• Aucun résultat trouvé

Coupling phenomenological model of expansion with mechanical model of starchy products extrusion (Projet AIC 'QualExp')

N/A
N/A
Protected

Academic year: 2021

Partager "Coupling phenomenological model of expansion with mechanical model of starchy products extrusion (Projet AIC 'QualExp')"

Copied!
17
0
0

Texte intégral

(1)

HAL Id: hal-02791920

https://hal.inrae.fr/hal-02791920

Submitted on 5 Jun 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Coupling phenomenological model of expansion with mechanical model of starchy products extrusion (Projet

AIC ’QualExp’)

Magdalena Kristiawan, Guy Della Valle, Kamal Kansou

To cite this version:

Magdalena Kristiawan, Guy Della Valle, Kamal Kansou. Coupling phenomenological model of ex- pansion with mechanical model of starchy products extrusion (Projet AIC ’QualExp’). Séminaire In- tégration des Connaissances et des Modèles (INCOM), Institut National de Recherche Agronomique (INRA). UAR Département Caractérisation et Elaboration des Produits Issus de l’Agriculture (1008)., Apr 2014, Paris, France. �hal-02791920�

(2)

Recall  of  Objec,ves  

Delivrables  

•  1/  Phenomenological  model  of  expansion  by  extrusion  for  predic9ng   macro  and  cellular  structure  of  starchy  solid  foam.  

•  2/  Coupling  this  phenomenological  model  with  mechanical  model  of   extrusion  (Ludovic®  soBware)  

To  build  a  phenomenological  model  of  expansion  by  extrusion  that  allows   to  predict  foam  structure  from  process  variables  and  material  proper9es.    

Coupling  phenomenological  model  of  expansion  with  mechanical   model  of  starchy  products  extrusion:  Projet  AIC-­‐QualExp      

Magdalena  KRISTIAWAN  (BIA-­‐MC2)  

Problème  d’applica9on  concerné:  I"néraire  mul"-­‐étape  &  couplage  de  modèle  

1  

Séminaire  InCoM  –  9-­‐10  Avril  2014  

(3)

Context:  Expansion  by  extrusion    

Acquisition of texture

Axial distance or time Die exit

Tp

MC R Bubble growth Tg

stop

T emp er atu re , R

  State diagram

The  bubble  growth  stops  (seWng)     at  Tp  >  Tg  +  ….°C    

Tg:  glass  transi9on  temperature  

(4)

Applica,ons  

•   Innova9ve  starchy  foods,  with  modulated  shape  and  diges9bility  

•   Starch  based  shape  memory  biopolymers  for  medical  devices  

Partners  :  BIA,  I2M,  externals  

§  M.  Kris9awan  :    

Modeling  implementa9on    

§  B.  Vergnes  (CEMEF-­‐MinesParisTech)  :    

Extrusion  and  plas9c  foam  manufacturing      

§  G.  Della  Valle  :    

Exper9se  on  extrusion,  rheology,  process  modeling    

§  Ch.  David  /L.  RaQe  (SCC)  :  

SoBware  development  for  extrusion  (Ludovic®)  

§  L.  Chaunier  :    

Exper9se  on  extrusion,  experiments  &  physics  

measurements                                                                                                                                                                            

                                   

   

§  Allaf  /  V.  Sobolik  (ULR)  :    

Expansion  by  instant  pressure  drop,  rheology,  fluid   mechanics  

§  K.  Kansou  :    

Qualita9ve  modeling  and  reasoning  

§  A.  Ndiaye  :    

Qualita9ve  modeling  and  reasoning  

§  C.  Fernandez   :    

SoBware  development  for  Knowledge  Base  System:  

Qualis©;  Make  Book    

3  

Séminaire  InCoM  –  9-­‐10  Avril  2014  

(5)

Methods  and  Resources  

1.  Collec9on  of  scien9fic  knowledge  (SK)  

2.  Representa9on  of  knowledge  (Concept  map  /  causal  graph)   3.  Establishment  of  phenomenological  models  of  expansion  

