t h e w i r e s i n a r o p e p r o b a b l y a r e a g r e a t d e a l more comp- l i c a t e d ,

2 , F i e l d o f Force due t o Tension i n a S t r e s s e d S t r a n d e d Rope ( a ) F i e l d of f o r c e due t o a x i a l t e n s i o n ,

I f a s t r a n d e d r o p e w i t h hemp c o r e i s l o a d e d a x i a l l y , t h e n a l l t h e s t r a n d s t e n d t o s t r a i g h t e n t h e m s e l v e s , t h u s p r o d u c i n g a motion i n a r a d i a l d i r e c t i o n toward t h e c e n t r e , Mutual

h i n d r a n c e of t h e s t r a n d s produces t h e r a d i a l f o r c e s V , and t h e hexagon c o n s i s t i n g of t h e l i n e s of f o r c e K i s o b t a i n e d ( c f , F i g s , 6 and 8 ) , S i n c e t h e r e i s o n l y t h e hemp c o r e i n t h e c e n t r e , t h e f o r c e s V and K must be i n e q u i l i b r i u m w i t h e a c h o t h e r , C o n d i t i o n s a r e s i m i l a r i n t h e i n d i v i d u a l s t r a n d s where polygons, determined by t h e number of w i r e s p e r l a y e r , a r e o b t a i n e d a s l i n e s of f o r c e , Moreover,from i n d i v i d u a l end p o i n t s of t h e f o r c e polygons l i n e s of f o r c e t e n d toward t h e c e n t r e , The p o i n t s T, a t which two s t r a n d s come i n t o con- t a c t and t h r o u g h which t h e l i n e of f o r c e K p a s s e s , a r e note- worthy ( F i g , 6 b ) , If t h e compressive f o r c e K i s t o o g r e a t , t h e n i t w i l l be found t h a t under c e r t a i n c o n d i t i o n s t h e r o p e shows s e v e r e i m p r i n t s a t t h e s e p o i n t s ( F i g , 71, The r o p e i n q u e s t i o n i s a s p a n rope of a c a b l e r a i l w a y , I t i s 33 mrn, i n d i a m e t e r and c o n s i s t s of e i g h t s t r a n d s o f S e a l e c o n s t r u c t i o n and a hemp c o r e , The o u t e r w i r e s have a d i a m e t e r of 1,8 mm, The r o p e shows nunierous w i r e b r e a k s

(13)

resulting from too strong a tensile stress and too small a sheave at the outside, The extraordinarily deep imprints at the points where two individual strands come into con- tact and the resulting -breaks are also noteworthy (points T in Figo 6b), From this it is evident that under certain conditions failures in Seale ropes may be due to this

cause. Close examination of the imprints shows that they are arranged as shown in Figo 10c, with the points B, B' standing out distinctly,

(b) Determination of the forces V,

K

and Po due to axial tensile load at the points of contact of two strands, These forces as well as the compressive forces can be approximately determined, graphically (Fig, 8) and

numerically, the example being a rope consisting of six strands as shown in Figo 8 a 0 However, the derivation below is general, The line ABCDCt represents the projection of the centre line (axis) of a strand (Fig, 8b), With the aid of this figure V may be approximately determined from the crown zone CDCq (Figs, 8 a and ad), if the centre line is assumed to be a helical curve having a given pitch,

If

S = tension in the wire rope,

S f = tension of a strand,

L

= length of lay of a strand

(cog.

7.5 to 8.0 d), z = number of strands in the wire rope,

(14)

d = d i a m e t e r o f t h e w i r e r o p e , d l ' d i a m e t e r o f a s t r a n d , a i n c l i n a t i o n o f a s t r a n d t o t h e r o p e a x i s ( a n g l e o f l a y of t h e s t r a n d ) , r = r a d i u s of c u r v a t u r e i n t h e p l a n e of d e f l e c t i o n o f t h e h e l i c a l c u r v e of a s t r a n d a t D, t h e n , a c c o r d i n g t o F i g , 8 c , S l = S 9 Z cosw and from F i g , 8 d i t f o l l o w s t h a t hence F u r t h e r m o r e , i t f o l l o w s from t h e h e l i c a l c u r v e t h a t : f l ( d

-

el&)

s i n

a

= c o s (3 =

L

V L ~

+

n z

( d

-

d x ) 2 A c c o r d i n g l y , w i t h r e s p e c t t o u n i t of l e n g t h ,

v

= 2 s i n C% t a n a z(d

-

d l ) S o r , i f s i n a and tan& a r e r e p l a c e d by t h e d i m e n s i o n s o f t h e r o p e ,

(15)

The compressive f o r c e a t B o r B t , t h e p o i n t of c o n t a c t of two s t r a n d s (Figo 1 0 c ) , i s

where

and

For t h e p o i n t s C and A t t h e compressive f o r c e would o n l y be one h a l f t h a t a t B ( c f . F i g . 7 ) .

There a r e r e l a t i o n s h i p s between wire and s t r a n d

analogous t o t h o s e between s t r a n d and rope; t h e r e f o r e , t h e f o l l o w i n g symbols ( c f , F i g o 8 ) a p p l y t o a s t r a n d :

L t = l e n g t h of l a y of t h e s u r r o u n d i n g w i r e s ,

a t = d i s t a n c e between t h e crowns of t h e i n d i v i d u a l w i r e s ( F i g . l O c ) ,

dt = a n g l e between t h e a x i s of a wire and t h e a x i s of a s t r a n d ( F i g . l O c ) , z l = number of s u r r o u n d i n g w i r e s , r t = r a d i u s of c u r v a t u r e of a wire i n ' t h e p l a n e of d e f l e c t i o n , = s t r a n d diameter,

6

= w i r e diameter. Then, a c c o r d i n g t o F i g , 10c,

(16)

Furthermore, s i n as = n(d&

-

-

6 )

Ji'z

+ n z ( d l

-

6

I z

where t h e a d d i t i o n a l c u r v a t u r e due t o t h e b e n t s t r a n d i s n e g l e c t e d , From e q u a t i o n s ( 9 ) , ( 9 a ) and ( 9 b ) t h e f o l l o w i n g i s o b t a i n e d : which, by e q u a t i o n ( 8 c ) , becomes

-

Po

-

8

s i n a t a n a

s

( 9 d ) 2 s i n

a'

z cos ~ (

-

dd x )

For s i n wv

,

s i n

a,

t a n & and cos 'b t h e dimensions of t h e rope may be s u b s t i t u t e d ,

I f a i r ~ U , e q u a t i o n ( 9 d ) may be reduced t o

For a wire rope w i t h s i x s t r a n d s and l e n g t h of l a y of t h e s t r a n d , L

=

7,5d, t h e f r a l u e s ' o b t a i n e d a r e :

z

= 6,

Q = 1 5 ° 4 ~ 1 ,

g =

60°, d

-

d b = 2

3

d Furthermore, a9 =

a,

c o r r e s p o n d i n g c o n s t r u c t i o n of t h e s t r a n d assumed of c o u r s e ,

