• Aucun résultat trouvé

Blood biochemical polymorphisms in rabbits I. Genetic variation and distance among populations of domestic rabbits presently bred in Spain Zaragoza P., Arana A., Rodellar C., Amorena B. in

N/A
N/A
Protected

Academic year: 2022

Partager "Blood biochemical polymorphisms in rabbits I. Genetic variation and distance among populations of domestic rabbits presently bred in Spain Zaragoza P., Arana A., Rodellar C., Amorena B. in"

Copied!
7
0
0

Texte intégral

(1)

in

Rouvier R. (ed.).

Races et populations locales méditerranéennes de lapins : gestion génétique et performances zootechniques

Zaragoza : CIHEAM

Options Méditerranéennes : Série A. Séminaires Méditerranéens; n. 8 1990

pages 47-52

Article available on lin e / Article dispon ible en lign e à l’adresse :

--- http://om.ciheam.org/article.php?ID PD F=91605031

--- To cite th is article / Pou r citer cet article

--- Zaragoza P., Arana A., Rodellar C., Amorena B. B lood bioch emical polymorph isms in rabbits I.

Gen etic variation an d distan ce amon g popu lation s of domestic rabbits presen tly bred in Spain . In : Rouvier R. (ed.). Races et populations locales méditerranéennes de lapins : gestion génétique et performances zootechniques. Zaragoza : CIHEAM, 1990. p. 47-52 (Options Méditerranéennes : Série A. Séminaires Méditerranéens; n. 8)

---

http://www.ciheam.org/

http://om.ciheam.org/

(2)

Blood biochemical polymorphisms in rabbits Genetic variation and distance among

populations of domestic rabbits presently bred in Spain

P. ZARAGOZA, A. ARANA, C. RODELLAR & AMORENA*

DEPARTMENT OF GENETICS, VETERINARY FACULTY, UNIVERSITY ZARAGOZA,

MIGUEL SERVET, 177, 50013 ZARAGOZA, SPAIN

* PRESENT ADRESS:

EEAD (CSIC)

Dpto. Producción Animal - SIA (DGA) Ap. 727

50080 Zaragoza, SPAIN

- by to

64; New

a of of

(A/c, Sod, Ca-l, Cat, Dia-l, Hb, and Cp); Ca-2 and

three one

of to of

of and Ca-2). of

0.35; 5 0.44) and of 41%; 53%).

of alleles/locus (1.76) than

to

to

the non

and as

(e.g. in the genetic make-up of all of of in

Spain.

words:

- Variation génétique et distance entre populations de lapins

actuellement élevés en Dix-sept protéines sanguines ont été étudiées, en utilisant des échantillons de 598 lapins,

appartenant à plusieurs races (Commune 102; 67; 79; Fauve de Bourgogne, 64;

Zélandaise Blanche, 105; Californienne, 81; et une combinaison hybride, obtenue de croisements entre individus selectionnés des deux dernières races, 100). Huit de ces marqueurs étaient monomorphiqrces Tf et Cp); cinq d ' e u étaient contrôlés par loci dialléliques et Est-7); trois étaient contrôlés par loci trialléliques

et Ada) et par un locus tetra-alléllique Les études sur la variation génétique, ont révelé l'existence d'hétérogéneité entre populations concernant les fiéqquences aux loci polymorphiques (ri l'exception de et Ca-2). Le degré moyen d'hétérozygotie 0,35; 0,44) et le pourcentage de loci polymorphiques (2 41%; 53%) étaient pareils dans les dtfférentes populations, La

un nombre d'allèlesllocus (1,76) légèrement plus bas que les autres races. Les coeficients de consanguinité étaient significativement différents de zéro dans toutes les populations, en oscilant entre 6% (Californienne) et 12%

(Commune et Fauve de Bourgogne). Les estimations de distances génétiques ont montré la possibilité d'établir trois groupes de populations, selon les similarités génétiques: (i) populations hautement sélectionnées, avec des croisements industriels

Blanche'et combinaison hybride); (ii) populations avec des systèmes d'élevage

Bourgogne), et la race Californieme, hautement sélectionnée; et (iii) races autochtones, considérées cornme reliques (Géante Ces observations suggèrent fortement que les systèmes d'élevage actuels sont en train d'éteindre

ils favorisent des croisements entre races d@rentes du n&ne système d'élevage ou quand on incorpore des gènes de races hautement selectionnées (par exemple, Californienne) dans le génome d'autres races, toutes elles, représentatives des populations actuelles de

clés: lapin.