 -­‐   2/3  of  experimental  data:    Model  establishment  

 -­‐  1/3  of  experimental  data  &  scien"fic  ar"cles:      Model  valida"on  

4.   Coupling  mechanical  model  of  extrusion  (Ludovic ® )  with  expansion  models   5.   Simula9on  and  valida9on  with  experiments  

Approach   Modeling  

Phenomenological   models   of   bubble   growth   (+   nuclea9on,   coalescence,   seWng,  shrinkage)  in  a  viscoelas,c  biopolymer  matrix  in  the  transi9on  state   from  rubbery  to  solid  phase.  

Macro  and  Cellular  structure  =  f  (Water%,  Tp°C,  SME  kWh/t,  η(ϒ),  η(ε))   . .

(6)

•  Experimental  data:  Extrusion  of  maize  starch    

  (Della  Valle  et  al.,  1996,  1997;  Babin  et  al.,  2007)  

–  Input  variables:  (400  points)  

•  Amylose  (0  –  70%)  (E’(T α ));  Plas9cizer:  Water  %  (MC)  

•  T°C  of  product  at  die  exit  (Tp),  SME  kWh/t,  shear  viscosity    

–  Output  variables  

•  Macrostructure    

       -­‐  Volumetric  Expansion  Indices  (VEI)  (VEI=LEI  x  SEI)            -­‐  Radial  Expansion  Indices  (SEI)  

         -­‐  Longitudinal  Expansion  Indices  (LEI)            -­‐  Anisotropy  Factor  (AF)  

•  Cellular  structure  

             -­‐   Mean  cell  size  (MCS)  (mm)  

               -­‐  Mean  cell  wall  thickness  (MWT)  (μm)                -­‐   Fineness  

 

     

5  

AF = LEI SEI

X-­‐Ray     tomography  

ences may be explained by the variations in cellular structure. LS4 showed smaller MCS (620 vs. 1110lm), MCWT (226 vs. 376lm)

and higher cell density (4990 vs. 2080 cm!3) than LS5. Similar observations could be made for HS2 and HS3 (MCS 450 vs.

800lm, MCWT 207 vs. 345lm,Nc9990 vs. 3700 cm!3) and for WF2 and WF4 (MCS 740 vs. 1180lm, MCWT 245 vs. 476lm,Nc

6030 vs. 1050 cm!3). Therefore, for close relative densities, the higher resistance to stress may be associated with finer and a high- er density of cellular structure. For these samples, the cell wall thickness seemed to have less effect than cell size and number as, unexpectedly, structures that were more resistant also showed decreased cell wall thicknesses. However, LS5, HS3 and WF4 also showed broader cell wall thickness distributions compared to LS4, HS2 and WF2, respectively (Fig. 11). Such results support the findings ofBabin et al. (2007). The authors used the ‘‘weak link”

theory, developed byFazekas et al. (2002)with finite element anal- yses, to explain the effect of the cells geometry; the wider the dis- tribution of the cell wall thickness, the higher the probability that a thin wall cannot withstand the maximum applied stress.

The lower resistance observed for LS5 and HS3 might also be partially due to their higher level of physicochemical transforma- tions as shown by their higher value of WSI compared to LS4 and HS2, respectively. Despite the wide range of conditions and com- positions, the solid cellular model found a good applicability and confirmed the importance of the cellular structure.

Fig. 7.X-ray tomography images of extruded 26 samples according to their volumetric expansion index (x is the direction of extrusion).

Fig. 8.Cell density (Nc) vs. mean cell size (MCS), (—) correlation between cell size and cell number in the case of spherical cells atD= 0.600 and 0.200, respectively.

Fig. 9.Representation of expected cell shapes, of similar volume, in the case of isotropic cell growth (a), favoured longitudinal cell growth (b) and favoured radial cell growth (c, d) (in the case of oblate ellipsoids).

