• Aucun résultat trouvé

Effects of dietary tannin on growth, feed utilization and digestibility, and carcass composition in juvenile European seabass (Dicentrarchus labrax L.)

N/A
N/A
Protected

Academic year: 2021

Partager "Effects of dietary tannin on growth, feed utilization and digestibility, and carcass composition in juvenile European seabass (Dicentrarchus labrax L.)"

Copied!
8
0
0

Texte intégral

(1)

HAL Id: hal-01510334

https://hal.univ-brest.fr/hal-01510334

Submitted on 18 May 2020

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

Effects of dietary tannin on growth, feed utilization and

digestibility, and carcass composition in juvenile

European seabass (Dicentrarchus labrax L.)

Marie-Hélène Omnes, Julien Le Goasduff, Hervé Le Delliou, Nicolas Le Bayon,

Patrick Quazuguel, Jean H. Robin

To cite this version:

Marie-Hélène Omnes, Julien Le Goasduff, Hervé Le Delliou, Nicolas Le Bayon, Patrick Quazuguel, et

al.. Effects of dietary tannin on growth, feed utilization and digestibility, and carcass composition in

juvenile European seabass (Dicentrarchus labrax L.). Aquaculture Reports, Elsevier, 2017, 6, pp.21-27.

�10.1016/j.aqrep.2017.01.004�. �hal-01510334�

(2)

ContentslistsavailableatScienceDirect

Aquaculture

Reports

j ou rn a l h o m e p a g e :w w w . e l s e v i e r . c o m / l o c a t e / a q r e p

Effects

of

dietary

tannin

on

growth,

feed

utilization

and

digestibility,

and

carcass

composition

in

juvenile

European

seabass

(Dicentrarchus

labrax

L.)

Marie-Hélène

Omnes

,

Julien

Le

Goasduff,

Hervé

Le

Delliou,

Nicolas

Le

Bayon,

Patrick

Quazuguel,

Jean

H.

Robin

Ifremer,UMRLEMAR,Univ.Brest,CNRS,IRD,LEMAR,IUEM,Z.I.PointeduDiable,F-29280Plouzané,France

a

r

t

i

c

l

e

i

n

f

o

Articlehistory:

Received6September2016

Receivedinrevisedform26January2017 Accepted30January2017

Availableonline6March2017 Keywords: Dicentrarchuslabrax Polyphenolictannin Growth Digestibility Carcasscomposition

a

b

s

t

r

a

c

t

Plant-basedproductsinfishdietsarevaluableproteinalternativestofishmealfortheaquafeedindustry. Manyplantfeedingredientscontainpolyphenoliccompounds,includingtannins,whichcanhave bene-ficialoradverseeffects.Thetolerablethresholdofingestedtanninsisunknownformarinecarnivorous fishes.Westudiedtheeffectsoftannicacid(TA)supplementationtothedietofjuvenileEuropeanseabass (Dicentrarchuslabrax)bymeasuringgrowth,feedutilizationanddigestibility,andcarcasscomposition. Werandomlyallocatedgroupsoffish(initialmeanbodyweightof10.2±0.7g;n=40fishpertank)to 12replicatecylindrical-conicaltanks(threepertreatment).Thefishwereassignedtooneoffourdietary treatmentsforfiveweeks:controldiet(C)withtannin-freeproteinsources(mostlyfishmealasthebase diet,containing55.7%drymatter(DM)crudeprotein,grossenergy22.3kJg−1DM)andthree experi-mentaldietssupplementedwith10,20,or30gTAkg−1(calledTA1,TA2,andTA3,respectively).Tannin

ingestionresultedinsignificantlydecreasedcumulativefeedintake,growth,feedandproteinefficiencies, apparentdigestibilitycoefficients,hepatosomaticindex,andcarcasslipids.Theproteindigestibilityin fishfedthe10gkg−1tannin-containingdietwassignificantlylowerthanthatinfishfedthecontroldiet.

Thisthresholdshouldbetakenintoaccountwhenusingnovelterrestrialandaquaticplantingredients fortemperatemarinefishes.

©2017TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Theuseof plantprotein sourcesin fishfeeds hasexpanded considerablyinrecentyearstomeetthedemandforfeedsand sus-tainthedevelopmentofworldwideaquacultureproduction(Tacon

andMetian,2015).Manytrialshavetestedtheinclusionofnovel

unconventionalorunderutilizedplantspeciesafteradequate pro-cessing.Thesustainabledevelopmentofaquaculturesystemsin someregionsdependsontheirregionalintegrationandthelocal availability of agriculturalby-products (Dongmeza et al., 2009;

Chebbaki et al.,2010; Altanand Korkut, 2011).Thus, feed

for-mulationscontainingabroadrangeofpromisingingredientsare beingdevelopedforfarmedtropicalherbivorous/omnivorousand temperatecarnivorousfishes.Theseingredientsincludeplantoils,

∗ Corresponding author at: Ifremer, Institut Franc¸ais de Recherche pour l’ExploitationdelaMer,UnitéPhysiologieFonctionnelledesOrganismesMarins, Z.I.PointeduDiable,CS10070,F-29280Plouzané,France.

E-mailaddress:mhomnes@ifremer.fr(M.-H.Omnes).

legumeseeds,fruitsandtheirrespectiveby-products(Emreetal.,

2008;Azazaetal.,2009b),plantleaves(Dongmezaetal.,2009),

aquaticplants(MandalandGhosh,2010a,b),seaweeds(Güroyetal.,

2013;Peixotoetal.,2016)andalgalbiomass(Tullietal.,2012;

Tibaldietal.,2015).

Plant-basedproductsused topartially or completely substi-tutefishmeal,havebeenassociatedwithsmallamountsofvarious endogenoussecondarycompoundsandimbalancednutrient pro-files, resulting in poor nutritional value, whereas amino acid supplementsleadtobetterutilizationofplant-basedfeed.These secondary compounds include heat-labile (protease inhibitor, lectin)andheat-stable(phyticacid,phenoliccompounds,tannin, andfiber)antinutritionalfactors(Drewetal.,2007).Theproperties ofsuchantinutrientsarelikelytoimpairdigestivefunctionand themetabolicutilizationofnutrients,andthereforefish produc-tion.Onlyafewcompoundshavebeenstudiedinteleostspecies tobetterunderstandtheantinutritionaleffectsonfishphysiology

(Francisetal.,2001;Krogdahletal.,2010;Coutoetal.,2015).

Severalplantfeedingredientscontainappreciableamountsof polyphenolicsubstances,broadlyreferredtoastannins.

Polyphe-https://doi.org/10.1016/j.aqrep.2017.01.004

2352-5134/©2017TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBY-NC-NDlicense(http://creativecommons.org/licenses/by-nc-nd/4. 0/).

(3)

22 M.-H.Omnesetal./AquacultureReports6(2017)21–27 nolictanninsshowbothpositiveandnegativeeffects;theypossess

antinutritive properties, but are also beneficial for health due to theirrole as antioxidants and theirability to stimulate the immunesystemandvariouseffectors(Chungetal.,1998;Makkar

et al., 2007; Quideau et al., 2011). Tannic compound has also

beenreportedtohaveantimicrobialactivityagainstfishpathogens

(Schrader,2008).