~~

- - -

(3)

Introduction

The study of genetic distances among popula-

one (Coggan et al., 1974)

et al., 1980).

Given the the

pool in the species and the of this

species in livestock, we have initiated the genetic dis-

tance studies in domestic populations, using five

et al., 1986).

the possible application of these studies

to and

have this line of these

studies, making a methodological to

genetic study, as

of animals each of the

in the

ly found in analysed,

the of studying the genetic

these populations.

Materials and Methods

A total of 598 adult in Spain

in this study. They belong

to 6 Common (102), Spanish Giant (67),

de

White (81)

(100 F1 individuals of

selected New Zealand females and highly selected Cali- males).

in

(Ak, Sod, Ca-l, Cat, Cp. Es-l, Es-2,

Ca-2, Est-7, Tf, Es-3, The technical

out

ing to the et

al.

(1983),

et et al.

(1987). The technique identification of the

Es-2 that in

et al., 1985) in that the used in this

is -naphtyl (2%). Genetic distances

to the

& (1967) with

1). ela-

method of Sokal & Sneath

(1963).

Results

and attetic frequencies

Of the 17 studied eight found mono-

Ak, Sod, Cat, Tf and Cp). The

by

loci with two alleles and

and Adu) alleles

As shown in Table 1, gene

New the

ing and Ca-2 alleles showed

A

ly found with the exception of the Spanish Common

the < 0.001).

and

of each individual locus at each

all loci in each all

at each of

(5 0.1 1) and Cu-2,

and

it 0.60) the loci with highest

of alleles and in

populations (Table 1).

the expected showed slightly

values than the (Table this in

the that most loci in

the of the populations be a

tendency (insufficient to

an excess of the expected

(data not shown),

ing coefficient f; et al., 1980). The

in Cali-

7% in Spanish Giant to 12% in

mon

loci, (I

0.07) and Cu-2, values 0.33; I

0.40) Dia-2, and and high values

0.46, I 0.54) and On the

among 0.31 (New

Zealand) to 0.38 (Spanish Giant).

high because eight of the 17 loci

Although the of loci was

it was in Spanish Giant and Cali- White

- 48

-

(4)

Table 1.