F. Robin et al. / Journal of Food Engineering 98 (2010) 19–27 25

ences may be explained by the variations in cellular structure. LS4 showed smaller MCS (620 vs. 1110lm), MCWT (226 vs. 376lm)

and higher cell density (4990 vs. 2080 cm!3) than LS5. Similar observations could be made for HS2 and HS3 (MCS 450 vs.

800lm, MCWT 207 vs. 345lm,Nc9990 vs. 3700 cm!3) and for WF2 and WF4 (MCS 740 vs. 1180lm, MCWT 245 vs. 476lm,Nc

6030 vs. 1050 cm!3). Therefore, for close relative densities, the higher resistance to stress may be associated with finer and a high- er density of cellular structure. For these samples, the cell wall thickness seemed to have less effect than cell size and number as, unexpectedly, structures that were more resistant also showed decreased cell wall thicknesses. However, LS5, HS3 and WF4 also showed broader cell wall thickness distributions compared to LS4, HS2 and WF2, respectively (Fig. 11). Such results support the findings ofBabin et al. (2007). The authors used the ‘‘weak link”

theory, developed byFazekas et al. (2002)with finite element anal- yses, to explain the effect of the cells geometry; the wider the dis- tribution of the cell wall thickness, the higher the probability that a thin wall cannot withstand the maximum applied stress.

The lower resistance observed for LS5 and HS3 might also be partially due to their higher level of physicochemical transforma- tions as shown by their higher value of WSI compared to LS4 and HS2, respectively. Despite the wide range of conditions and com- positions, the solid cellular model found a good applicability and confirmed the importance of the cellular structure.

Fig. 7.X-ray tomography images of extruded 26 samples according to their volumetric expansion index (x is the direction of extrusion).

Fig. 8.Cell density (Nc) vs. mean cell size (MCS), (—) correlation between cell size and cell number in the case of spherical cells atD= 0.600 and 0.200, respectively.

Fig. 9.Representation of expected cell shapes, of similar volume, in the case of isotropic cell growth (a), favoured longitudinal cell growth (b) and favoured radial cell growth (c, d) (in the case of oblate ellipsoids).

F. Robin et al. / Journal of Food Engineering 98 (2010) 19–27 25

ences may be explained by the variations in cellular structure. LS4 showed smaller MCS (620 vs. 1110lm), MCWT (226 vs. 376lm)

and higher cell density (4990 vs. 2080 cm!3) than LS5. Similar observations could be made for HS2 and HS3 (MCS 450 vs.

800lm, MCWT 207 vs. 345lm,Nc9990 vs. 3700 cm!3) and for WF2 and WF4 (MCS 740 vs. 1180lm, MCWT 245 vs. 476lm,Nc

6030 vs. 1050 cm!3). Therefore, for close relative densities, the higher resistance to stress may be associated with finer and a high- er density of cellular structure. For these samples, the cell wall thickness seemed to have less effect than cell size and number as, unexpectedly, structures that were more resistant also showed decreased cell wall thicknesses. However, LS5, HS3 and WF4 also showed broader cell wall thickness distributions compared to LS4, HS2 and WF2, respectively (Fig. 11). Such results support the findings ofBabin et al. (2007). The authors used the ‘‘weak link”

theory, developed byFazekas et al. (2002)with finite element anal- yses, to explain the effect of the cells geometry; the wider the dis- tribution of the cell wall thickness, the higher the probability that a thin wall cannot withstand the maximum applied stress.

The lower resistance observed for LS5 and HS3 might also be partially due to their higher level of physicochemical transforma- tions as shown by their higher value of WSI compared to LS4 and HS2, respectively. Despite the wide range of conditions and com- positions, the solid cellular model found a good applicability and confirmed the importance of the cellular structure.

Fig. 7.X-ray tomography images of extruded 26 samples according to their volumetric expansion index (x is the direction of extrusion).

Fig. 8.Cell density (Nc) vs. mean cell size (MCS), (—) correlation between cell size and cell number in the case of spherical cells atD= 0.600 and 0.200, respectively.