Polyphenolictanninsrepresentmostofthesecondary metabo-litesfoundinterrestrialplants(Makkaretal.,2007)andseveral aquaticmacrophytes(ArnoldandTargett,2002).Threeclassesof tanninshave beenestablished(Hagerman,2002;Quideauetal., 2011): 1) hydrolysable tannins (HTs), gallo- and ellagi-tannins derivedfromgallicandellagicacids,esterifiedtoacorepolyoland galloylgroup,thatcanbeesterifiedoroxidizedtomorecomplex HT;2)condensedtannins(CTs),proanthocyanidinpolymeric fla-vanoids;and3)phlorotannins(PTs),monomersofphloroglucinol foundinbrownalgae.Tanninlevelsinfeeddependontheplant sourcesandvarieties(Créponetal.,2010),plantmaturity,andthe season,aswellasthetechnologicalprocessesusedforfeed manu-facturing(Drewetal.,2007).TheproportionofHTinfeedfrequently exceedsthatofCT(Gaber,2006;Dongmezaetal.,2009),andcan varywidely.Thetannincontentofingredientsusedforanimalfeed hasbeendeterminedtobebetween5and16gkg−1 drymatter (DM).Itishighestinoilseedmeals(Heuzéetal.,2015a,b;Sauvant etal.,2015),followedbyvariouslegumestestedfortemperatefish production,whichcontainbetween4.9and11.4gtanninkg−1DM

(Adamidouetal.,2009a;Collinsetal.,2013).Estimatedtannin

con-tentinnaturalfoodsandplantingredientsfortropicalcarpspecies rangesfrom5.4(coconutoilcake)to34.3(phytoplankton)gkg−1 dryweight(DW,MandalandGhosh,2010a).Thetotalphenolic con-tentofalgalbiomasswasshowntobebetween6.0and20.0gkg−1

DM(Tibbettsetal.,2015).Thenumberofvarietiesandthe

propor-tionofplantproteinsourcesinfishdietsaresteadilyincreasing.Itis thusimportanttostudytheeffectsoftanninsinorganismsthatare currentlyorlikelytoingesttannin-containingfood,orpolyphenolic tanninsupplements.

Ingredients containing tannin give feed an unpleasant taste andreduceconsumptionduetodecreasedpalatability(Beckerand

Makkar,1999).Inaddition,tanninsaffectanimalsthroughseveral

mechanisms,includingtheformationof strongcomplexeswith feedcomponents, suchas proteinsand minerals (Chung et al., 1998),thelossofendogenousproteins(MansooriandAcamovic, 2007),andinactivationofdigestiveenzymes,thusinterferingwith digestion(Chungetal.,1998;MandalandGhosh,2010b).

Thereis limited literatureontheeffectofpolyphenolic tan-ninsonintensivefishproduction.Manypreviousstudiesonthe effectofdietarytanninontropicalfishspecies(BeckerandMakkar,

1999;Prustyetal.,2007;AiuraanddeCarvalho2007)andanimals

(MansooriandAcamovic,2007)usedtannicacid(TA)asamodel

compoundforHT.Theeffectsoftanninhavebeenlittlestudiedin carnivorousfish,exceptforrecentstudiesrelatedtotheinfluenceof antinutrientsfromvariousdietsonthephysiologyofrainbowtrout (Oncorhynchusmykiss,Collinsetal.,2013)andpolyphenol-enriched feedonthatofseabass(Magroneetal.,2016).

European seabass (Dicentrarchus labrax) is one of the most importantmarinefinfishspecies rearedinEurope,especially in the Mediterranean basin, with a production similar to that of giltheadseabream(Sparus aurata),comprising145–150,000tons in2014suppliedbyTurkey,Greece,andSpainamongEuropean countries(FEAP,2015).Europeanseabassisthusoneofthemost highlystudiedtemperatemarine fishspecies(Sanchez-Vazquez

andMu ˜noz-Cueto,2014).Itsnutritionalrequirementsandfeeding

managementhavebeenrecentlyestablished,highlightedbythe nearreplacementoffishmealbyavarietyofplant-based

ingredi-ents(Kousoulakietal.,2015).

However,thetolerablethresholdofingestedtanninhasnotyet beendetermined.Theobjectiveofthisfive-weekshort-terminvivo studywastoevaluatetheeffectsofvariousamountsofTA,added tothebasediet,ongrowth,feedintakeanddigestibility,andbody compositioninjuvenileEuropeanseabass.

2. Materialsandmethods

Thisstudycompliedwithethicalguidelines(ASAB/ABS,2006) andregulationsconcerninganimalexperimentation,andwas car-riedoutwithpermissionfromtheFrenchnationalboardforanimal experimentation.

2.1. Fishandrearingconditions

Europeanseabassweresuppliedbyafishfarm(Aquastream, Ploemeur,France).Thetrialwasconductedintheexperimental indoorfacilitiesatIfremerCentreBretagne(Plouzané,France).The fish wereinitially fed Neo Start ½ commercial pellets for pre-growingmarinefish(LeGouessant,Lamballe,France)containing crudeprotein:52%DM,crudefat:17%DM,andanegligibleamount oftanninestimatedtobebelow0.2gkg−1DM.Afterafour-week acclimationperiod,thetrialwassetupin acomplete random-izeddesignwith480fish.Thefishweredividedintobatchesof tenandrandomlydistributedintoreplicatetanks(threetanksper treatment,fourtreatments)atadensityof40fishpertank.The12 cylindrical-conicalfiberglasstanks(75Lcapacity)wereexposedto an8hlight:16hdarkcycle.Theyweresuppliedwithacontinuous flowoffilteredseawater(5.4Lmin−1).Anindividualstonediffuser pertankensureddissolvedoxygenlevelsabove90%saturation.The salinityaveraged35.3gL−1andthetemperaturewasheldconstant at20.8±0.2◦C.Thefishwerefastedforoneday,anaesthetizedwith 2-phenoxyethanol(ataconcentrationof0.125mLL−1 seawater, withinafewminutesofexposure),andbulkweighedatthe begin-ning,aftertwoweeksofacclimationinthetanks,andattheendof thetrial.Forsampling,thefishwerehumanelykilledbyablowto thehead.

2.2. Experimentaldiets

Followingacclimation,thefishhadanaveragebodyweightof 10.2±0.7gandwerefedtheexperimentaldiets(Table1).Four iso-nitrogenous(crudeprotein: 55.7% DM)and iso-energetic(gross energy:22.3kJg−1DM)dietswereprepared.Theyincluded fish-mealastheprincipalproteinsource,fishproteinhydrolysate,small amountsofwheatglutenmeal,fishoil,andwheatstarchasthe baseorcontroldiet(C).Thebasedietwassupplementedwith10, 20,or30gkg−1 tannicacid(Chinesegallnutgrass,Sigma-Aldrich T0200,Saint-QuentinFallavier,France),toconstitutethe experi-mentaldiets,calledTA1,TA2,andTA3,respectively,andcellulose wasusedtoreplacethetannininthecontroldiet.Vitaminsand mineralswereaddedaccordingtothenutrientrequirementsof Europeanseabass.Forthedigestibilitystudy,10gkg−1 ofstarch wasreplacedbythesame amountof theinertmarkerchromic oxide(Cr2O3)ineachdiet.Allingredientsweregroundfor

homo-geneity(<800␮m),mixedwithwater,andpelletized.Thepellets weredriedinaforced-airdryer,at80◦Cfor10min,toreducethe moisturecontenttounder10%DW.Thepelletswerepackedand storedat−20◦Cuntiluseasfeedsorsamplesforchemical

analy-sis.Thefishwerehand-fedadailyrationof3%bodyweight,which wasthenvisuallyadjustedtoapparentsatiety,threetimes(09:00, 13:00,and16:00)onworkingdays,andtwiceonweekends,forfive weeks.Thefeedingestedwasrecorded.

(4)

Table1

Compositionofexperimentaldiets:control(C)dietanddietscontainingvariouslevelsoftannicacid.