(17)

Then, by e q u a t i o n s ( 8 c ) and ( g a l ,

i s o b t a i n e d and,by e q u a t i o n ( 9 e ) , t h e c o m p r e s s i v e f o r c e p e r w i r e a t t h e p o i n t of c o n t a c t of two s t r a n d s due t o a x i a l t e n s i l e l o a d :

3 , F i e l d of F o r c e i n a T r a n s v e r s e l y Loaded S t r a n d e d Wire Rope and t h e Compressive F o r c e s a t t h e P o i n t s of

C o n t a c t o f Two S t r a n d s

-

( a ) E f f e c t o f a c o n c e n t r a t e d f o r c e P a c c o r d i n g t o I s a a c h s e n , I f i n t h e most u n f a v o r a b l e c a s e o f F i g , 9 a t r a n s v e r s e l o a d P i s a p p l i e d , t h e n i t may be assumed t h a t t h e r e i s a l o a d P/Z a c t i n g on t h e c e n t r e of e a c h s t r a n d of a w i r e r o p e h a v i n g z s t r a n d s , The r e s u l t i s a z p o l y g o n o f

K

f o r c e s ( F i g , 9 b ) s u c h a s i s o b t a i n e d i n a s i m p l i f i e d way f o r a s t r e s s e d w i r e r o p e which i s n o t l o a d e d t r a n s v e r s e l y , Regarding t h e d i s t r i b u t i o n of t h e l a t e r a l c o m p r e s s i o n s a l o n g a s t r a n d due t o t h e f o r c e P i t must be assumed t h a t t h e y w i l l be g r e a t e s t i n t h e r e g i o n of t h e p o i n t o f a p p l i c a - t i o n and t h a t t h e y w i l l f a d e t o w a r d s b o t h s i d e s i n a

l o n g i t u d i n a l d i r e c t i o n , I n o r d e r t o determ.ine t h e "peak v a l u e s " i t i s assumed t h a t t h e c o m p r e s s i o n due t o P a l o n g t h e l i n e o f c o n t a c t o f t h e s t r a n d i n q u e s t i o n i s u n i f o r m l y

(18)

d f s t r f b u t e d o v e r t h e l e n g t h

,

which i s assumed t o be e q u a l t o t h e s t r a n d d i a m e t e r d ~ , The h e a v i e s t i m p r i n t s a t t h e p o i n t T ( c f , F i g , 6 b ) o c c u r i n - t h e s t r a n d which i s d i r e c t l y l o a d e d by t h e f o r c e P o I n a w i r e r o p e w i t h z s t r a n d s t h i s f o r c e must t r a n s m i t a f o r c e

PI

= P ( z

-

l ) / z l a t e r a l l y , I n o r d e r t o combine t h i s f o r c e w i t h V due t o t h e s t r e n g t h of t h e w i r e r o p e , S,

P s

must be c o n v e r t e d i n t o u n i t of l e n g t h , Then t h e f o l l o w i n g e q u a t i o n i s o b t a i n e d ;

and ,by e q u a t i o n s ( 9 ) , ( 9 a ) and ( 9 b ) , t h e c o m p r e s s i v e f o r c e a t t h e p o i n t of c o n t a c t of two s t r a n d s becomes o r , i f t h e s t r e n g t h of t h e w i r e r o p e , S, o f e q u a t i o n ( 8 c ) i s s u b s t i t u t e d f o r V,

-

Po

-

, 8 ( z

-

1 ) P + 4 s i n u - q c o s ' b

z

-!L F o r a w i r e r o p e h a v f n g s i x s t r a n d s and l e n g t h of l a y L = 7,5d, t h e f o l l o w i n g v a l u e s a r e o b t a f n e d : z = 6,

.

..

a =

1 5 ° 4 0 ~ ,

b

= 60° and U P =

a ,

assuming c o r r e s p o n d i n g c o n s t r u c t i o n o f t h e s t r a n d . F u r t h e r m o r e , ( d

-

dk) = 2d/3 and = d ~ '= d / 3 , . Thus,

(19)

If i t were assumed t h a t Po

,,,

r e s u l t from u n i f o r m p r e s s u r e d i s t r i b u t i o n o v e r a l e n g t h = d , t h e n where Po = compressive f o r c e p e r w i r e o f two s t r a n d s coming i n t o c o n t a c t , P = p r e s s u r e o f t h e s h e a v e , i , e , , a s i n g l e f o r c e a s d e f i n e d by I s a a c h s e n , S = t e n s i o n i n t h e w i r e r o p e ,

8

= w i r e d i a m e t e r o f t h e s u r r o u n d i n g w i r e s , d = d i a m e t e r o f w i r e r o p e , I f , c o n t r a r y t o F i g o 9b, t h e p r e s s u r e o f t h e s h e a v e i s d i s t r i b u t e d o v e r two o r t h r e e s t r a n d s , Po w i l l d e c r e a s e a c c o r d i n g l y , ( b ) Wire r o p e r u n n i n g o v e r a s h e a v e a s d e f i n e d by Reuleaux, According: t o e q u a t i o n ( 4 ) t h e f o r c e a c t i n g p e r cr"own of a s t r a n d i s P = 2aS/D, (4bb

The l o c a l d i s t r i b u t i o n o f compression due t o t h e f o r c e P a l o n g two s t r a n d s coming i n t o c o n t a c t c a n v a r y , d e p e n d i n g on t h e form of t h e s h e a v e groove, For c l o s e l y f i t t i n g

groove t h i s c o m p r e s s i o n s h o u l d b e u n i f o r m l y d i s t r i b u t e d o v e r t h e e n t i r e l e n g t h , i , e , , t h e l e n g t h = a = L / Z , For wide open groove, however, t h e g r e a t e s t l a t e r a l p r e s s u r e should r e s u l t a s t h e mean v a l u e from a u n i f o r m p r e s s u r e d i s t r i b u t i o n

(20)

over A = d/3, ( i ) For c l o s e l y f i t t i n g groove t h e f o l l o w i n g i s o b t a i n e d from e q u a t i o n s ( l l ) , ( 4 b ) and ( 8 c ) : K12 = 2 cos 5 ( z

-

1) 2 S + 2

D

z ( d s i n o t a n d

-

dX"} and from e q u a t i o n ( l l a ) ;

-

Po

-

22 s i n osqcosi S

8

(

z

;

1 + s i n a t a n a ( d

-

dgl

Then, f o r a w i r e rope having s i x s t r a n d s and l e n g t h of l a y L = 7,5d, i f do = (3 and z = 6, ( i i ) For v e r y l o o s e groove, t h e f o l l o w i n g i s o b t a i n e d : and, by e q u a t i o n . ( l l a ) ,

-

-

s

6

3 ( z

-

l ) a + s i n a t a n o c '0 z 2 s i n

a!

c o s y

I n t h i s c a s e , f o r t h e wire rope having s i x s t r a n d s and l e n g t h of l a y L = 7,5d, i f =

a,

where Po = compressive f o r c e p e r w i r e of two s t r a n d s coming i n t o c o n t a c t

,

S = t e n s i o n i n t h e wire rope, d = w i r e r o p e d i a m e t e r ,

.

