• Aucun résultat trouvé

“Santé  connectée”

N/A
N/A
Protected

Academic year: 2022

Partager "“Santé  connectée”"

Copied!
54
0
0

Texte intégral

(1)

ESA  –  CMI  /M2    BioSan  

Systèmes  embarqués  pour  la  Santé  

“Santé  connectée”  

Aymeric Histace

Professeur des Universités, ENSEA TOMORROW

YESTERDAY

(2)

Aymeric  Histace   2   Head: Pr. Mathias QUOY (UCP)

Co-Head: Pr. David DECLERCQ

14 Full Professors 29 Associate Professors

2 Full Researchers 3 Research Engineers

2 Engineers

1 Administrative Sec.

~ 20 Post-Doc

~ 30 PhD students Several MSc students

(internship)

(3)

Aymeric  Histace   3  

ICI MIDI Neuro

Information, Communication,

Imagery

Indexation et Masse de

Données Multimédia

Artifical Intelligence and Robotics

ASTRE

Electronics, Reconfigurable Computing, Image

Processing

Teams

 

(4)

ASTRE

 

So#ware  Radio   Reconfigurable  

Compu6ng  

Smart  Embedded   Systems  for  Health   Circuits  for  

Communicaions  

Smart A3, Fiability

NoC, LNA

Signal Processing

Sensors Network

Computer Vision

Embedded Systems

Aymeric  Histace   4  

(5)

SES

 

Aymeric  Histace   5  

Electronics (Analog, Digital)

Biology, Physiology Signal/Image

Processing

3D Confocal microscopy image analysis

Smart Autonomous Medical Device

Bioimpedance characterization

Videocapsule

SES

ECG Analysis

Spinal Implant CAD

(6)

Summary  

•   ETIS  

•  «Santé  connectée  »:  Context  and  Challenges  

•  Examples  Of  Ongoing  Projects  

•  The  SES@ENSEA  PlaQorm  

Aymeric  Histace   6  

(7)

Summary  

•   ETIS  

•  «Santé  connectée  »:  Context  and  Challenges  

•  Examples  Of  Ongoing  Projects  

•  The  SES@ENSEA  PlaQorm  

Aymeric  Histace   7  

(8)

Santé  connectée:  Context

 

Aymeric  Histace  

‘Medical’ Devices Secure Storage/Access Computer-Aided Diagnosis 8  

(9)

Connected Stent

Medical  Devices?

 

Aymeric  Histace   9  

Toys or

not toys ?

(10)

Medical  Devices?

 

WEI et al. Front. Energy Power Eng. China 2008

Autonomous Medical Devices

Aymeric  Histace   10  

(11)

Medical  Devices?

 

Aymeric  Histace   11  

Today:

Leadless pacemaker

(12)

Secured  Storage?

 

Aymeric  Histace  

•   France:  loi  n°2002-­‐303  du  4  mars  2002  

•  Objec6ves:    

-­‐  Confiden6ality,  integrity,  disponibility  of  the  data  

 

12  

« L’hébergeur agréé sera l’entité, personne physique ou morale, qui répondra de la conformité de l’opération globale

d’hébergement au regard des exigences de la loi »

Data must be stored in a country from EU except in particular motivated cases

(13)

CAD  in  2016?  

From  Nano  to  Macro

 

To understand manifestations of a same pathologic phenomenon from cell to organ scales (even nano) and draw some possible connections

Imaging Technic Signal and Image Processing Electronic Biology

Mathematics

Aymeric  Histace   13  

(14)

 Scien_fic  Challenges

 

•   Diagnosis  Capabili6es  

(‘smart’)  

•  Biocompa6bility  

(inflammatory  response)    

•  Energy  

•   Fiability  

•  The  Smaller,  the  BePer  

(acceptance)

 

Aymeric  Histace   14  

(15)

Mul_disciplinarity

 

Embedded Computer- Aided Diagnosis

In Situ Diagnosis CAD

e-diagnosis Understanding

of living mechanisms

Embedded Systems

Medecine - Biology

Signal and Image Processing

Data Management

INTERACTION

Diagnosis Capabilities

Biocompatibility Low Power

Fiability

The Smaller, the Better

Aymeric  Histace   15  

(16)

Posi_onnings

 

Smart-Aided Diagnosis Full - CAD

Acquisition

Processing

Smart Visualisation

Storage

Intelligence Processing time

Embedded Acquisition

Smaller and Smaller Energy Harvesting Low Power

Emission (RF 66%)

Fully embedded Limited or No

Intelligence

‘Only emit what is important’

SES

Intelligence/Energy Compromise

Aymeric  Histace   16  

(17)