Experimentaldiets

Ingredients(gkg−1dryweight) C TA1 TA2 TA3

Fishmeala 600 600 600 600

CPSP90b 50 50 50 50

Wheatglutenmealc 50 50 50 50

Marinefishoila 83 83 83 83 Pregelatinizedstarchd,j 147 147 147 147 Bindere 10 10 10 10 Vitaminpremixf 20 20 20 20 Mineralpremixg 10 10 10 10 Celluloseh 30 20 10 0 Tannicacidi 0 10 20 30

Proximatecomposition(%dryweight;%DM)

Drymatter(DM) 96.43±0.03 95.09±0.06 94.40±0.01 95.03±0.06 Crudeprotein 55.21±0.78 55.17±0.38 56.01±0.75 56.46±1.00 Crudefat 14.01±0.27 13.69±0.23 13.28±0.24 13.02±0.03 Starch 15.52±0.10 14.71±0.08 13.36±0.12 13.94±0.10 Ash 11.69±0.15 11.52±0.06 11.75±0.08 11.61±0.12 Grossenergy(kJg−1DM) 22.27±0.15 22.25±0.06 22.44±0.04 22.34±0.02 aNorvikLT70,bluewhitingmeal(CP70%DM;CF12%DM)andcodliveroil,LaLorientaise,Lorient,France.

bSolublefishproteinhydrolysate(CP82%DM;CF10%DM;ash6%DM)Sopropêche,Boulogne,France. c Vitalor,Chamtor,Bazancourt,France.

d Pregeflo,Roquette,Lestrem,France. eNaAlginateAgrimer,Plouguerneau,France.

f Vitaminpremixcomposition(gkg−1):retinylacetate,1;thiamin-HCl,0.1;riboflavin,0.5;niacin,1;d-calciumpanthothenate,2;pyridoxine-HCl,0.3;mesoinositol,30;

d-biotin,1;folicacid,0.1;cyanocobalamin,1;ascorbicacid(ascorbylpolyphosphate),14.2;cholecalciferol,0.5;dl-a-tocopherylacetate,10;menadione,2;choline,167; UPAE,Inra,Jouy-en-Josas,France.(Allingredientsweredilutedwith␣-cellulose).

gMineralpremixcomposition(gkg−1):calciumphosphate(bicalcic),500;calciumcarbonate,215;sodiumchloride(salt)40;potassiumchloride,90;magnesiumoxide,

124;ferroussulfate,20;zincsulfate,4;manganesesulfate,3;coppersulfate,3;cobaltsulfate,0.02;potassiumiodide,0.04;sodiumselenite,0.03;sodiumfluoride,1.00; UPAE,Inra,Jouy-en-Josas,France.

h Arbocel,J.Rettenmaier&Söhne(JRS),Saint-GermainenLaye,France. i NaturalextractT0200,Sigma-Aldrich,SaintQuentinFallavier,France.

j Inthedietsusedforthedigestibilitystudy,10gkg−1ofstarchwasreplacedbyCr2O3asaninertmarker(MerckMillipore,Guyancourt,France). Table2

GrowthperformanceandfeedutilizationinjuvenileEuropeanseabassfedexperimentaldietsfor5weeks.

C TA1 TA2 TA3 R2 P

Initialbodyweight(g) 10.2±0.7 10.5±0.7 10.4±0.8 10.1±0.9

Finalbodyweight(g) 19.8a±0.7 18.9a±0.9 16.7b±0.6 14.8c±0.5 y=20.150.22X 0.97 <0.014

SGR(%d−1) 1.8a±0.2 1.6ab±0.3 1.3bc±0.1 1.0c±0.0 y=1.830.04X 0.99 <0.005

FI(gkg−1d−1) 15.5a±0.4 15.0ab±1.3 14.7ab±1.3 13.7b±1.6 y=15.590.07X 0.94 <0.030

FE(gg−1) 1.1a±0.1 1.0ab±0.2 0.9ab±0.0 0.7b±0.1 y=1.120.02X 0.96 <0.018

PER(%) 2.0a±0.2 1.8ab±0.4 1.6ab±0.1 1.3b±0.2 y=2.020.03X 0.99 <0.006

Dataareexpressedasthemean±S.D.(n=3).Valuesinthesamerowwithdifferentsuperscriptlettersaresignificantlydifferent(P<0.05,andP<0.10,FI).Therelationship betweenthetanninconcentrationinthediets(X,explanatoryvariable)andtheresponse(Y,dependentvariable)isexpressedbylinearpolynomialregressionequations, coefficientofdetermination(R2)andprobability(P).Specificgrowthrate(SGR);feedintake(FI);feedefficiency(FE);andproteinefficiencyratio(PER).

2.3. Samplecollection,chemicalanalysisanddigestibilitystudy Forinitialcarcasscomposition, 20fishfromtheinitialstock wererandomlysampled.Attheendofthestudy,sixfishpertank wererandomlycollectedandindividuallymeasured.Fishorgans wereremoved,weighedforsomaticindexcalculations,and car-cassesstoredforlatercompositionanalysis.Beforeanalysis,feed andfishsampleswerehomogeneously groundup,freeze-dried, and thecomponents determined (duplicated sub-samplesfrom diets,n=4, or fromfish mass, n=3×4) bystandard laboratory methods:DMat105◦Cfor 24hbyoven drying,ashcontentat 550◦Cfor 12hbycombustionin amuffle furnace(Thermolyne 30400Furnace,ThermofisherBioblock,Illkirch,France),crude pro-tein content (N×6.25) bythe Dumasmethod, usingautomatic flash combustion, followed by gas chromatographic separation anddetectionbythermalconductivity(NitrogenAnalyser2000, FisonInstruments,Arcueil,France),lipidcontentbyextractionwith dichloromethaneusingtheSoxhletmethod(Avanti2050 extrac-tionsystem,Bezons,France),andgrossenergycontentusingan adiabaticcalorimeter (IKA-CalorimeterSystem-C4000 Adiabatic, Fontenay-sous-Bois,France).

The digestibility trial,to determinenutrient utilization, was started after the first weekof adaptation to thediet and con-ductedfortwoweeksunderthesameconditionsasforthefish groups(n=40)bysubstitutingtheexperimentaldietsbythediets includingthedigestibility marker.Sodiumalginateas a dietary binderensuredcohesionofthefecalmatter.Feceswereharvested dailyusinganautomaticsystemwithcontinuouswaterfiltration

(GuillaumeandChoubert,2001).Thesieveswereplacedinthe

sys-temcollectorafterthelastmealoftheday,thefecescollectedfor 15hd−1 priortothenextmorningmealandpooledpertankin testtubestoobtainasufficientmass(30g)foranalysis,andstored at−20◦C.Sampleswerelyophilizedat40Candhomogenizedfor

analysis.Chromiumcontentinthedietandfeces(n=3×4)was determinedinduplicateusinganatomicabsorption spectropho-tometer(PerkinElmer,Villebon-sur-Yvette,France)withamixture ofperchloricacidfordigestionandsulfuricacidforconcentration. Thedichromateconcentrationwasmeasuredatawavelengthof 440nmusingastandardCr2O3solution.

(5)

24 M.-H.Omnesetal./AquacultureReports6(2017)21–27 2.4. Calculations

Theapparentdigestibilitycoefficients(ADCs)werecalculated, basedontheratioofthemarkerinthedietsandfeces,accordingto theformula(GuillaumeandChoubert,2001):

ADCDM= 100×[1−(Crdiet/Crfeces)]

ADCnutrientorenergy=100×[1−(Crdiet/Crfeces)×(nutrient or

energyfeces/nutrientorenergydiet)];Crdiet/feces:chromiumcontent

indietorfeces,respectively;nutrientdiet/feces:specificnutritional variable,DM,proteinorenergycontentindietorfeces.

Growth and feed utilization parameters were calcu-lated based on the following criteria: live weight gain (%)=100×[(Wf−Wi)/Wi], where Wi, Wf are initial and final averagefishbodyweight(g);specificgrowthrate(SGR, %body weightday−1)=100×[(lnWf−lnWi)/t],witht,durationindays of the feedingperiod; feedintake (FI, gkg−1day−1)=feed con-sumed/biomass/t,biomass:averagefishbodyweight(Wi+Wf)/2; feedefficiency (FE,gg−1)=weightgain/feedconsumed; protein efficiencyratio(PER,gg−1)=weightgain/crudeproteinconsumed ona DM basis; percent protein or energy retained (PR or ER, %)=100×(proteinor energy gain/crude protein or energy con-sumedonaDMbasis).Fulton’sconditionfactor(K)wascalculated as:K=Wf/Lfexp3×100,Wf,finalweightoffish(g),Lf,totallength (cm).Somatic indices were calculated as: organ-somatic index (%gg−1)=100×(weight of organ/total weight of fish); hepato-(HSI),spleno-(SSI),nephro- (NSI),viscera-(VSI)and intestinal-(ISI) somaticindex referring tothe relative proportionof liver, spleen,kidney,viscera,andemptiedintestine,respectively, (vis-cera,calculatedasthedifferencebetweenthecarcassweightand totalweightoffish).