7 17

%

'I Alleles populations

v

. Total population

and esti-

locus mations SC SG NZ CA i

0.95 0.96 0.96 0.91 0.93 0.96 0.92

p@ 0.05 0.04 0.04 0.09 0.07 0.04 0.08

-

-

Obs. het. 0.08 0.04 0.07 0.11 0.09 0.05 0.08 0.07 0.01

Exp. het. 0.09 0.07 0.07 0.16 0.13 0.07 0.15 0.11 f 0.01

0.64 0.76 0.60 0.56 0.37 0.52 0.38 -

0.36 0.24 0.40 0.44 0.63 0.48 0.62 -

Obs. het. 0.31 0.33 0.42 0.41 0.41 0.44 0.44 0.40 -C 0.02

Exp. het. 0.46 0.36 0.48 0.49 0.46 0.50 0.47 0.46 f 0.02

ES-^^ 0.42 0.56 0.28 0.30 0.31 0.40 0.32 -

0.58 0.44 0.72 0.70 0.69 0.60 0.68 -

Obs. het. 0.27 0.45 0.30 0.39 0.36 0.41 0.47 0.38 i 0.02

Exp. het. 0.49 0.49 0.40 0.42 0.43 0.48 0.43 0.45 i 0.02

Ca-2 0.97 1.00 0.95 0.95 0.95 0.96 0.97 -

C a 2 0.03 0.00 0.05 0.05 0.05 0.04 0.03 -

Obs. het. 0.06 - 0.07 0.08 0.04 0.05 0.06 0.05 f 0.01

Exp. het. 0.06 - 0.09 0.09 0.09 0.07 0.06 0.07 i 0.01

0.61 0.80 0.79 0.64 0.55 0.60 0.46 -

0.32 0.20 0.21 0.36 0.45 0.40 0.54 -

Obs het. 0.40 0.28 0.26 0.34 0.42 0.43 0.40 0.36 f 0.02

Exp. het. 0.43 . 0.32 0.33 046 0.49 0.41 0.49 0.43 i 0.02

Es-3A 0.59 0.38 0.53 0.51 0.87 0.61 0.73 -

Es-38 0.29 0.22 0.21 0.32 0.08 0.28 0.18 -

Es-3c 0.12 0.40 0.19 0.17 0.05 0.11 0.09 -

l Obs. het. 0.46 0.60 0.56 0.53 0.19 0.55 0.35 0.46 0.02

Exp. het. 0.55 0.65 0.60 0.64 0.23 0.54 0.43 0.51 f 0.02

0.90 0.63 0.81 0.62 0.78 0.75 0.87 -

Di0-2~ 0.04 0.28 0.08 0.34 0.14 0.16 0.02 -

0.06 0.09 0.04 0.04 0.08 0.09 0.11 -

Obs. het. 0.15 0.60 0.18 0.42 0.34 0.37 0.22 0.32 f 0.03

Exp. het. 0.18 0.52 0.22 0.50 0.36 0.40 O23 0.34 i 0.02

Ada Ada' 0.46 0.59 0.47 0.47 0.66 0.43 0,65 -

Add 0.40 0.32 0.39 0.33 0.29 0.42 0.26 -

Add 0.14 0.09 0.14 0.20 0.05 0.15 0.09 -

~

~

Obs. het. 0.54 0.43 0.59 0.53 0.40 0.66 0.47 0.52 0.02

Exp. het 0.61 0.54 0.61 0.63 0.48 0.62 0.50 0.57 i 0.02

Hx 0.15 0.18 0.16 0.08 0.07 0.13 0.10 -

nx' 0.14 0.16 0.11 0.08 0.03 0.06 0.06 -

n,+

0.42 0.35 0.43 0.59 0.67 0.62 0.69 -

Hx3 0.29 0.31 0.30 0.25 0.23 0.19 0.15 -

Ohs. het. 0.62 0.67 0.63 0.47 0.53 0.43 0.39 0.54 f 0.02

Exp. het. 0.69 0.72 0.69 0.51 0.49 0.56 0.49 0.60 i 0.02

Total loci 17 17 17 17 17 17 17 -

0bs.avg.het. i 0.33 f 0.03 0.38 i 0.04 0.34 i 0.03 0.36 f 0.04 0.31 f 0.03 0.37 f 0.03 0.32 f 0.03

Exp.avg.het. f 0.39 f 0.03 0.41 -t. 0.04 0.39

*

0.04 0.44 i 0.04 0.35 f 0.03 0.41 f 0.04 0.36 f 0.03

(f) 0.12 i 0.03 0.07 f 0.03 0.08 i 0.03 0.12 f 0.03 0.10 i 0.03 0.06 i 0.03 0.09 f 0.03

% 52.94 47.05 52.94 52.94 52.94 52.94 52.94

% 47.05 41.17 47.05 52.94 52.94 41.17 47.05

l Avg. No. alleles/locus 1.82 1.76 1.82 1.82 1.82 1.82 1.82

8 (Ak, To, Ca-l, Cat, Día-l, Cp. Hb and T'

SC = Spanish Common; SG = = = Lyoné de = New Zealand White;

l CA = =

(5)

Table 2.

SEVEN 1972).

SC SG NZ CA

SG 0,0370

0,5073 0,0394

NZ 0,0451 0,1061 0,0491 0,0377

CA 0,0130 0,0541 0,0192 0,0113 0,0234

HL

0,0407 0,1091 0,0488 0,0401 0,0072 0,0210

level, Table l), being the of these the least

due to fixation of the Cc1-2~ allele (see 99%

level of allelesfiocus, Table 1).

Genetic distances

Tables 2 and 3

estimated the

Cavalli- (1967),

to

of which only one is shown (Fig. l), given the

of obtained by both estimation methods.

The Spanish Giant in

of the in

the New

the populations.

The also show two one of them with the

the Spanish Common

Phenotypes and allelic frequencies

The Hb, A k , S o d , C u - l ,

and Cp, has also by

&

et al., 1974; 1969; 1976: Juneja et al.,

1981) and in et al., 1986).

loci (Cut and C a - l ) , also showing mono-

the time in this

The on the

and

Table 3.

SEVEN 1967).