D = sheave d i a m e t e r ,

(21)

Comparison of equations (15a) and (16a) clearly shows that Po increases considerably for very loose sheave groove, 4, Maximum Compression po on a Wire in the Elastic Range

Hertzvs formula for the maximum compressive stress, po, at the point of contact is (3):

4 / T , l ~ ,i'

where Po = local compressive force on a wire,

'P

= ~1 + ~2 + 8 3 + ~ 4 the sum , of the principal

curvatures,

/ U V = an auxiliary value which depends on the auxiliary angle 1

.

For steel and cast steel

E

= 20,000 kgm, per sq, mm, In the present case the following is obtained frorn Fig. 10:

cos

r =

1 ' 2

-~(?ll-?l2) + 2(?11- ?121(?21- p22 1 ~ 0 + ~

(y21-

2 ~

P

~

~

)

~

(22)

where a ) a t t h e p o i n t of c o n t a c t o f w i r e r o p e and s h e a v e : R~~ = r a d i u s of c u r v a t u r e of t h e c e n t r e l i n e o f a w i r e (approximately a l s o t h e r a d i u s o f c u r v a t u r e of t h e crown l i n e of a w i r e ) , H12 = r a d i u s of c u r v a t u r e o f a w i r e i n t h e c r o s s - s e c t i o n =

6'2,

RZ1 = r a d i u s o f t r e a d ( r u n n i n g r a d i u s ) o f a s h e a v e o r p u l l e y , R22 = r a d i u s of g r o o v e ,

"

= a n g l e b e t w e e n a w i r e and a t r e a d a t t h e b o t t o m of a s h e a v e , ( 1 n F i g , 1 5 t h i s a n g l e i s d e s i g n a t e d b y ~p 0 ) b! a t t h e p o i n t o f c o n t a c t of two s t r a n d s ( F i g , l o b ) : R1l = r a d i u s o f c u r v a t u r e o f t h e c e n t r e l i n e of a w i r e o f s t r a n d 1 ( a p p r o x i m a t e l y a l s o t h a t of t h e crown l i n e ) , C\ R12 = '/2 o f t h e c r o s s - s e c t i o n o f a w i r e i n s t r a n d 1, R21 = r a d i u s of c u r v a t u r e of t h e c e n t r e l i n e of a w i r e i n s t r a n d 2, R22 = &/2 o f t h e c r o s s - s e c t i o n o f a w i r e i n s t r a n d 2 ,

--

t h e a n g l e b e t w e e n two w i r e s i n c o n t a c t , The v a l u e pJ f s o b t a i n e d f r o m c o s r w i t h t h e a i d o f t h e c u r v e shown i n F i g , 11, Whence i t f o l l o w s t h a t c ) a t t h e p o i n t o f c o n t a c t of r o p e and s h e a v e (made o f c a s t s t e e l )

(23)

( i ) F o r r e g u l a r l a y r o p e s : R 1 1 2 r B = d l Q =

<

-*=

ti

R12 6 6 s i n 2 cxf p o s i t i v e where r P i s determined by e q u a t i o n ( 9 e ) , Furthermore, =

R22

n e g a t i v e R12 =

-

R21 =

D

p o s i t i v e R12

6

cJ

-

0, C O S 2w-1,o Taking i n t o a c c o u n t t h e s i g n s , t h e n o r , s i n c e R12 = 8/2 of t h e o u t e r w i r e s , F o r i n s t a n c e , assume t h a t f o r r u n n i n g p u l l e y s p v - l , 5 , M -0.94 and f o r ( c a r r y i n g ) s h e a v e s ~ ~ ~ l . 6 , Id -0.92. I n o r d e r t o o b t a i n a comparative v a l u e , t h e f o l l o w i w

v a l u e s a r e s u b s t i t u t e d i n e q u a t i o n (20a):/ccv = 1 , 6 and M = O09;5, Then t h e f o l l o w i n g mean v a l u e i s o b t a i n e d :

-

c=l%67F

Po

-

( 2 W "

3

According t o Reuleaux, e q u a t i o n ( 4 a ) a p p l i e s t o po f o r t i g h t grooves i n t h e sheave.

(24)

( i i ) F o r l a n g l a y r o p e s o, rn and n have t h e same s i g n s a s f o r r e g u l a r l a y r o p e s , b u t o-27' and 2 c o s 2 ~ - 1 , 2 . T h e r e f o r e , 1 1

r

=

{

l + - + - - ~ \ o n m F o r c a s t s t e e l p u l l e y s , i f R12 = 812, Assuming t h e f o l l o w i n g v a l u e s a s an example f o r r u ~ n i n g p u l l e y s : p V - - 1 , 7 , N!-0.94 / and f o r ( c a r r y i n g ) s h e a v e s : p v - 2 . 2 , hlcO .92, t h e n w i t h ~ e a n v a l u e s o f p v - 2 , O and h!+0,93, From t h i s i t i s e v i d e n t t h a t a t t h e s u r f a c e c o m p r e s s i o n s i n 1an.g l a y r o p e s a r e s l i g h t e r t h a n i n r e k u l a r l a y r o p e s , Po i s o b t a i n e d from e q u a t i o n ( 4 a ) , d ) A t t h e p o i n t o f c o n t a c t o f two s t r a n d s

A s Fig, l o b shows, o, rn a n d n become p o s i t i v e h e r e and o --/ 30' f o r b o t h r e g u l a r l a y r o p e and l a n ~ l a y r o p e , From symmetry c o n s i d e r g t i o n s i t f o l l o w s t h a t ( 2 2 1

-

i

;-+

,/

ECOSU

= I - -

C O S T

= O c o s w * 1 1 ( 2 3 ) 1 9 - 0 1

-+

-

0 F o r s t r a n d e d w i r e r o p e s l / o = l i e s b e t w e e n

(25)

t h e a n k l e between t h e i n t e r s e c t i n L w i r e s of' s t l + a l ~ d 1 and 2 ,

/ U v l i e s between 1.20 and 1 , 4 0 , I t s mean i s 1.J. By sub- s t i t u t i n g Lhe v a l u e s b! = 2.04 a n d p g =

1,s

i n e q u a t i o n ( 2 0 a ) , t h e @ o n p r e s s i o c between two s t r a x d s coming i n t o c o n t a c t

A c c o r d i n g t o Reuleaux e q u a t i o n ( 1 8 ) a p p l i e s f o r Po. F i g . 1 2 shows t h e r e l a t i o n s h i p s between Po,