2.5. Statisticalanalysis

Theexperimentaldataareexpressedasthemean±standard deviation(SD).Data transformationwasappliedifnecessaryfor thestatisticalanalysis.Theresultsofthetannineffectswere ana-lyzedbyone-wayanalysisofvariance(ANOVA)followedbythe Newman-Keulspost-hocmultiple-rangetest,whenevertherewere statisticallysignificantdifferencesbetweenthemeans(atP<0.05, orP<0.10).Simplelinearregressionwasappliedtodeterminethe relationshipbetweenthefishparameters(dependentvariable)and includeddietaryTAlevels(independentvariable).Statistical anal-ysiswasperformedusingStatistica,version6software(StatSoft France,Maisons-Alfort,France).

3. Results

Nodiet-relatedmortalityoccurredduringtheexperiment in anygroup.However,twofishescapedandthislosswastakeninto accountforthecalculations.Alldietswerereadilyeaten,butfish fedtheTA2andTA3dietsmanifestedearlysignsofreducedfeed consumptionthatpersisteduntiltheendoftheexperiment.The cumulativefeedintakewasaffectedbytheexposuretodietary TA:fishshowedasignificantlossofappetitefromthe17thday intheTA3groupandthe21stdayintheTA2group,respectively (Fig.1), whereas therewasnodifferencebetweentheTA1 and controlgroups.FeedintakewassignificantlydifferentatP<0.10 betweengroups.

Bytheendoftheexperiment,thegrowthoftheTA2andTA3 groupswassignificantlylessthanthatofthecontrolgroup;their bodymasswas15.6and25.6%lowerthanthatofthefishfedthe Cdiet,respectively,whichdoubledtheirweightduringthestudy

(Table2).ThecorrespondingsignificantdecreasesofSGRwere27.8

and44.4%,respectively.TheTA3dietsignificantlyaffectedFEand

Fig.1.Cumulativefeedintake(gfish−1)injuvenileEuropeanseabassfed

experi-mentaldietscontainingvariouslevelsoftannicacid.Differencesamonggroupswere recorded(verticallines)fromthe17thday(betweentreatmentTA3andtheothers) andthe21stday(betweentreatmentTA2,TA3,andtheothers)untiltheendof thetrial(finalpoint).Dataareexpressedasthemeanvalues±SEM(n=3groups pertreatment);thedifferentlettersabovetheverticallinesindicatesignificant differencesbetweenthemeans(P<0.05).

Table3

Apparentdigestibilitycoefficient(ADC)ofdrymatter(DM),crudeprotein(CP),and energy(E)ofexperimentaldiets.

ADC(%) C TA1 TA2 TA3

ADCDM 80.2a±0.4 78.2ab±0.6 77.7ab±0.3 75.2b±3.5

ADCCP 95.8a±0.2 94.7b±0.3 93.4c±0.2 91.6d±0.2

ADCE 92.8a±0.3 92.2a±0.2 91.7ab±0.7 90.2b±1.2

Dataareexpressedasthemean±S.D.(n=3).Valuesinthesamerowwithdifferent superscriptlettersaresignificantlydifferent(P<0.05).

PER,whichwere36.4and20%lowerthanthoseofthecontrolgroup, respectively.

The diets were highly digestible, even when supplemented withTA, but the digestibility of DMwassignificantly different betweenTA3andtheothertreatments,asweretheproteinADCs, whichwerebetween91.6and95.8%,dependingonthequantity

ofTA(Table3).TheproteinADC(Y)andTAconcentrationinthe

diets(X)wererelatedbyasimplelinearregressionbythemodel, Y=95.380.153X(determinationcoefficientR2=0.89atP<0.036).

Thesubsequentenergy ADCwassignificantlyaffected(P<0.05) onlybytheTA3dietrelativetotheCandothertwodiets.

TheK index of fishreared ontheTA3 diet (1.17) was non-significantlylowerthanthatoffishfromtheC(1.29)andTA1(1.31) groups,showingthattheytendedtonotbeinasgoodconditionas thefishfromtheothergroups.Somaticindicesandtheproximate compositionofthefishfedtheCandTA-containingdietsare pre-sentedinTable4.Thehepatosomaticindex(HSI)was38.5%lower infishoftheTA3groupthanincontrolfish,andthedifferencewas significant.Therewerenosignificantdifferencesbetweentheother somaticindicesofthedifferentgroups.

OnlyTAsupplementationatthehighestconcentration signif-icantlyaffectedcarcasscompositionintermsoflipidandenergy content,whichdecreasedby13.6and9.3%,respectively,whereas proteincontentwasnotalteredbyTA(Table4).However,PRvalues weresignificantlylowerinfishfromtheTA2andTA3groupsthan thoseintheCgroup(24and39.5%,respectively).Energyretention wasalsosignificantlylowerinfishfedtheTA2andTA3dietsthan thosefedtheCdiet(32.4and58.7%,respectively).

4. Discussion

ThesuccessfuluseofplantmealsasfeedsinEuropeanseabass dietshasbeendemonstratedbygoodgrowthperformance,butthe effectsof TAinclusionhave notbeenstudiedyet.Thetolerable thresholdofthis polyphenoliccompoundmerited investigation,

(6)

Table4

Somaticindices(%)andproximatecarcasscomposition(%wetweight)ofjuvenileEuropeanseabassfedexperimentaldietsfor5weeks,andnutrient/energyretention efficiency(%ofintake).

C TA1 TA2 TA3

Somaticindices K 1.29±0.25 1.31±0.18 1.22±0.16 1.17±0.10 HSI 2.83a±0.43 2.67ab±1.02 2.45ab±0.56 1.74b±0.33 SSI 0.04±0.01 0.06±0.02 0.06±0.03 0.05±0.05 NSI 0.28±0.13 0.25±0.12 0.34±0.13 0.27±0.19 VSI 19.10±7.12 19.13±5.37 18.40±6.95 18.20±2.86 ISI 2.00±3.60 2.51±0.27 2.30±0.90 2.50±1.03

Proximatecarcasscomposition Initial

Moisture 67.8 67.5±0.1 67.7±0.6 68.3±0.7 68.9±0.6 Protein 17.3 18.0±0.6 17.8±1.0 17.5±0.3 17.4±0.6 Fat 11.0 11.0a±0.2 10.8a±0.6 10.1ab±0.4 9.5b±0.6 Ash 3.6 4.0±0.1 3.8±0.3 4.2±0.2 4.2±0.2 Energy(kJg−1w.w.) 8.5 8.6a±0.2 8.6a±0.3 8.3a±0.3 7.8b±0.2 Retentionefficiency PR 36.1a±4.0 34.3a±3.7 27.4b±1.0 21.8b±3.4 ER 13.8a±1.5 12.9a±2.6 9.3b±0.9 5.7c±0.8

especiallygiventheincreasingsupplyofmiscellaneousplant-based proteinsourcesbythefeedindustry.TheupperTAconcentration testedinthepresentstudywashigherthanthelowtomoderate levelsnormallyfoundinmostformulations.Thiswastoincrease theaccuracyoftheresultsobtainedinvivoandtoenablesmaller antinutritionaleffectstobemoreclearlydetected(Griffith,1989). Allfishgrewduringtheexperimentalperiodandnodiet-related mortalityoccurred.TheresultsdemonstratethatTAadditiontothe dietlowerednutritionalquality,leadingtoasignificantreduction ingrowth.

Tanninsarewidelypresentinmostplantspeciesusedas pro-teinsubstitutesforfishmeal,includingsoybean,canola-rapeseed, wheat,sunflower,fieldpea,fababean,chickpea,sorghum,hazelnut seed,microalgal biomass,andseaweedmeals(Oliva-Telesetal.,

1998; Valenteet al., 2006; Emre et al.,2008; Adamidou et al.,

2009a,b;Chebbakietal.,2010;AltanandKorkut,2011;Messina

etal.,2013;Collinsetal.,2013).Severalstudieshavebeen

pub-lished,butmanywithoutanalyticalmeasurements,andonlyfew reportthetannincontentofthediets.