Fig. 9.Representation of expected cell shapes, of similar volume, in the case of isotropic cell growth (a), favoured longitudinal cell growth (b) and favoured radial cell growth (c, d) (in the case of oblate ellipsoids).

F. Robin et al. / Journal of Food Engineering 98 (2010) 19–27 25

AF  <  1   Radial   AF  =  1  

Isotrope  

AF  >  1   Longitudinal  

Flow  direc9on  

ences may be explained by the variations in cellular structure. LS4 showed smaller MCS (620 vs. 1110lm), MCWT (226 vs. 376lm)

and higher cell density (4990 vs. 2080 cm!3) than LS5. Similar observations could be made for HS2 and HS3 (MCS 450 vs.

800lm, MCWT 207 vs. 345lm, Nc 9990 vs. 3700 cm!3) and for WF2 and WF4 (MCS 740 vs. 1180lm, MCWT 245 vs. 476lm, Nc 6030 vs. 1050 cm!3). Therefore, for close relative densities, the higher resistance to stress may be associated with finer and a high- er density of cellular structure. For these samples, the cell wall thickness seemed to have less effect than cell size and number as, unexpectedly, structures that were more resistant also showed decreased cell wall thicknesses. However, LS5, HS3 and WF4 also showed broader cell wall thickness distributions compared to LS4, HS2 and WF2, respectively (Fig. 11). Such results support the findings of Babin et al. (2007). The authors used the ‘‘weak link”

theory, developed byFazekas et al. (2002)with finite element anal- yses, to explain the effect of the cells geometry; the wider the dis- tribution of the cell wall thickness, the higher the probability that a thin wall cannot withstand the maximum applied stress.

The lower resistance observed for LS5 and HS3 might also be partially due to their higher level of physicochemical transforma- tions as shown by their higher value of WSI compared to LS4 and HS2, respectively. Despite the wide range of conditions and com- positions, the solid cellular model found a good applicability and confirmed the importance of the cellular structure.

Fig. 7. X-ray tomography images of extruded 26 samples according to their volumetric expansion index (x is the direction of extrusion).

Fig. 8.Cell density (Nc) vs. mean cell size (MCS), (—) correlation between cell size and cell number in the case of spherical cells atD= 0.600 and 0.200, respectively.

Fig. 9.Representation of expected cell shapes, of similar volume, in the case of isotropic cell growth (a), favoured longitudinal cell growth (b) and favoured radial cell growth (c, d) (in the case of oblate ellipsoids).

F. Robin et al. / Journal of Food Engineering 98 (2010) 19–27 25

ences may be explained by the variations in cellular structure. LS4 showed smaller MCS (620 vs. 1110lm), MCWT (226 vs. 376lm)

and higher cell density (4990 vs. 2080 cm!3) than LS5. Similar observations could be made for HS2 and HS3 (MCS 450 vs.

800lm, MCWT 207 vs. 345lm,Nc 9990 vs. 3700 cm!3) and for WF2 and WF4 (MCS 740 vs. 1180lm, MCWT 245 vs. 476lm,Nc

6030 vs. 1050 cm!3). Therefore, for close relative densities, the higher resistance to stress may be associated with finer and a high- er density of cellular structure. For these samples, the cell wall thickness seemed to have less effect than cell size and number as, unexpectedly, structures that were more resistant also showed decreased cell wall thicknesses. However, LS5, HS3 and WF4 also showed broader cell wall thickness distributions compared to LS4, HS2 and WF2, respectively (Fig. 11). Such results support the findings of Babin et al. (2007). The authors used the ‘‘weak link”

theory, developed byFazekas et al. (2002)with finite element anal- yses, to explain the effect of the cells geometry; the wider the dis- tribution of the cell wall thickness, the higher the probability that a thin wall cannot withstand the maximum applied stress.