8

and p,. The l a t t e r c a n be r e a d d i r e c t l y w i t h t h e a i d of Po,

Comparison o f t h e c ~ m p ~ e s s i v e s . t r ~ e s s e s , p o , f o r p o i n t s of c o n t a c t o f two s t r a n d s and t h o s e f o r p o i n t s of c o n t a c t of r o p e and p u l l e y ( o r r o p e a n a s h e a v e ) shows t h a t t h e @om- p r e s s i v e s t r e s s e s between two s t r a n d s a r e c o n s i d e r a b l y g r e a t e r

( c f , e q u a t i o n s ( 2 0 b ) , ( 2 1 a ) and ( 2 4 ) a s w e l l a s T a b l e s V I and

VII)

0

5, The P r i n c i p a l S t r e s s e s and t h e Comparison S t r e s s e s ac t h e C e n t r e of t h e I m p r i n t e d S u r f a c e ( a ) P r i n c i p a l s t r e s s e s I n t h e e l a s t i c r e g i o n t h e p r i n c i p a l s t r e s s e s a r e (, :- ) o b t a i n e d f r o m t h e f o l l o w i n g s t r e s s e s : ( l o n g i t u d i n a l s t r e s s ) ( t r a n s v e r s e s t r e s s ) ( v e r t i c a l s t r e s s ) Q3 =

-

3Po

-

-

P o ' ( 2 5 ~ ) 2n a b (-2 ) c f , r e f , 3 , p , 281.

(26)

where Po = compressive s t r e n g t h o f a n e x t e r n a l f o r c e i n kgm,, e = r a t i o of t h e e l l i p t i c a l a x e s b/a of t h e i m p r i n t e d s u r f a c e , m = P o i s s o n ' s r a t i o @ 1 0 / 3 po = compression a t t h e c e n t r e o f t h e i m p r i n t e d s u r f a c e i n kgm. p e r s q , rnm, A s e q u a t i o n ( 2 5 ) shows t h e p r i n c i p a l s t r e s s e s

rl

and

@2 g r e a t l y depend on t h e r a t i o b/a. T h i s i s a l s o e v i d e n t from T a b l e I ,

The t h r e e p r i n c i p a l s t r e s s e s ( c19 6 2 and 0 3 ) f o r which

t h e i m p r i n t e d s u r f a c e i s a c i r c l e have b e e n l i s t e d f o r t h e r a t i o a/b =

l o o u

I f a/b = 009 t h e n t h e r e i s c o n t a c t a l o n g a c u r v e , T h i s i s t h e o t h e r l i m i t i n g c a s e , (b) The comparison s t r e s s From t h e t h r e e p r i n c i p a l s t r e s s e s C1, r2 and

c3

t h e comparison s t r e s s i s o b t a i n e d a s

(27)

The s t r e s s

O;F

o c c u r s i n t h e t e n s i o n zone o f t h e w i r e w i t h c o r r e s p o n d i n g s e c o n d a r y bending and i n t h e p r e s s u r a e zone w i t h c o r r e s p o n d i n g l o c a l c o m p r e s s i o n , ( i ) T e n s i o n zone Because o f t h e u n i a x i a l s t a t e of s t r e s s a t t h e crown o f t h e c r o s s - s e c t i o n a l a r e a o f t h e w i r e , . t h e comparison s t r e s s becomes ( i i ) P r e s s u r e zone

I n t h i s zone Cl,

e2

and

cs

due t o Po ( e q u a t i o n ( 2 5 ) ) a c t on t h e s u r f a c e , and Wz and

-

Wb a c t l o n g i t u d i n a l l y , The l o n g i t u d i n a l p r i n c i p a l s t r e s s t h e r e f o r e becomes I f t h e s e a d d i t i o n a l s t r e s s e s a r e t a k e n i n t o a c c o u n t , t h e n from t h e c o e f f i c i e n t s l i s t e d i n T a b l e I t h e f o l l o w i n g g e n e r a l e q u a t i o n f o r t h e comparison s t r e s s a t t h e p o i n t o f i m p r i n t o f t h e w i r e s u r f a c e i s o b t a i n e d : I Table I1 g i v e s t h e n u m e r i c a l v a l u e s f o r x2 and y f o r v a r i o u s v a l u e s of b / a o E q u a t i o n ( 2 8 ) may a l s o be w r i t t e n i n a p p r o x i m a t e l y t h e f o l l o w i n g f orm:

(28)

Then, w i t h po, 6, and

rb

a s a b s o l u t e v a l u e s , t h e f o l l o w i n g h e n e r a 1 e q u a t i o n i s o b t a i n e d : The xs v a l u e s a p p l y i n g h e r e a r e l i s t e d i n Table 11, A s c a n be s e e n t h e d e v i a t i o n i s g r e a t e s t l'or b/a =

l o o o

Table 11, A t t h e i n s i d e of a w i r e below t h e c e n t r e of t h e i m p r i n t e d a r e a t h e r e i s a p o i n t where t h e s t r e s s C i s c o n s i d e r a b l y g (-3) g r e a t e r ( 4 ) . From compressive s t r e s s a l o n e t h i s s t r e s s becomes f o r b/a = 1, 0 = Oo62 po 63 and f o r b/a = 0, = 0.55 p,

.

g 6 , T r a n s v e r s e Loading T e s t s i n t h e P l a s t i c Region w i t h S t e e l Wires

The e x p e r i m e n t s d e s c r i b e d 'below were c a r r i e d o u t by t h e *

( -:: ) c f , r e f ,

(29)

EMPA and were i n t e n d e d t o d e t e r m i n e ( i ) t h e r a t i o a/b of t h e p r i n c i p a l a x e s of t h e i m p r i n t e d a r e a f o r v a r i o u s c u r v a t u r e c o n d i t i o n s . and ( i i ) t h e maximum c o m p r e s s i v e f o r c e s i n t h e p l a s t i c r e g i o n , The e x p e r i m e n t a l d a t a a r e l i s t e d below. 1, Wires o f 3,42 mrn, diam. w i t h Cs = 1 2 3 kgrn. p e r s q . m a ,

Az

= 1 5 8 kgrn. p e r s q . mm.

2 a Vi'Jires of 4.21 rnrn, diam. w i t h

cs

= 1 2 0 kgm. p e r s q . mmes

p,

= 1 5 4 kgrn. p e r s q . mm.