Ahighlevelofincorporationofsoybeanprotein(580gkg−1DM,

Oliva-Telesetal.,1998),andofdifferentlyprocessedsoybeanmeals

(480and530gkg−1,Tibaldietal.,2006)wasshowntoaffectthe

growthofseabass.Inclusionofchickpeasand fababeansinthe diets(340and350gkg−1,withatannincontentinrawingredients of between 5.9 and 11.4gkg−1 DM) lowered the feed conver-sionratioandgrowthrate(Adamidouetal.,2009a).However,the growthofseabasswasnotadverselyaffectedbylowinclusionof legumesinthediet(160gkg−1,Adamidouetal.,2009a).Dietsfor troutcontainingsoybean,canola,andfieldpeamealsortheir pro-teinconcentrates(300gkg−1,withtanninlevelsbetween4.9and 10.6gkg−1DM),didnotaffectgrowthrates(Collinsetal.,2013). Currentlyunderutilized fat-extractedhazelnutoilmealcontains upto7.5gtanninkg−1 tanninsamongthetotalphenolicsinthe rawmaterial(XuandHanna,2011).Seabassfedadietcontaining thismeal(from75to300gkg−1,whichincludesfrom0.6to2.3g estimatedtanninkg−1),exhibitedgrowthcomparabletothatoffish receivingthecontrolfishmealdiet(Emreetal.,2008).

Theincorporationof greenalgae(50and100gkg−1,Valente etal.,2006)orseaweed(25and75gkg−1,Peixotoetal.,2016)in theseabassdiets,andtheinclusionofseaweed(upto100gkg−1,

Güroyetal.,2013),inthetroutdietsalsodidnotadverselyaffectthe

growth.However,incorporationofUlvasp.meal(100–300gkg−1 thatbroughttanninlevelsto1.6–2.2gkg−1DM)toreplacesoybean mealin thediet ofNile tilapia(Oreochromisniloticus),impaired growth(Azazaetal.,2008),whereasadietcontaining2.9g tan-ninkg−1comingfromtheuppervolumeof300gwastedatemeal

didnot(Azazaetal.,2009b).Inclusionat15gkg−1and25gkg−1

ofeitherhydrolysableorcondensedtanninsintodietsimpaired tilapia growth, with a greater negative effect for HT than CT

(Buyukcaparetal.,2011).

Furthermore, diets including soybean meal, sunflower, and coconutoilcakes,whichcontain6.3gtanninkg−1 (Xavieretal., 2012),orsupplementationwithtannicacidupto20gkg−1 diet

(Prustyetal.,2007),didnotnegativelyaffectthegrowthofrohu

(Labeorohita,Hamilton)fingerlings.

Impairedfishgrowthappearstobeduetoreducedpalatability, resultinginlowerfoodintake.Inthepresentstudy,thehighdietary tanninlevelsthatreducedvoluntaryconsumptionbyseabassarein agreementtothe20gtanninkg−1thatloweredfeedintakeofthe commoncarp(CyprinuscarpioL.)forasimilarfeedingperiod rela-tivetofishfedCTforalongerperiodoftime(BeckerandMakkar, 1999).Incontrast,theadditionoftannintotroutdietshadasmall positiveeffectonfeedintake(Collinsetal.,2013).Palatabilityisan importantcriterionforfeedinginecosystemsandinanimal nutri-tion,affectingwhetherthefoodisingestedorrejected.Forexample, extractsofpolyphenoliccompounds(>20gkg−1DW)from temper-atebrownalgaeareeffectivefeedingdeterrentsforsometropical herbivorousfishes(VanAlstyneandPaul,1990).Inanimals, sup-plementationoffeedswith30gkg−1oftannin-richextractreduced pigfeedintake(Candek-Potokaretal.,2015).Substantial quanti-tiesofpolyphenolictanninspresentiningredients,combinedwith otherantinutrients,contributetotheastringencyandbittertaste ofthemealsthatcontainthem(Mwachireyaetal.,1999).Aside fromtheunpleasanttaste,tanninsloweredtheappetiteof rain-bowtroutfedcanolameal(Mwachireyaetal.,1999),tilapiafedV.

fabameal(Gaber,2006),andseabassfedahightannin-containing

diet(presentstudy).

Theavailabilityofnutrientstofishisessentiallyassociatedwith theirdigestibility.Inthepresentstudy,theproteinsourceinthe basediet wasmostlyblue whiting(crude protein:70% ofDM), whichishighlydigestibleandshowedthehighestADCforprotein (95.8%),inthesamerangeofADCvaluesfoundinprevious stud-iesforseabassdiets(Adamidouetal.,2009b).Incontrast,there wasacorrelationbetweenthegradientofdietarytanninandADC forprotein,thatshowedaninversedose-responserelationshipand ADCforDMandenergywerealsoaffected.AltanandKorkut(2011)

reportedahighADCforprotein(90.1%)inseabassjuvenilesfed 100gkg−1 plantproteinsourcesindietsusingvarious combina-tionsoflowcostfeeds.However,CTsinthesorghumcontroldiet, notnoticedby theauthors,probablyresulted inlowernutrient digestibilitythanfortheothermeals.Indeed,lowinvitro digestibil-ityofV.fabacontainingCT,hasbeenreportedfortrout(Grabner

(7)

26 M.-H.Omnesetal./AquacultureReports6(2017)21–27

andHofer,1985).Incontrast,incorporationof150and300gkg−1

fababeanasa proteinsourcein extrudeddietsfor on-growing seabasssignificantlyimprovedtheADCforprotein,fat,andenergy relativetothecontroldiet(Adamidouetal.,2009b),whereas sim-ilarorlowerADCvalueswereobtainedwhenthedietsincluded chickpeasand fieldpeas.Inclusion of360gkg−1 fababeanmeal (tannin21.4gkg−1;CT 20.4gkg−1)impairedthegrowthof Nile tilapia(Azazaetal.,2009a).TanninsfromaFabaceaeplantextractat levelsequaltoorgreaterthan6.3gkg−1alsosignificantlyaffected DMandproteindigestibilityintilapia(Pintoetal.,2000).Thus, dif-ferencesinnutrientdigestibilityappeartobespeciesspecific,and dependonthetoleranceofthefishtotannin-containingplant pro-teinsourcesandtanninsupplements.Tannin-proteincomplexes are formedwithexogenous dietaryproteinscoming fromfeed

(BeckerandMakkar,1999),inparticularthosecontainingproline,

butotheraminoacidsandphospholipidscanalsointeractwith tan-nin.Inaddition,reduceddigestibilityhasbeenpartiallyascribedto endogenousnitrogenorproteinandaminoacidlossespreviously observedinsmallanimals(ratorchickens)feddietscontaining tannin-richfood (Skopec et al., 2004; Mansoori and Acamovic, 2007),aswellasinpigsfedacorn-richhydrolysabletannin(Cappai etal.,2013).Inthisstudy,theamountofTAthatboundprotein moleculesmayhavereducedthedigestibilitybyloweringgut pro-teinbioavailability.Furthermore,inhibitionofdigestiveenzymes bytanninmayhavealsolowereddigestibilityandimpairedgrowth

(MandalandGhosh,2010b).

DietaryTAdidnotaffectedproteinlevelsinthecarcasswhereas lipiddeposition,energycontent,andHSIwereproportionallylower withincreasingTAinclusionlevels.Here,thehighHSIvalueswere probablyrelatedtotheproportionoffishmealusedinthebasediet. Lowpalatabilityofthediets(LanariandD’Agaro,2005),reduced dietarystarch (Tibaldi et al.,2006; Adamidou etal., 2009b), or incorporationofdriedmicroalgaeintothediet(Tullietal.,2012) havediminishedfeedintakeandinducedsubsequentdepletionof lipidstoresandliverglycogen,andhavereducedHSIandADC val-ues,probablyduetothemodulatingeffectsofdietaryelementson seabasslipidmetabolism.Theseobservationsmaypartiallyexplain ourresultsontheeffectsofTAonHSI,whereasthedepletionof lipidsaftertanninexposuremaybeduetoinhibitionoflipid syn-thesisand/orlipidmobilization,resultingfromtheformationof complexesbetweentanninand enzymesinvolved inthese pro-cesses(AiuraanddeCarvalho,2007).Tanninsupplementationalso reducedproteinandenergyretentioninthisstudy.Different pat-ternsofcarcassfatstoragehavebeenobservedinotherfishspecies.