Summary  

•   ETIS  

•  «Santé  connectée  »  Context  and  Challenges  

•  Examples  Of  Ongoing  Projects  

•  FibroSES  

•  Smart  Videocapsule  

•  SmartEEG  

•   The  SES@ENSEA  PlaQorm  

Aymeric  Histace   17  

(18)

Fibrosis  Induced  by  Implant  

A  Common  Issue

 

18  

20/10/2016   Aymeric  Histace  

After 5 years T0

Pacemaker

(19)

State of the art

Fibrosis  Induced  by  Implant  

A  Common  Issue

 

Aymeric  Histace   19  

(20)

Bioimpedance : Cells anf Frequency

Fibrosis  Induced  by  Implant  

A  Common  Issue

 

Aymeric  Histace   20  

20/10/2016  

(21)

Bioimpedance

Z = R + 1 Q( j ω )

α

Model:

Complex  impedance  spectroscopy  for  monitoring  6ssue  responses   to  inserted  neural  implants  

Fibrosis  Induced  by  Implant  

A  Common  Issue

 

Aymeric  Histace   21  

20/10/2016  

(22)

State of the art : Electrical Techniques

Fibrosis  Induced  by  Implant  

A  Common  Problema_c  

 

Aymeric  Histace   22  

14/12/16  

(23)

State of the art : ECIS (Electric Cell-substrate Impedance Sensing

Fibrosis  Induced  by  Implant  

A  Common  Problema_c  

 

Aymeric  Histace   23  

(24)

Bioimpedance : The Cole Model

Fibrosis  Induced  by  Implant  

A  Common  Issue

 

Aymeric  Histace   24  

20/10/2016  

(25)

Embedded System

Fibrosis  Induced  by  Implant  

A  Common  Issue

 

Aymeric  Histace   25  

20/10/2016  

(26)

Embedded System In Vitro

P1 P2

P3 P4

Z23 Z14

In Vivo

Fibrosis  Induced  by  Implant  

A  Common  Issue

 

Aymeric  Histace   26  

20/10/2016  

(27)

Home made ECIS aparatus

Fibrosis  Induced  by  Implant  

A  Common  Problema_c  

 

Aymeric  Histace   27  

(28)

Home made ECIS aparatus

Fibrosis  Induced  by  Implant  

A  Common  Problema_c  

 

Aymeric  Histace   28  

(29)

In Vitro First Results

Fibrosis  Induced  by  Implant  

A  Common  Problema_c  

 

Aymeric  Histace   29  

(30)

Perspective and Challenges

Fibrosis  Induced  by  Implant  

A  Common  Problema_c  

 

•   Modeling  of  the  bioimpedance  electrical  proper6es  

•   Characteriza6on  of  fibrosis  markers  (fibronec6ne,  alpha-­‐

SMA,  Collagen)  

 

•   Correla6on  In  Vivo-­‐In  Vitro  

•   Embedded  Fibrosis  Regula6on  

 

Aymeric  Histace   30  

(31)

Main idea

To develop next generation of videocolonoscopy with embedded image processing capabilities

In situ detection of intestinal pathologies

Colorectal Cancer

Polyp

Chrone disease

Ulcer

Angioma

Aymeric  Histace   31  

Cyclope  project

 

(32)

Main idea

To develop next generation of videocolonoscopy with embedded image processing capabilities

Aymeric  Histace   32  

Cyclope  project

 

(33)

Cyclope  project

 

Main idea

To develop next generation of videocolonoscopy with embedded image processing capabilities

Context

Colorectal Cancer

Polyp Advantages

•  Total control

•  Possibility of biopsy's

•  Real-time analysis

Drawbacks

•  Anaesthesia

•  Hospitalization

Advantages

•  Painless

•  No sedation

•  No hospitalization

•  Just swallow it!

Drawbacks

•  Battery life

•  Low resolution

•  No control

•  ~150k images

Aymeric  Histace   33  

(34)

Cyclope  project

 

Aymeric  Histace   34  

A Multispectral WCE

Infrared

(Active Stereo Vision)

Visible

3D feature-based detection

2D feature based detection

(35)

3D  in  situ  Analysis

 

Aymeric  Histace   35  

20/10/2016  

Gray-­‐level  

Image   Thresholding   Labelling  

Feature   extrac_on  

(3D-­‐8)  

Candidate Polyps

Training  

examples   Classifiers  

Laser dot extraction

Learning by SVM

3D  

reconstruc_on  

(36)

3D  in  situ  Analysis  :  Data

 

Aymeric  Histace   36  

20/10/2016   In vitro bench:

•  185 polyps

•  40% for learning and 60% for testing

(37)

3D  in  situ  Analysis:  

Implementa_on

 

Aymeric  Histace   37  

20/10/2016  

Large Scale Demonstrator

SVM implemented

on FPGA platform

(38)

3D  in  situ  Analysis  :  Results

 

Aymeric  Histace   38  

20/10/2016  

Four groups of tested polyps

ROC Curve

(39)