Y o Hardened s t e e l p u l l e y s o r s h e a v e s w i t h r a d i i R21 = 29, 1 5 0 , 250, 500 and 1 , 0 0 0 rnm,, and g r o o v e r a d i i R22 = 1 5 , 4 0 mm,

and i n f i n i t e , I n two c a s e s t h e p u l l e y ( o r s h e a v e ) was f i x e d a t a n g l e s of l e s s t h a n 18' t o t h e w i r e a x i s , i . e . , a t a p o s i t i o n s i m i l a r t o t h a t i n l a n g l a y r o p e o r s p i r a l wound w i r e r o p e . F u r t h e r m o r e , t h e f o l l o w i n g v a l u e s were u s e d : 4 , Compressive f o r c e s

Po

from 1 0 0 t o 4,000 kgm. 5. R a d i i of c u r v a t u r e o f t h e w i r e s , Rll = 100, 200 mm. and i n f i n i t e . I t s h o u l d be remembered h e r e t h a t a c c o r d i n g t o e q u a t i o n s ( 8 a ) and ( 8 b ) t h e r a d i u s Rll r e l a t i v e t o t h e s u r r o u n d i n g w i r e s i s R1l = L~ + n 2 ( d f o r t h e s p i r a l wound r o p e 2 n 2 ( d

-

6 )

and R 1 1 7 L ' ~ + x 2 ( d l

-

6

I 2

f o r t h e s t r a n d e d r o p e ( E q . 3 c )

(30)

The e x p e r i m e n t a l r e s u l t s a r e shown i n F i g s . 13, 1 4 and 1 5 . F i g . 1 3 shows t h e i m p r i n t e d a r e a of a w i r e o f 4.2 mrn. d i a m e t e r . T h i s i m p r i n t was c a u s e d b y a p u l l e y o f 58 mm. d i a m e t e r i m p r e s s e d w i t h a f o r c e of 4,000 kgm, The w i r e had a c o u n t e r c u r v a t u r e of 200 rrlm, r a d i u s , and t h e g r o o v e r a d i u s a t t h e c i r c u m f e r e n c e of t h e p u l l e y was 1 5 mm. The r a t i o a/b i s a p p r o x i m a t e l y 3 , F o r l o w e r c o m p r e s s i v e f o r c e s t h e r a t i o s were found t o be a n a l o g o u s .

The i m p r i n t shown i n F i g . 1 4 was c a u s e d by a s h e a v e o f 2,000 mm. d i a m e t e r w i t h a c o m p r e s s i v e f o r c e of 3 , 0 0 0 kgm.

A w i r e of t h e same c u r v a t u r e and a d i a m e t e r of 4.2 mm. was u s e d , The g r o o v e r a d i u s was 1 5 mm, The r a t i o a/b i s a p p r o x i m a t e l y 1 0 i n t h i s c a s e and d i f f e r s b u t l i t t l e f o r l o w e r l o a d s ,

I n o r d e r t o d e t e r m i n e t h e mean c o m p r e s s i v e f o r c e s a l l t h e i m p r i n t e d a r e a s w e r e measured w i t h 20 f o l d m a g n i f i c a t i o n w i t h t h e a i d o f a.n i n t e g r a t o r . The r e s u l t i s n o t e w o r t h y .

I t was f o u n d t h a t i n t h e p l a s t i c r e g i o n t h e v a l u e pomean remained a l m o s t c o n s t a n t t h r o u g h o u t and i n d e p e n d e n t of t h e c o m p r e s s i v e f o r c e Po and t h e c u r v a t u r e c o n d i t i o n s . The e x t e n t of t h e

i m p r i n t e d a r e a depended on t h e v a l u e po d i r e c t l y ( F i g . 1 5 ) . The r e s u l t s may be summarized a s f o l l o w s :

1, R a t i o s of a x e s of t h e i m p r i n t e d a r e a s .

The r a t i o s d e t e r m i n e d a r e l i s t e d i n T a b l e 111. The c i t e d r a t i o s of a x e s o c c u r even f o r v e r y s l i g h t c o m p r e s s i v e f o r c e s

(31)

Po and s h o u l d a l s o be a p p l i c a b l e i n t h e e l a s t i c r a n g e , T a b l e 111, R a t i o s of a x e s of t h e i m p r i n t e d a r e a s .

I

2 , Mean and maximum c o m p r e s s i v e f o r c e .

A c c o r d i n g t o F i g , 1 5 t h e mean c o m p r e s s i v e f o r c e i s a l m o s t c o n s t a n t , and w i t h r e s p e c t t o t h e w i r e i t must be e x p e c t e d t h a t

A,

= 1 5 4 kgm. p e r s q . mrn. Hence R a d i u s of p u l l e y o r s h e a v e , R 2 1 9 i n mm, 30 > I 5 0 t o 1 , 0 0 0 > I 5 0 t o 1 , 0 0 0 > I 5 0 t o 1 , 0 0 0

-

227 kgm, p e r s q , mm, Po mean

-

( 3 1 o r

-

l 0 4 5 P z

.

T h i s must be c o n s i d e r e d a low v a l u e , An e x p l a n a t i o n w i l l be g i v e n u n d e r 3 , R a d i u s o f k r o o v e , R22

'

i n mm, 1 5 40 and 00 40 and oo 40 and a, R a d i u s of c u r v a t u r e of t h e b e n t wire9 Rll 9 i n mm, 1 0 0 t o 00 1 0 0 200 w I Assuming t h a t d e s p i t e t h e p l a s t i c r e g i o n i n c r e a s e d R a t i o of a x e s a/b a p p r o 3 a p p r . 1 0 a p p r , 1 2 1 2 t o 29 t e n s i o n i s p o s s i b l e i n t h e c e n t r e o f t h e i m p r i n t e d a r e a , t h e f o l l o w i n g i s s u b s t i t u t e d a s t h e maximum c o m p r e s s i v e f o r c e a c c o r d i n g t o e q u a t i o n ( 2 5 ~ ) : Po max, = l 0 5 p o mean = 340 kgm, p e r s q . mm, o r 2 . 1 5 ~ z o

(32)

T h e r e f o r e , po

,,,,

-

2/, may be c o n s i d e r e d t h e c r i t i c a l i n t e n s i t y of c o m p r e s s i v e s t r e s s on t h e s u r f a c e , On r e a c h i n g t h i s c r i t i c a l v a l u e t h e s u r f a c e of t h e w i r e w i l l show p e r - manent i m p r i n t s s u c h t h a t t h e mean i n t e n s i t y o f c o m p r e s s i v e s t r e s s g e n e r a l l y 'becomes Po mean 4 0 4 5 / 3 z o 3, R e l a t i o n s h i p b e t w e e n t h e c o m p a r i s o n t e n s i o n and Q

t h e v a l u e s po mean and Po ma,, i n t h e r e g i o n o f t h e e l a s t i c - p l a s t i c l i m i t , I f t h e m a t e r i a l i s p l a s t i c a l l y deformed, t h e n