AiuraanddeCarvalho(2007)showedthatNiletilapiafeddiets

con-tainingfrom0.8to6gTAkg−1hadmorebodylipiddepositionthan whenfedlowtannin-containingsorghumandthanthosefedhigh tannin-containingsorghum.However,gradedlevelsofTAinthe dietofrohudidnotaffectthelipidstores,butsignificantlyincreased

theHSI(Prustyetal.,2007).

WeusedcommerciallyavailableTAinthisstudytoinvestigate theeffectsoftannin.However,therearemanynaturalmolecules classifiedastannins,ofwhichCTswouldprobablybelesstoxicto

fishthanTA(BeckerandMakkar,1999;Buyukcaparetal.,2011).

Currently,dietsformulatedwithamixtureofvariousplant pro-teinsourcesmustcompensatefornutrientdeficienciesandavoid undesirablecompoundeffectstoproducethebestperformance. Indeed,tanninsarealsoknowntointeractwithother antinutri-ents,removingtheinhibitoryactionoftanninsorthedeleterious effectsofothers(Francisetal.,2001).Geneticimprovementshave beenattemptedtoselecttannin-freeorlow-tanninplantvarieties

(Créponetal.,2010).Varioustreatments(Xavieretal.,2012;Bhat

etal.,2013)andbiotechnologicalapplicationssuchasfermentation usingfishguttannaseenzyme,havealsobeentestedwiththeaim

toeliminateorreducetheamountoftannininfeedstoensuretheir nutritionalvalue(Mandal,2012;GhoshandMandal,2015).

5. Conclusion

Tannin supplementation above 10gkg−1 in diets decreased proteindigestibility,andabove20gkg−1growthperformancein Europeanseabassjuveniles.Theseresultsfurthersupporttheuse ofavarietyoflowtannin-containingplantproteinsourcesas nutri-tionallydigestibleingredientsforcarnivorousfishes,andhighlight theneedtotakeprecautionswhenincludingtannin-richfeedsin diets.Furthermore,amongthepotentiallybeneficial phytochem-icalsfor fishfarming, polyphenolextractsshowpromisedueto theirbiologicalproperties.However,theeffectoftheirhydrolyzed derivativesonthehealthoffishremainstobedetermined.

Acknowledgements

ThisworkwasconductedwithintheAquacultureresearch pro-grams‘Qualityofprocessandproducts’(IfremerPlouzané,France) and ‘Functionalfoodand health offish’(InraURNuMeA Saint-Pée-sur-Nivelle,France).TheauthorsthankF.J.Gatesoupe(Ifremer, Plouzané;InraURNuMeA),thetwoanonymousreviewersandW. Hempel,forcriticalreading andcomments,andamendmentsto thearticlethathavebeenappreciable,theBibliothèqueLaPérouse andS.Gros(Ifremer,Plouzané),forresourcecollectionand previ-ousassistanceonacontributiontoaconference.Thisresearchwas notsupportedbyaspecificgrant.

References

Adamidou,S.,Nengas,I.,Henry,M.,Grigorakis,K.,Rigos,G.,Nikolopoulou,D., Kotzamanis,Y.,Bell,G.J.,Jauncey,K.,2009a.Growth,feedutilization,health andorganolepticcharacteristicsofEuropeanseabass(Dicentrarchuslabrax)fed extrudeddietsincludinglowandhighlevelsofthreedifferentlegumes. Aquaculture293,263–271.

Adamidou,S.,Nengas,I.,Alexis,M.,Foundoulaki,E.,Nikolopoulou,D.,Campbell,P., Karacostas,I.,Rigos,G.,Bell,G.J.,Jauncey,K.,2009b.Apparentnutrient digestibilityandgastrointestinalevacuationtimeinEuropeanseabass (Dicentrarchuslabrax)feddietscontainingdifferentlevelsoflegumes. Aquaculture289,106–112.

Aiura,F.S.,deCarvalho,M.R.B.,2007.BodylipiddepositioninNiletilapiafedon rationscontainingtannin.Pesq.Agropec.Bras.42,51–56.

Altan,O.,Korkut,A.Y.,2011.Appearentdigestibilityofplantproteinbaseddietsby EuropeanseabassDicentrarchuslabraxL.,1758.Turk.J.Fish.Aquat.Sci.11, 87–92.

Arnold,T.M.,Targett,N.M.,2002.Marinetannins:theimportanceofamechanistic frameworkforpredictingecologicalroles.J.Chem.Ecol.28,1919–1934.

ASAB/ABS(AssociationfortheStudyofAnimalBehaviour/AnimalBehavior Society),2006.Guidelinesforthetreatmentofanimalsinbehaviouralresearch andteaching.Anim.Behav.71,245–253.

Azaza,M.S.,Mensi,F.,Ksouri,J.,Dhraief,M.N.,Brini,B.,Abdelmouleh,A.,Kraïem, M.M.,2008.GrowthofNiletilapia(OreochromisniloticusL.)fedwithdiets containinggradedlevelsofgreenalgaeulvameal(Ulvarigida)rearedin geothermalwatersofsouthernTunisia.J.Appl.Ichthyol.24,202–207.

Azaza,M.S.,Wassim,K.,Mensi,F.,Abdelmouleh,A.,Brini,B.,Kraïem,M.M.,2009a.

Evaluationoffababeans(ViciafabaL.var.minuta)asareplacementfor soybeanmealinpracticaldietsofjuvenileNiletilapiaOreochromisniloticus. Aquaculture287,174–179.

Azaza,M.S.,Mensi,F.,Kammoun,W.,Abdelouaheb,A.,Brini,B.,Kraïem,M.M., 2009b.Nutritionalevaluationofwastedatefruitaspartialsubstitutefor soybeanmealinpracticaldietsofjuvenileNiletilapia,OreochromisniloticusL. Aquacult.Nutr.15,262–272.

Becker,K.,Makkar,H.P.S.,1999.Effectsofdietarytannicacidandquebrachotannin ongrowthperformanceandmetabolicratesofcommoncarp(Cyprinuscarpio L.).Aquaculture175,327–335.

Bhat,T.K.,Kannan,A.,Singh,B.,Sharma,O.P.,2013.Valueadditionoffeedand fodderbyalleviatingtheantinutritionaleffectsoftannins.Agric.Res.2, 189–206.

Buyukcapar,H.M.,Atalay,A.I.,Kamalak,A.,2011.GrowthperformanceofNile tilapia(Oreochromisniloticus)fedwithdietscontainingdifferentlevelsof hydrolysableandcondensedtannin.J.Agric.Sci.Technol.13,1045–1051 (Accessed04April2016)http://jast.modares.ac.ir/article4767 b5ca4b2e34267beba48f9a5c6a098179.pdf.

(8)

Candek-Potokar,M.,Skrlep,M.,BatorekLukac,N.,Zamaratskaia,G.,Prevolnik Povse,M.,VelikonjaBolta,S.,Kubale,V.,Bee,G.,2015.Hydrolysabletanninfed toentiremalepigsaffectsintestinalproduction,tissuedepositionandhepatic clearanceofskatole.Vet.J.204,162–167.

Cappai,M.G.,Wolf,P.,Pinna,W.,Kamphues,J.,2013.Pigsuseendogenousproline tocopewithacorn(QuercuspubescensWilld.)combineddietshighin hydrolysabletannins.Livest.Sci.155,316–322.