The lower resistance observed for LS5 and HS3 might also be partially due to their higher level of physicochemical transforma- tions as shown by their higher value of WSI compared to LS4 and HS2, respectively. Despite the wide range of conditions and com- positions, the solid cellular model found a good applicability and confirmed the importance of the cellular structure.

Fig. 7.X-ray tomography images of extruded 26 samples according to their volumetric expansion index (x is the direction of extrusion).

Fig. 8.Cell density (Nc) vs. mean cell size (MCS), (—) correlation between cell size and cell number in the case of spherical cells atD= 0.600 and 0.200, respectively.

Fig. 9.Representation of expected cell shapes, of similar volume, in the case of isotropic cell growth (a), favoured longitudinal cell growth (b) and favoured radial cell growth (c, d) (in the case of oblate ellipsoids).

F. Robin et al. / Journal of Food Engineering 98 (2010) 19–27 25

Coarse  

Fine  

Séminaire  InCoM  –  9-­‐10  Avril  2014  

(7)

Results  

(8)

VEI = ρ

melt

(1 − MC

melt

) ρ

*

(1 − MC

foam

)

Concept map: Phenomenological model of expansion

VEI  ≈  [MC/MC o ] x    [Tp/Tp o ] y    [η(γ)/η .   o (γ)] z    [E’(T α )/E o ’(T α )] t  

Collec"on  &  Representa"on  of  SK  

m

P

vs

dR dt R 1 η

.  

7  

Séminaire  InCoM  –  9-­‐10  Avril  2014  

(9)

Volumetric  expansion  indices  VEI    

0   2   4   6   8   10  

100   200   300   400   500  

VE I  

Shear  viscosity  (Pa.s)  

Amylose  (-­‐)    

                         

                                   0.7   0.47  

0.24  

Water  =  0.245,  185°C,  150  kWh/t,  h  die  =  3  mm  

2 4 6 8 10 12 14

0 150 300 450 600

VEI

Shear viscosity (Pa.s)

Water  MC  (+)  

0.21   0.25  

Amylose  70%,  165°C,  200  kWh/t,  h  die  =  3  mm  

0.28  

VEI = ρ melt (1MC melt ) ρ * (1MC foam )

VEI  ≈  [MC/MC o ] x    

VEI  ≈  [E’(T α )/E o ’(T α )] t  

(10)

Collec"on  &  integra"on  of  SK   Mapping of Anisotropy &

Structure Cellular

F =

250 MWT

!

"

# $

% &

2

+ 1 MCS

!

"

# $

% &

2

2

F  >  1   à  Fine   F  <    1   à  Coarse  

Cellular  fineness  (F):  

The cellular structure can be

deducted from the knowledge of

anisotropy  

9  

Séminaire  InCoM  –  9-­‐10  Avril  2014  

MWT  in  μm;  MCS  in  mm  

(11)

Scaling  down:    from  macroscopic    (anisotropy,  AF)  to   microscopic  (cellular  structure,  Fineness)  

 

R²  =  0.69135  

0.0   0.5   1.0   1.5   2.0   2.5   3.0   3.5   4.0   4.5  

0.0   0.5   1.0   1.5   2.0   2.5   3.0  

Fineness  of   cellular   structure,  F   (microscopic)  

F =

250 MWT

!

"

# $

% &

2

+ 1 MCS

!

"

# $

% &

2

2 F  >  1  à  Fine   F  <    1  à  Coarse  

MWT  in  μm;  MCS  in  mm  

Anisotropy   Factor  

(Macroscopic)  

AF  =    LEI  /(SEI) 1/2    =    VEI/(SEI) 3/2  

(12)

Concept map: Structure of Ludovic ®

«  Ludovic®’s  output  variables  =  input  of  expansion  model  »  

Collec"on  &  Representa"on  of  SK  

«  SoBware  for  simula9on  of  co-­‐rota9ng  twin-­‐screw  extrusion  »  

11  

Séminaire  InCoM  –  9-­‐10  Avril  2014  

(13)