@;-"s

9 ( 3 2 ) p r o v i d e d t h a t o' i s t a k e n a s t h e l i m i t of c o m p r e s s i o n due 9 t o u n i a x i a l s t r e s s i n t h e homogeneous m a t e r i a l , F u r t h e r m o r e , i t may b e assumed t h a t i n s t e e l w i r e s 0' -0,75p 4 Z (33) These a r e t h e c o n d i t i o n s u n d e r which t h e r e l a t i o n s h i p s g i v e n i n T a b l e I V e x i s t f o r t h e v a r i o u s i m p r i n t e d a r e a s and t h e c o m p r e s s i v e f o r c e po i n t h e p l a s t i c r e g i o n f o r t h e p r e s s u r e zone a t t h e s u r f a c e and a t t h e i n s i d e ,

(33)

T a b l e I V , Comparison t e n s i o n s i n t h e -. p r e s s u r e r e g i o n . -.- I n t h e f i r s t two columns t h e v a r i o u s i m p r i n t e d a r e a s w i t h t h e c o r r e s p o n d i n g r a t i o o f t h e p r i n c i p a l a x e s a r e l i s t e d , t h e c i r c l e and s t r i p b e i n g l i m i t i n g c a s e s , The c o r r e s p o n d i n k , v a l u e s of d f o r t h e p r e s s u r e zone a t t h e s u r f a c e and a t t h e i n s i d e , a s 43 o b t a i n e d f r o m e q u a t i o n (28d) i f bZ - C b = 0, a r e shown i n t h e t h i r d and t h e f i f t h c o l u m n s , The r e s u l t i n g v a l u e s o f po i n t h e p l a s t i c r e ~ i o n a r e o b t a i n e d f r o m e q u a t i o n s ( 3 2 ) and ( 3 3 ) : where xs i s t h e f a c t o r f o r t h e v a r i o u s f o r m s o f i t r n p r i n t l i s t e d i n T a b l e 11, Then, f o r a n e l l f p s e w i t h a / b = 3 i n t h e p l a s t i c

(34)

r e g i o n po = 2.77PZ a t t h e s u r f a c e , w h e r e a s st t h e i n s i d e p o = 1 . 2 5 P z O For t h e o t h e r c a s e , i . e . , where a/b = 1 0 , po = 2.14/8, a t t h e s u r f a c e and p o = 1 . 2 9 P Z a t t h e i n s i d e . From t h e e x p e r i m e n t s d i s c u s s e d i n t h e p r e s e n t s e c t i o n a v a l u e of p o mean = l 0 4 5 f l Z was o b t a i n e d t h r o u b h o u t , i r r e s p e c t i v e o f a / b , From t h i s i t i s o b v i o u s t h a t w i t h t h e s e c o m p r e s s i v e f o r c e s i n t h e p l a s t i c r e g i o n t h e s t r e s s c o n d i t i o n s a t t h e i n s i d e become o f p r i m e i m p o r t a n c e , T h i s shows ( i ) i n t h e low e x p e r i m e n t a l v a l u e s f o r p o mean, w h i c h a r e o n l y s l i g h t l y h i g h e r t h a n t h e t h e o r e t i c a l v a l u e s i n s i d e t h e p r e s s u r e zone, and ( i i ) i n t h e c o n s t a n c y of t h e e x p e r i - m e n t a l v a l u e s f o r po mean, s i n c e t h e x" v a l u e s a t t h e i n s i d e a l s o a r e a l m o s t i n d e p e n d e n t o f t h e f o r m of t h e i m p r i n t e d a r e a a s d e f i n e d by e q u a t i o n s ( 2 9 ) and ( 3 0 1 , F o r a c r i t i c a l e s t i m a t e of t h e p l a s t i c r e ~ i o n i t may be assumed, t h e r e f o r e , t h a t po mean = 1 , 4 5 / j z 0 S i n c e t h e w i r e s i n v o l v e d a r e p r e - s t r e s s e d , i t i s n o t i m p o s s i b l e t h a t t h e B a u s c h i n g e r e f f e c t w i l l a l s o make i t s e l f f e l t a t t h e p o i n t s o f i m p r i n t and w i l l c o n t r i b u t e t o t h e r e l a t i v e l y e a r l y a p p e a r a n c e o f p e r m a n e n t deforma- t i o n s ,

hioreover, i t must be emphasized t h a t a l l t h e r e s u l t s , r e f e r r i n g t o t h e p l a s t i c r e g i o n , a r e m e r e l y d a t a of a n i n f o r m a t i v e c h a r a c t e r and t h a t t h o r o u g h i n v e s t i g a t i o n s , t h e o r e t i c a l a s w e l l a s t e c h n i c a l , a r e r e q u i r e d t o c l a r i f y

(35)

c o n d i t i o n s a c c u r a t e l y .

7. F a t i g u e T e s t s w i t h Wires o f V a r i o u s S u r f a c e C o n d i t i o n s , Bending and t o r s i o n f a t i g u e t e s t s w i t h s i n g l e w i r e s of 3.4 and 4,2 mm. d i a m e t e r and v a r i o u s s u r f a c e c o n d i t i o n s were c a r r i e d o u t by t h e EMPA. The f o l l o w i n & w i r e s were t e s t e d a t one m i l l i o n c y c l e s o f t h e l o a d : a ) w i r e s w i t h normal s u r f a c e c o n d i t i o n s , b ) w i r e s w i t h l o c a l i m p r i n t s r e s u l t i n g from l o a d s of 250, 500 and 1,000 kgm,, c ) w i r e s w i t h permanent t w i s t , d ) w i r e s showing s i g n s o f c o r r o s i o n , e t c ,

The r e s u l t s a r e shown i n F i g . 1 6 where t h e f a t i g u e s t r e n g t h i n kgrn. p e r s q , rnm, a t one m i l l i o n c y c l e s has been p l o t t e d v e r t i c a l l y , The w i r e s l i s t e d above under a ) t o d ) a r e g i v e n i n o r d e r from l e f t t o r i g h t , From t h i s f i g u r e i t i s e v i d e n t t h a t when t h e q u a l i t y o f t h e w i r e m a t e r i a l i s s a t i s - f a c t o r y and t h e l o c a l i m p r e s s i o n s due t o h a r d e n i n g o f t h e m a t e r i a l a r e n o t t o o s e v e r e , t h e f a t i g u e s t r e n g t h shows no marked d e c r e a s e w i t h r e s p e c t t o b e n d i n g and t o r s i o n , The

i n f l u e n c e of b e n d i n g and t o r s i o n becomes f u l l y e f f e c t i v e o n l y

when t h e i m p r i n t s a r e e x t r e m e l y heavy o r where t h e r e i s c o r r o s i o n , C, A p p l i c a t i o n of t h e Formulae

The l i f e of s t r a n d e d s t e e l w i r e r o p e s c a n be d e t e r m i n e d from t h e number of bends t o f a i l u r e

-

t h e o p e r a t i n g , con- d i t i o n s , of c o u r s e , p l a y a n i m p o r t a n t r o l e . Comparison