&

SC SG BU NZ CA

SG 0,3933

0,1631 0,3775 NZ 0,4167 0,5972 0,4262 0,3916 CA 0,2324 0,4250 0,2527 0,2185 0,3144

0,3716 0,6010 0,3989 0,4335 0,2414 0,3008

coincide

1969; Suzuki & 1972; Coggan et al., 1974;

et al., 1980; et et

al., 1982) in findings

et al., 1985).

Also as in &

1986), evidence the Diu-2 locus was

found et al.,

et al., 1980) at this locus, due to

in the in

the of the populations studied.

The estimated and

to those estimated in the Suzuki &

the in

et al. 1987), except the

This exception as well as the allelic

to those estimated by

Schiff & in the New Zealand

et al., (1965), in the

the Hx to

those estimated 1966, et al.,

1978) could be explained by the influence of such

as genetic effect, selection

on the of the populations sampled by

in

gene found

& and in

et al., 1987) most likely due to

in the

was used in this study in an to

These technical

could also explain that, in this study, lack of genetic

in

in it

was detected in all et al., 1987).

- 50 -

(6)

1 4

0,555 0,499 ' 0,444 0,333 0,277 0,222 0,166 O

Fig. 1: 7 &

method, 1967).

Inbreeding and genetic distances

The fact that in populations non

selective systems (e.g. Spanish Common) is

than that found in populations, could be due

to the of animals involved in

tion and to the high of matings among

individuals.

Also, the to play

an in the establishment of genetic dis-

tances. is that, when studying the

obtained, highly selected, populations

(New Zealand White combination) belong to

a distinct no popula-

To the also belongs the highly

in

studies et al., 1987) was assigned to the

The of biochemical

in this study may the genetic dis-

tances than that of studies,

tions (Lyoné

could explain the of Spanish

(Spanish Common) to

same system. These data the

made in studies

the effect on the individuality that

the

On the hand, finding a unique

ing in that

as a to be keeping its identity. As a

the size of the Spanish

Giant individuals to individuals

may have to this isolation

conclusion, the in this

to the knowledge of the genetic and

to the of the populations studied. also

helps identifying some of simi-

among the in

captivity conditions. These applicable to phy-

logenetic studies also of use as a

intending to out

ing

-

-

(7)

Acknowledgements

tic analysis of Anim. 11:

21-38.

W G m , A &

in the labo-

&

in

Am. Nat.

106: 282-292.

F., &

in Anim.,

titute. Ottawa.

alleles in J.

&

Ecological Genetics of

tion of J.

&

and its

Ani.

F. &

h i m .

&

of 4: 11-23.

&

Y. & allele in Es-3

system of Conf. h i m .

pest.

&

of in the pika and the

biochem. Genet. 5 : 181-188.

&

A &

&

in J.

Sci. 40: 1-12.

genetic aspects to the and

of

Spain”, by the Comisión Científica y

Técnica y T.).

We wish to acknowledge the of

tación de who made the

ing the animals and financial help the

and Cajas de

Bibliography

\

Oryc- tolugzrs czuziculus (L):

cum‘colas explotadas en cautividad en of

&

de la

of &y-

&

&

J.

19: 233-257.

COGGAN, J. &

cal genetics of J.

of in

Sciences

.

of

G &

Y., &

l i i a g e (Oryctolagus cuniculus) and evidence

in of

- 52 -

Références

Documents relatifs

to solve a mixed model including the genetic value of dams individuals and, consequently, it is possi- ble to evaluate the genetic change. These methods

Les estimations des distances génétiques entre cinq populations montrent l‘existence de facteurs (effet fondateur, baGrières géographiques comme des rivières, montagnes,

A criss-cross experiment: the crude breed effects. Criss-cross experiment: genetic effects from corrected

However, after exposure, an effect of exposure was observed in the implicit task for the low satiating bread (white bread) but not for the high satiating bread (fibre enriched

The 24 hour urine protein concentration was significantly higher in the infected than uninfected rabbits on both days, even though the albumin concentration was very low in

contradiction in the mechanism of action of alum, we evaluated the in vivo effect of alum in terms of collagen-induced platelet aggregation and bleeding time.. We aimed to elucidate

Heritability estimates of blood melatonin concentration (0.42, 0.17 and 0.11 at mid-night, 13 and 15 h after lights-out respectively) and strong genetic correlations between

The moderate heritability of the disease response traits and their non-significant genetic correlations with the commercial selection traits suggest that a breeding program