Extruder:  Clextral  BC  45  &    Slit  die  

-­‐15   15   25   35   25   15   25   35   50   pitch  

50   50   100   100   50   150   100   100   300   length  (mm)  

Amylose  0.7,  Water  0.25,  Tp  157°C,  224   kWh/t,  89  bar  

Flow  parameters  of  extrusion  process  computed  by  Ludovic®  

Die   Hopper  

Pressure  (bar)  

Temperature  (°C)  

(14)

Evalua9on  

Realized:  

 -­‐  Collec9on  &  integra9on  of  scien9fic  knowledge  

 -­‐  Experiments  on  extrusion  of  starchy  foams  having  shape  memory      (the  part  of  CR2  project,  for  familiariza9on  with  extrusion)    -­‐  Representa9on  of  knowledge  

   «  Concept  map  with  causali9es  »     On  going:  

 -­‐  Establishment  of  phenomenological  models  of  expansion       Perspec9ve:  

 -­‐  Coupling  mechanical  model  of  extrusion  (Ludovic®)  with              phenomenological    models  of  expansion  

 -­‐  The  new  Ludovic®’s  outputs:    Macro  and  cellular  structures  of  foams        

13  

Séminaire  InCoM  –  9-­‐10  Avril  2014  

(15)
(16)

Integra"on  of  scien"fic  knowledge   Elongational viscosity & E’(T α ) as f(Amylose%)

0   2   4   6   8   10  

100   200   300   400   500  

VE I  

Shear  viscosity  (Pa.s)  

Amylose                                  0.7  

0.47   0.24  

Water  =  0.245,  185°C,  150  kWh/t,  h  die  =  3  mm  

2)  If  E’  (+)  then  Coalescence  (-­‐)  &  VEI  (+)   1)  Varia9ons  of  E’(T α )  and    η(ε)  with  

amylose%  follow  the  same  paQern   .  

Babin  et  al.  2007  

Della  Valle  et  al.  2007  

.  

15  

Séminaire  InCoM  –  9-­‐10  Avril  2014  

(17)

If  the  Cells    «more    coarse  »      then   MWT  dist.  «  more    heterogeneous  »    

0   0.1   0.2   0.3   0.4  

0   500   1000   1500   2000  

Octahedric  cell  wall  size  (μm)   Freq.    

Vol.  

Distribu,on  of  Cell  Wall  Thickness  

A (0.7)  

B   (0.47)  

D  (0…)  

0   200   400   600   800  

0   1  

2

3   4   5   6  

Mean  Cell  Size  (MCS)  (mm)

Mean  Cell  Wall Thickness  (MWT)     (µm)

r

2

=0.82  

H

2

O(%)     20  (O),     24  ( l )  

If  MCS  (+)  then  MWT  (+)  

Babin  et  al.,  2007  

Références

Documents relatifs

• Etablir un modèle qualitatif de l’expansion par cuisson-extrusion afin de prédire la structure cellulaire à partir des variables du procédé, et les propriétés des mousses

presence of heat transfer, dependence of physical parameters (shear viscosity, diffusion coefficient) on temperature and moisture content, coupling microscopic

3.1 Qualitative reasoning of vapor expansion The concept map defined relations between input variables (temperature of product at die exit T p , moisture content MC,

Although the causative role of activated Notch in human carcinogenesis has only been demonstrated explicitly for human NOTCH1 in several cases of T- ALL, Notch receptors and ligands

Another evaluation of the model aimed at comparing the kinematics of the model resulting from simulated muscle activations with an actual 3D motion analysis of the patient foot

Furthermore, we assess the effect of different microstructural features (volume, size, densification of the walls, and morphology) on Weibull modulus and strength. We found that the

Barrett and S¨ uli have introduced, and proved the existence of global-in-time weak solutions for d = 2 and 3 to, microscopic-macroscopic dumbbell models of dilute polymers

First, when there is no feedback from the cell velocity on the adhesion activity, the model writes as a Cox-Ingersoll-Ross (CIR) process, for which the probability density of the