(36)

t e s t s on t h e l i f e of w i r e r o p e s a l w a y s r e q u i r e i d e n t i c a l o p e r a t i n g c o n d i t i o n s , To c h a r a c t e r i z e t h e number o f b e n d s t o f a i l u r e , nB, f o r w i r e r o p e s of a c e r t a i n t y p e a r e l a t i o n b a s e d on a d e s i g n c r i t e r i o n g i v e n by D r u c k e r and Tachau ( 5 ) i s i n t r o d u c e d , v i z , , B = S = c o n s t a n t f o r a c e r t a i n nB

,

~ D P

z where S = t e n s i o n i n w i r e r o p e , d = d i a m e t e r of w i r e r o p e , D = p i t c h d i a m e t e r o f s h e a v e ,

4

= t e n s i l e s t r e n g t h o f t h e w i r e s B = a c o m p a r a t i v e v a l u e w h i c h i s c o n s t a n t f o r c e r t a i n nB and c e r t a i n t y p e of r o p e . The s t r e s s e s a r e assumed t o be a s d e f i n e d by The v a l u e s l i s t e d i n T a b l e V were e x p e r i m e n t a l l y d e t e r - mined b y D r u c k e r and Tachau f o r r e g u l a r l a y c r a n e r o p e s ,

t y p e B, o f 6 x 37 c o n s t r u c t i o n , For number o f bends t o 6

f a i l u r e n = 1 x 1 0

,

t e n s i o n S = 2,500 kgm,, t e n s i l e s t r e n g t h o f w i r e p z = 1 6 0 kgm0 p e r s q . mm.,

dD C 1 9 , 5 0 0 = c o n s t a n t , hence, D % 19,50O/d

.

(37)

T a b l e V -2 ) o b t a i n e d by e x t r a p o l a t i o n . S i n c e f o r a w i r e r o p e t y p e B t h e r a t i o d/6 i s a p p r o x - i m a t e l y 22, d/& Z 8 8 5 = c o n s t a n t , ( 3 5 ~ ) By means o f t h i s r e l a t i o n t h e v a l u e s r e q u i r e d Tor D c a n be d e t e r m i n e d f o r t h e v a r i o u s r o p e s o f t y p e B, i f

8

o r d i s g i v e n .

The f o r m u l a e d e r i v e d f o r s e c o n d a r y b e n d i n k and com- p r e s s i o n s w i l l now be a p p l i e d t o t h e s e w i r e r o p e s , a s s u m i n k t h a t t h e y a r e r e g u l a r l a y r o p e s w i t h t h e f o l l o w i n g d a t a : L e n g t h o f l a y o f t h e s t r a n d s i n w i r e r o p e

...

L = 7,5d, number of s t r a n d s ...,...,.o..,..~D.~O.Oee..., z = 6, t e n s i o n i n t h e r o p e

....,,.,o...o...

S = 2500 k p . ; l e n k t h o f l a y o f a w i r e i n a s t r a n d

...

L'

= 10da

.

number o f o u t e r m o s t w i r e s

...,....,,..,..,...,...

z f = 18, t e n s i l e s t r e n g t h of t h e wire. 0 * o 0 u o o e o o o 0 o o o o e o o a 6 Je

=

1 6 0 kgmo p e r sq. mm,

(38)

( F o r c o r r e s p o n d i n g s t r a n d c o n s i s t i n g of 37 w i r e s , s e e F i g , 3.) Furthermore, i t i s assumed t h a t t h e sheave i s of g r a y c a s t i r o n and t h a t t h e groove i s t i g h t .

( a ) D e t e r m i n a t i o n o f t h e compressive f o r c e s Po

( i ) Between w i r e rope and sheave, a c c o r d i n g t o e q u a t i o n ( 4 4 , P o -

- -

z d D

6

-

4L

'

S = 12,500 kgrn. ( i i ) Between two s t r a n d s , a c c o r d i n g t o e q u a t i o n (15), where 0

Y

= 60

,

a = 15O30f, dl= 15O. ( b ) D e t e r m i n a t i o n of t h e compressions

( I ) Between w i r e r o p e and sheave

If El = 12,000 kgrn. p e r s q ,

mm.

and E2 = 20,000 kgm. p e r s q . m, a r e t a k e n a s t h e v a l u e s f o r g r a y c a s t i r o n and s t e e l r e s p e c t i v e l y , t h e n E = 15,000 kgm. p e r s q . mm, T h e r e f o r e , by e q u a t i o n s ( 1 7 ) and ( 1 8 a ) ,

(39)

m = 1.05d =

-

1.05 o 216,

-

22; = D/B

.

6

6

Thus * 1

B

I

6

D - 0 . 9 4 8 3 - D c o s

cr

=

-

(40)

According t o F i g .

l l p v

and po a r e o b t a i n e d from c o s

T

by s u b s t i t u t i o n of Po,

M

a n d / r v i n e q u a t i o n ( 3 8 ) . Here

I

0.966, c o s

r 4

0.978,

pv

1 . 8 5 and ( i i ) Between two s t r a n d s Assuming t h a t El = E2 = 20,000 kgm. p e r s q .

rmn.

and, t h e r e f o r e , c o r r e s p o n d i n g t o e q u a t i o n ( 2 0 a ) , - hioreover, by e q u a t i o n s

( 1 8 ~ 1 ,

( 2 2 ) and ( 2 3 ) , t h u s hl = 2 i l

+

= 2.0224

(40)

(1 -*I

C O S T

=

-

c o s 30' = 0,845 T h e r e f o r e , a c c o r d i n g t o F i g .

11,/~lr

= 1.3, whence = -280 Po = -215 1 , 3 i . e , , i n a n a l o g y w i t h e q u a t i o n ( 2 4 ) and

Fig,

1 2 , ( c ) D e t e r m i n a t i o n of t h e comparison s t r e s s e s

( i ) P o i n t s o f c o n t a c t between w i r e r o p e and sheave

It may be assunled t h a t t h e r a t i o of t h e p r i n c i p a l a x e s of a n e l l i p t i c a l i m p r i n t , a / b 9 e q u a l s 1 0 . T h e r e f o r e , t h e f o l l o w i n g i s o b t a i n e d by e q u a t i o n s ( 2 6 ) , ( 2 8 a ) and ( 2 8 d ) : C 0 . 3 5 po +

(6,

- c b ) s where i t i s assumed t h a t d b

=cbl

( i i ) P o i n t s of c o n t a c t between two s t r a n d s

I n t h i s c a s e a/b 3 and, by e q u a t i o n s ( 2 8 ) , ( 2 8 a ) and

S i n c e t h e a n g l e between t h e a x i s of b e n d i n g and t h e d i r e c t i o n 0

of p r e s s u r e i s 30

,

cb

= 0.5

(41)