Chebbaki,K.,Akharbach,H.,Talbaoui,E.,Abrehouch,A.,Aitali,A.,Sedki,S.,Ben Bani,A.,Idaomar,M.,2010.Effectoffishmealreplacementbyproteinsources ontheextrudedandpresseddietofEuropeanseabassjuvenile(Dicentrarchus labrax).ABJNA1,704–710(Accessed28December2015).

Chung,K.T.,Wei,C.I.,Johnson,M.G.,1998.Aretanninsadouble-edgedswordin biologyandhealth?TrendsFoodSci.Technol.9,168–175.

Collins,S.A.,Mansfield,G.S.,Desai,A.R.,VanKessel,A.G.,Hill,J.E.,Drew,M.D.,2013.

Structuralequationmodelingofantinutrientsinrainbowtroutdietsandtheir impactonfeedintakeandgrowth.Aquaculture416–417,219–227.

Couto,A.,Kortner,T.M.,Penn,M.,Ostby,G.,Bakke,A.M.,Krogdahl,A.,Oliva-Teles, A.,2015.SaponinsandphytosterolsindietsforEuropeanseabass

(Dicentrarchuslabrax)juveniles:effectsongrowth,intestinalmorphologyand physiology.Aquacult.Nutr.21,180–193.

Crépon,K.,Marget,P.,Peyronnet,C.,Carrouee,B.,Arese,P.,Duc,G.,2010.

Nutritionalvalueoffababean(ViciafabaL.)seedsforfeedandfood.Field CropsRes.115,329–339.

Dongmeza,E.,Steinbronn,S.,Francis,G.,Focken,U.,Becker,K.,2009.Investigations onthenutrientandantinutrientcontentoftypicalplantsusedasfishfeedin smallscaleaquacultureinthemountainousregionsofNorthernVietnam. Anim.FeedSci.Technol.149,162–178.

Drew,M.D.,Borgeson,T.L.,Thiessen,D.L.,2007.Areviewofprocessingoffeed ingredientstoenhancedietdigestibilityinfinfish.Anim.FeedSci.Technol. 138,118–136.

Emre,Y.,Sevgili,H.,Sanli,M.,2008.Apreliminarystudyontheutilizationof hazelnutmealasasubstituteforfishmealindietsofEuropeanseabass (DicentrarchuslabraxL.).Aquacult.Res.39,324–328.

FEAP(FederationofEuropeanAquacultureProducers),2015.European aquacultureproductionreport2005–2014.http://www.feap.info/shortcut. asp?FILE=1402(Accessed19August2015).

Francis,G.,Makkar,H.P.S.,Becker,K.,2001.Antinutritionalfactorspresentin plant-derivedalternatefishfeedingredientsandtheireffectsinfish. Aquaculture199,197–227.

Güroy,B.,Ergün,S.,Merrifield,D.L.,Güroy,D.,2013.EffectofautoclavedUlvameal ongrowthperformance,nutrientutilizationandfattyacidprofileofrainbow trout,Oncorhynchusmykiss.Aquacult.Int.21,605–615.

Gaber,M.M.,2006.Partialandcompletereplacementoffishmealbybroadbean mealinfeedsforNiletilapia,Oreochromisniloticus,L.,fry.Aquacult.Res.37, 986–993.

Ghosh,K.,Mandal,S.,2015.Nutritionalevaluationofgroundnutoilcakein formulateddietsforrohu,Labeorohita(Hamilton)fingerlingsaftersolidstate fermentationwithatannaseproducingyeast,Pichiakudriavzevii(GU939629) isolatedfromfishgut.Aquacult.Rep.2,82–90,http://dx.doi.org/10.1016/j. aqrep.2015.08.006.

Grabner,M.,Hofer,R.,1985.Thedigestibilityoftheproteinsofbroadbean(Vicia faba)andsoyabean(Glycinmax)underinvitroconditionssimulatingthe alimentarytractsofrainbowtrout(Salmogairdneri)andcarp(Cyprinuscarpio). Aquaculture48,111–122.

Griffith,D.W.,1989.Tannins.In:Huisman,J.,vanderPoel,A.F.B.,Liener,I.E.(Eds.), RecentAdvancesofResearchinAntinutritionalFactorsinLegumeSeeds. ProceedingsoftheFirstInternationalWorkshopon‘AntinutritionalFactors (ANF)inLegumeSeeds’,Wageningen,Netherlands.23–25November1988, PudocWageningen,Netherlands,pp.185–186.

Guillaume,J.,Choubert,G.,2001.Digestivephysiologyandnutrientdigestibilityin fishes.In:Guillaume,J.,Kaushik,S.,Bergot,P.,Métailler,R.(Eds.),Nutritionand FeedingofFishandCrustaceans.Springer-PraxisPublishing,Chichester,UK, pp.27–56.

Hagerman,A.E.,2002.TheTanninHandbook(updated:2011).Departmentof Chemistry&Biochemistry,MiamiUniversity,Oxford,OH(Accessed19June 2013)http://www.users.miamioh.edu/hagermae/.

Heuzé,V.,Tran,G.,Kaushik,S.,2015.Soybeanmeal.Feedipedia,aprogramby INRA,CIRAD,AFZandFAO.http://www.feedipedia.org/node/674(Accessed17 April2015).

Heuzé,V.,Tran,G.,Lebas,F.,Hassoun,P.,Lessire,M.,2015.Sunflowermeal. Feedipedia,aprogrambyINRA,CIRAD,AFZandFAO.http://www.feedipedia. org/node/732(Accessed17April2015).

Kousoulaki,K.,Saerther,B.S.,Albrektsen,S.,Noble,C.,2015.ReviewonEuropean seabass(DicentrarchuslabraxLinnaeus,1758)nutritionandfeed

management:apracticalguideforoptimizingfeedformulationandfarming protocols.Aquacult.Nutr.21,129–151.

Krogdahl,A.,Penn,M.,Thorsen,J.,Refstie,S.,Bakke,A.M.,2010.Important antinutrientsinplantfeedstuffsforaquaculture:anupdateonrecentfindings regardingresponsesinsalmonids.Aquacult.Res.41,333–344.

Lanari,D.,D’Agaro,E.,2005.Alternativeplantproteinsourcesinseabassdiets.Ital. J.Anim.Sci.4,365–374.

Magrone,T.,Fontana,S.,Laforgia,F.,Dragone,T.,Jirillo,E.,Passantino,L.,2016. Administrationofapolyphenol-enrichedfeedtofarmedseabass

(DicentrarchuslabraxL.)modulatesintestinalandspleenimmuneresponses. Oxid.Med.Cell.Longev.,1–11,http://dx.doi.org/10.1155/2016/2827567.

Makkar,H.P.S.,Francis,G.,Becker,K.,2007.Bioactivityofphytochemicalsinsome lesser-knownplantsandtheireffectsandpotentialapplicationsinlivestock andaquacultureproductionsystems.Animal1,1371–1391.

Mandal,S.,Ghosh,K.,2010a.AccumulationoftanninindifferenttissuesofIndian majorcarpsandexoticcarps.Aquacult.Res.41,945–948.

Mandal,S.,Ghosh,K.,2010b.InhibitoryeffectofPistiatanninondigestiveenzymes ofIndianmajorcarps:aninvitrostudy.FishPhysiol.Biochem.36,1171–1180.

Mandal,S.,(Accessed16July2016)2012.EliminationofTanninforUtilizationof SomePlantFeedstuffsinFormulationofDietsforRohu,Labeorohita (Hamilton).Thesis.TheUniversityofBurdwan,Burdwan,India,pp.244http:// hdl.handle.net/10603/21336.

Mansoori,B.,Acamovic,T.,2007.Theeffectoftannicacidontheexcretionof endogenousmethionine,histidineandlysinewithbroilers.Anim.FeedSci. Technol.134,198–210.

Messina,M.,Piccolo,G.,Tulli,F.,Messina,C.M.,Cardinaletti,G.,Tibaldi,E.,2013.

LipidcompositionandmetabolismofEuropeanseabass(Dicentrarchuslabrax L.)feddietscontainingwheatglutenandlegumemealsassubstitutesforfish meal.Aquaculture376–379,6–14.