Cyclope  project

 

Aymeric  Histace   39  

A Multispectral WCE

Infrared

(Active Stereo Vision)

Visible

3D feature-based detection

2D feature based detection

(40)

2D  Detec_on  

(Compa_ble     With  Embedding  Constraints)  

Gray-­‐level  

Image   Edge  

detec_on   Hough  

Transform  

Feature   extrac_on  

(Texture)  

Candidate Polyps

Training  

examples   Classifiers   ROI extraction

Learning by boosting

Co-occurrence matrix (26

features)

Database : 300 Positives

examples, 1200 Negatives ones

Aymeric  Histace   40  

(41)

2D  Detec_on

 

Results and Performance

Aymeric  Histace   41  

(42)

2D  Detec_on

 

Results and Performance (Real Time Tracking)

It is possible to design low complexity detection/recognition

algorithms in accordance with:

(i) embedding constraints, and (ii) expected performance

Sensibility Specificity False Positive Rate

88% 99%

1%

91% 95%

5%

Bernal Our Approach

Aymeric  Histace   42  

(43)

Challenges  

Energy

Computation

Size Interaction

Aymeric  Histace   43  

(44)

Real-­‐Time  Challenge  

Aymeric  Histace   44  

0   100   200   300   400  

Lenovo  Yoga  2  (47  

ms)   Dell  Precision  (27  

ms)   Raspberry  Pi2  (276  

ms)   Raspberry  Pi3  (131  

ms)   NVIDIA  Jetson  (89  

ms)   Altera  DE1  (344  ms)   Processing  Time  (ms)   Real  Time  Constraint  (40  ms)  

ms

(45)

Smart  Systems  for  In  Situ  Diagnosis  

What’s  next  (2020)?

 

Image processing

Localization

RF

Cellular level

Multispectral Imaging

Physiological data

Nanoparticles Drug Treatment

Control CyberPill

Aymeric  Histace   45  

(46)

Main idea

To develop a portable system for synchronized ExG Physiological Signal Acquisition

Aymeric  Histace   46  

SmartEEG  project

 

FUI 15

(47)

Aymeric  Histace   47  

SmartEEG  project

 

ExG-Video Synchronization

Real-Time Data Compression on Embedded System

E-diagnostic through secured storage

•  EEG,  video,  annota_on,  clinical  data  

Challenges

(48)

Aymeric  Histace   48  

SmartEEG  project

 

QRS Detection, PR and ST

estimation

(49)

Aymeric  Histace   49  

Perspec_ve

 

Check@Flash, StreamVision

(50)

Summary  

•   ETIS  

•  «Santé  connectée  »  Context  and  Challenges  

•  Examples  Of  Ongoing  Projects  

•  FibroSES  

•  Cyclope  

•  SmartEEG  

•   The  SES@ENSEA  PlaYorm  

Aymeric  Histace   50  

(51)

Aymeric  Histace   51  

SES@ENSEA:  Objec_ves

 

•  Technological   support  for    SES   projects  

  •  Interface  laboratory/

Companies  

•  Technological   Services  for   Companies  

•  Pedagogical  tool  

   

(52)

Aymeric  Histace   52  

SES@ENSEA

 

1   2    

3     4    

~60 m 2

(53)

Aymeric  Histace   53  

SES@ENSEA:  Equipment

 

PCB Engraver

3D Printer

(Biocompatible material) 4Ghz

Oscilloscopes with Standard BUS decoder, Jitter, OFDM

Several FPGA dvpt Boards for various

applications (signals, video, etc.)

(54)

THANK YOU FOR YOUR ATTENTION

Aymeric  Histace   54  

aymeric.histace@ensea.fr

Références

Documents relatifs

The ADEPT2 Process Template Editor is the main component for modelling process templates, providing means from simple control flow construction to modelling processes for

This paper provides an extensive discussion of what personalisation is, how it is related to mobile services, what func- tions it is dependent on and how it can be realised

Les frontières sont de plus en plus brouillées dans le monde de la santé connectée et il devient difficile, voire aléatoire, de faire une distinction absolue entre les

The SNG router Security Enforcement Partition contains an IKEv2 design complemented with 3 algorithms for the ESP protocol and some external libraries the router requires

Image decomposition and restoration using total variation minimization and the H −1 norm. Convex Analysis, volume 224 of Grundlehren der mathematischen

These observations were the starting point of the decomposition algorithm by Aujol and Chambolle in [17] which split an image into three components: geometry, texture, and noise..

Table 5: Excerpt of the extensional definition of the serous image class at the semantic level for the segmentation task: ’ObjectExtraction {serous cell nucleus}’.. Object of

To reach this goal, we have developed a machine learning based algorithm using OpenCV with a reduced computational complexity to detect a maximum of polyps and