( d ) C a l c u l a t i o n o f t h e s t r e s s due t o pr3imary b e n d i n g , 1 T h i s s t r e s s i s c a l c u l a t e d f r o m t h e c o n v e n t i o n a l e q u a t i o n assuming t h a t E = 20,000 kgm, p e r sq.. rnm, ( e ) D e t e r m i n a t i o n o f t h e s t r e s s e s due t o s e c o n d a r y bendink: I f t h e i n t e r s e c t i n g a n g l e LJ between t h e two o u t e r m o s t w i r e s o f a s t r a n d h a v i n g 37 i d e n t i c a l wires i s 30°, t h e n , .by e q u a t i o n ( 6 b ) , If w i s s m a l l e r t h a n 3009

a

i n c r e a s e s , i . e . , i t becomes b2 more u n f a v o u r a b l e , ( f ) D e t e r m i n a t i o n o f she s t r e s s Gadmissible f o r a l o a d of one m i l l i o n c y c l e s , E x p e r i m e n t s c a r r i e d o u t by t h e EMPA ( c f . T a b l e V I I I ) showed t h a t w i t h 1 , 5 f o l d s a f e t y a g a i n s t f a i l u r e f o r v i i r e s h a v i n g a s t r e n g t h of 160 kgm. p e r s q , mix, I t i s assumed h e r e t h a t t h e w i r e r o p e i s always b e n t i n t h e same d i r e c t i o n ,

The r e s u l t s o b t a i n e d a r e compiled i n T a b l e V I and may be summarized a s f o l l o w s :

1. Dimensions

(42)

d i a m e t e r of a s i n g l e w i r e ,

8

,

t h e d i a m e t e r of sheave, D, and t h e c r o s s - s e c t i o n of w i r e rope, f . The v a l u e s f o r D were c a l c u l a t e d from e q u a t i o n ( 3 5 a ) , where B = 0.0008. Furthermore, i t i s assumed t h a t f o r a l l t h e w i r e r o p e s t h e l e n k t h of l a y of t h e s t r a n d s i s L = 7.5d, and t h a t of t h e w i r e s

Ll

= l o d e I t i s a l s o assumed t h a t t h e i n t e r s e c t i n g a n g l e between t h e two outermost w i r e s of a s t r a n d i s

a =

30' and t h a t t h e g r a y c a s t i r o n s h e a v e s have t i g h t grooves.

2. Compressions

The t a b l e g i v e s t h e compressive f o r c e s , Po, t h e maxi- mum compressions, po, and t h e comparison s t r e s s ,

u

g o

( a ) P o i n t s of c o n t a c t between sheave and rope

If i t i s assumed t h a t B = c o n s t a n t f o r a l l t h e wire' r o p e s of t y p e B, t h e n t h e maximum compressions po between sheave and w i r e rope a r e a l s o p r a c t i c a l l y c o n s t a n t . These v a l u e s a r e s m a l l e r than 2/, t h r o u g h o u t . Moreover, w i t h one e x c e p t i o n , a l l t h e 6 a r e s m a l l e r t h a n 0 . 7 5 ~ ~ . g ( b ) P o i n t s of c o n t a c t between two s t r a n d s For t h e s e p o i n t s o f c o n t a c t t h e v a l u e s f o r po and a r e c o n s i d e r a b l y h i g h e r . T h i s i n d i c a t e s e a r l y f o r m a t i o n of permanent i m p r i n t s a t t h e p o i n t s of c o n t a c t between two s t r a n d s , t h e dimensions depending on t h e v a l u e pmean

-

230 kgm. p e r s q . mm. ( F i g . 1 5 ) ,

(43)

3 , S t r A e s s e s The f o l l o w i n g s L r a e s s e s arc; l i s t e d i n t h e t a b l e :

r z ,

and b l

*

b2' a s t h e y o c c u r i n t h e t e n s i u r i zone or t h e w i r e s i n c o n t a c t w i t h t h e s h e a v e , and t h e i r c o m b i n a t i o n s a s w e l l a s (Tadma' i o e o , t h e maximum a d r r ~ i s s i b l s s t r e s s f o r one m i l l i o n c y c l e s , he s t r e s s (Tfailure i s 1.5 x cadmd

I t i s n o t e w o r t h y t h a t t h e s t r e s s due t o s e c o n d a r y b e n u i n k ,

eb2'

i s p r a c t i c a l l y e q u a l l o r a l l w i r e raopes of t y p e

B.

With one e x c e p t i o n , t h e s t r e s s e s = % + C b

max , 1 + (Tbg

a r e lower t h a n t h e v a l u e 6 adm, and, t h e r e f o r e , a l s o l o w e r t h a n t h e v a l u e

ufailure0

4 , Summary

The f o l l o w i n g c o n c l u s i o n i s drawn from Drucker and Tachauqs s t a t e m e n t t h a t t h e l i f e o f w i r e r o p e s of a c e r t a i n t y p e may b e e x p r e s s e d by a c o n s t a n t v a l u e B: The maxir:~urn c o m p r e s s i o n s between s h e a v e and r o p e a s w e l l a s t h e s t r e s s e s due t o s e c o n d a r y bending, Cf

b2 a r e a l s o c o n s t a n t , prsovideds o f c o u r s e , t h a t t h e a n g l e s of l a y a l w a y s r e m a i n corlstant;, Moreover, f o r t h e l o a d f a c t o r nE = 1 X 1 ~ ' s t r e s s v a l u e s a r e

o b t a i n e d which, takink; t h e v a l u e s of Ofb i n t o a c c o u n t ,

2

v i r t u a l l y a g r e e w i t h t h e v a l u e s e x p e r i m e n t a l l y o b t a i n e a f o r %dm, by t h e EMPA. With t h e u s e o f t h e c o r r e s p o n d i n g

v a l u e B it s h o u l d b e p o s s i b l e t o o b t a i n a n a l o b o u s v a l u e s

f o r o t h e r t y p e s o f w i r e r o p e a s w e l l ,

Figure

Fig.  5 .   Fields of force in the cross-sectional  area of a wire.
Fig.  6.  Field  o f   force  a t   a  stressed  stranded  wire  rope.
Fig.  7.  Strong local imprints at  the  strands of  a span  rope of Seale construction  (rope diam
Fig.  9.  Forces in a transversely loaded stranded  wire  rope.
+2

Références

Documents relatifs

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

Effets civils (art. Mais seule l’incorporation parfaite p rod uit complète assim i­ lation.. L’incorporation parfaite déploie son plein effet : l’incor­ poré est

Stretching and bending are well-known deformations of fluid membranes such as amphiphilic monolayers. They are energetically decoupled from each other when expressed in terms of

Figure 2 Decomposition of the difference between ex- and current smokers with never smokers in Disability Free Life Expectancy (DFLE 30–80 ), (Severe) Disability Life

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

To obtain the statement of the theorem, we finally apply [ 4 , Theorem 4.2.13], which states that if two families of random variables are exponentially equivalent, and one of

Insbesondere bei pigmentierten Tumo- ren könnte die Diagnose frühzeitig kor- rekt gestellt werden, jedoch zeigen Pa- tientenkollektive von über 100 Nagelme- lanomen mit einem