Mwachireya,S.A.,Beames,R.M.,Higgs,D.A.,Dosanjh,B.S.,1999.Digestibilityof canolaproteinproductsderivedfromthephysical,enzymaticandchemical processingofcommercialcanolamealinrainbowtroutOncorhynchusmykiss (Walbaum)heldinfreshwater.Aquacult.Nutr.5,73–82.

Oliva-Teles,A.,Pereira,J.P.,Gouveia,A.,Gomes,E.,1998.Utilisationofdiets supplementedwithmicrobialphytasebyseabass(Dicentrachuslabrax) juveniles.Aquat.LivingResour.11,255–259.

Peixoto,M.J.,Salas-Leitón,E.,Pereira,L.F.,Queiroz,A.,Magalhães,F.,Pereira,R., Abreu,H.,Reis,P.A.,MagalhãesGonc¸alves,J.F.,deAlmeidaOzório,R.O.,2016. Roleofdietaryseaweedsupplementationongrowthperformance,digestive capacityandimmuneandstressresponsivenessinEuropeanseabass (Dicentrarchuslabrax).Aquacult.Rep.3,189–197,http://dx.doi.org/10.1016/j. aqrep.2016.03.005.

Pinto,L.G.Q.,Pezzato,L.E.,Miranda,E.C.,Barros,M.M.,Furuya,W.M.,2000.Ac¸ãodo taninonadigestibilidadededietaspelatilápia-do-nilo(Oreochromisniloticus) diets.ActaSci.22,677–681(Accessed05July2013)http://periodicos.uem.br/ ojs/index.php/ActaSciAnimSci/article/view/2913.

Prusty,A.K.,Sahu,N.P.,Pal,A.K.,Reddy,A.K.,Kumar,S.,2007.Effectofdietary tanninongrowthandhaemato-immunologicalparametersofLabeorohita (Hamilton)fingerlings.Anim.FeedSci.Technol.136,96–108.

Quideau,S.,Deffieux,D.,Douat-Casassus,C.,Pouységu,L.,2011.Plantpolyphenols: chemicalproperties,biologicalactivities,andsynthesis.Angew.Chem.Int.Ed. 50,586–621.

Sanchez-Vazquez,F.J.,Mu ˜noz-Cueto,J.A.,2014.BiologyofEuropeanSeaBass.CRC Press,London.

Sauvant,D,Heuzé,V.,Tran,G.,Lessire,M.,2015.Rapeseedsandcanolaseeds. Feedipedia,aprogrambyINRA,CIRAD,AFZandFAO.http://www.feedipedia. org/node/15617(Accessed17April2015).

Schrader,K.K.,2008.Compoundswithinhibitoryactivityagainstthechannel catfishpathogensEdwardsiellaictaluriandFlavobacteriumcolumnare.N.Am.J. Aquacult.70,147–153.

Skopec,M.M.,Hagerman,A.E.,Karasov,W.H.,2004.Dosalivaryproline-rich proteinscounteractdietaryhydrolyzabletannininlaboratoryrats?J.Chem. Ecol.30,1679–1692.

Tacon,A.G.J.,Metian,M.,2015.Feedmatters:satisfyingthefeeddemandof aquaculture.Rev.Fish.Sci.Aquacult.23,1–10,http://dx.doi.org/10.1080/ 23308249.987209.

Tibaldi,E.,Hakim,Y.,Uni,Z.,Tulli,F.,deFrancesco,M.,Luzzana,U.,Harpaz,S.,2006.

Effectsofthepartialsubstitutionofdietaryfishmealbydifferentlyprocessed soybeanmealsongrowthperformance,nutrientdigestibilityandactivityof intestinalbrushborderenzymesintheEuropeanseabass(Dicentrarchus labrax).Aquaculture261,182–193.

Tibaldi,E.,ChiniZittelli,G.,Parisi,G.,Bruno,M.,Giorgi,G.,Tulli,F.,Venturini,S., Tredici,M.R.,Poli,B.M.,2015.Growthperformanceandqualitytraitsof Europeanseabass(D.labrax)feddietsincludingincreasinglevelsof freeze-driedIsochrysissp.(T-ISO)biomassasasourceofproteinandn-3long chainPUFAinpartialsubstitutionoffishderivatives.Aquaculture440,60–68.

Tibbetts,S.M.,Milley,J.E.,Santosh,P.,Lall,S.P.,2015.Chemicalcompositionand nutritionalpropertiesoffreshwaterandmarinemicroalgalbiomasscultured inphotobioreactors.J.Appl.Phycol.27,1109–1119.

Tulli,F.,ChiniZittelli,G.,Giorgi,G.,Poli,B.M.,Tibaldi,E.,Tredici,M.R.,2012.Effect oftheinclusionofdriedTetraselmissuecicaongrowth,feedutilization,and filletcompositionofEuropeanseabassjuvenilesfedorganicdiets.J.Aquat. FoodProd.Technol.21,188–197.

Valente,L.M.P.,Gouveia,A.,Rema,P.,Matos,J.,Gomes,E.F.,Pinto,I.S.,2006.

EvaluationofthreeseaweedsGracilariabursa-pastoris,Ulvarigidaand GracilariacorneaasdietaryingredientsinEuropenseabass(Dicentrarchus labrax)juveniles.Aquaculture252,85–91.

VanAlstyne,K.L.,Paul,V.J.,1990.Thebiogeographyofpolyphenoliccompoundsin marinemacroalgae:temperatebrownalgaldefensesdeterfeedingbytropical herbivorousfishes.Oecologia84,158–163.

Xavier,B.,Sahu,N.P.,Pal,A.K.,Jain,K.K.,Misra,S.,Dalvi,R.S.,Baruah,K.,2012.

Watersoakingandexogenousenzymetreatmentofplant-baseddiets:effect ongrowthperformancewhole-bodycomposition,anddigestiveenzyme activitiesofrohu,Labeorohita(Hamilton),fingerlings.FishPhysiol.Biochem. 38,341–353.

Xu,Y.,Hanna,M.A.,2011.Nutritionalandanti-nutritionalcompositionsofdefatted Nebraskahybridhazelnutmeal.Int.J.FoodSci.Technol.46,2022–2029.

Figure

Fig. 1. Cumulative feed intake (g fish −1 ) in juvenile European seabass fed experi- experi-mental diets containing various levels of tannic acid

Références

Documents relatifs

Specialty section: This article was submitted to Marine Fisheries, Aquaculture and Living Resources, a section of the journal Frontiers in Marine Science Received: 01 July

Here, we studied three European sea bass populations: Atlantic Ocean (AT), West Mediterranean sea (WM) and East Mediterranean sea (EM) at two temperatures (18 and 24°C) in

سﺮﻬﻔﻟا تاءاﺪﻫﻹاو تاﺮﻜﺸﺘﻟا ﺔﻣدﻘﻣﻟا ﻲﺠﻬﻨﻤﻟا ﺐﻧﺎﺠﻟا  بﺎﺑﺳأ رﺎﯾﺗﺧا عوﺿوﻣﻟا .... ةمدقم ةجاحلا نأو دارفلأا نيب ةيعامتجا تاقلاع تأشنأ

ةيبعشلا ةيطارقميدلا ةيرئازجلا ةيروهمجلا يملعلا ثحبلا و يلاعلا ميلعتلا ةرازو ديمحلا دبع ةعماج سيداب نب مناغتسم ةيلك رييستلا مولع و ةيراجتلا و

Results We study lower and upper bounds on the number of higher order Delaunay triangula- tions, as well as the expected number of order- k Delaunay triangulations for

يناثلا لصفلا جئاتنلا ةشقانمو جئاتنلا ليلحتو ضرع 105 2 يرلاو ةيندبلا ةيبرتلا يف ذيملاتلا ةكراشم زفحي له كرظن يف ـ يف مهئاقدصأ ةكراشم للاخ نم ةيضا

There is no knowledge about the genetic variation of spawning date in sea bass, but this trait is known to present high genetic variability in fish species

Using a feed intake equation on an as-fed or dry matter basis results in a very different nutrient supply compared with equations based on metabolisable (ME) or net energy