• Aucun résultat trouvé

Electrostatically actuated micro-fluidic optical cross-connect switch

N/A
N/A
Protected

Academic year: 2021

Partager "Electrostatically actuated micro-fluidic optical cross-connect switch"

Copied!
3
0
0

Texte intégral

(1)

HAL Id: hal-00200229

https://hal.archives-ouvertes.fr/hal-00200229

Submitted on 14 Apr 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution| 4.0 International License

Electrostatically actuated micro-fluidic optical cross-connect switch

Eric Ollier, C. Divoux, J. Margail, T. Enot, L. Ortiz, M. Salhi, P. Berruyer, Alain Glière, André Bontemps, M. Laporte, et al.

To cite this version:

Eric Ollier, C. Divoux, J. Margail, T. Enot, L. Ortiz, et al.. Electrostatically actuated micro-fluidic optical cross-connect switch. IEEE/LEOS International Conference on Optical MEMS, 2003, Hawai, United States. �10.1109/OMEMS.2003.1233460�. �hal-00200229�

(2)

Electrostatically actuated micro-fluidic optical cross-connect switch

E. Oilier, C. Divoux, J. Margail, T. Enot, L. Ortiz, Y. Gobil, M. Salhi, P. Berruyer, A Gliere, A. Bontemps CEAIDRTILETI -17 rue des Martyrs, 38054 GRENOBLE Cedex 9, France

M. Laporte, M. Bruel

OPSITECH- 15, rue des Martyrs, 38054 Grenoble CEDEX Introduction

Optical cross-connect (OXC) switches are considered key components for future all-optical fiber networks because they avoid electrical conversion of the optical signals and allow network flexibility by providing provisioning and protection functions. Several solutions have already been proposed based on various technologies such as integrated optics, moveable optical fibers or waveguides, moveable micro-mirrors, microfluidic switches. Devices using planar lightwave circuits (PLC) are very promising for moderate size OXC because they avoid light divergence in free-space and accurate control of mirror deflection. The existing solutions rely on inkjet technology [1] or thermocapillarity effect [2]. This paper proposes an alternative that exhibits all the advantages of previous PLC based configurations but avoid thermal action on the index matching fluid in order to erihance reliability.

Device description

The device is based upon the combination of Planar Lightwave Circuit (PLC) technology, MEMS technology and Microfluidic technology. The principle of the elementary 2x2 switch relies on Total Internal Reflection from the sidewalls of a trench etched at the crosspoints of two waveguides (Fig. I). Depending on the position of an index matching fluid in the trench, the propagation of light is modified and a switching function can be provided. The transmitting and reflective states are respectively obtained when the trench is filled or empty. In this device, the motion of the fluid is controlled by the displacement of a mechanical diaphragm driven by an electrostatic actuator.

As shown on Fig. 2, this elementary 2x2 switch is used to realize NxN optical cross-connect switches. This approach offers key attributes. This MEMS-type solution exhibits wavelength and polarisation insensitivity and very low crosstalk. The PLC configuration eliminates optical losses due to beam divergence and allows the use of a low cost fiber-chip connection. The electro-mechanical actuation ensures low power consumption and enables to avoid thermal action on the index matching fluid. As a consequence, erihanced reliability can be expected.

"Transmlttlna State" (gap filled with Index matching fluid)

Electrostatic gap

Gap In transmitting state Optical �uides I Gap in reflective state

j

v lementary"'

L

2x2e located at the cro

..__, IJ 1\

[A

·()\

,;

.(�

f---f.--,-X

N

rts

output optical fibers

Figure 1 : Principle of the 2x2 elementary switch Figure 2 : NxN Optical Cross-Connect switch

Technological developments and fabrication of 2x2 and 8x8 switches

The fabrication of the NxN switches requires the fabrication and assembling of two wafers (Fig. 3). The planar lightwave circuit, including the optical waveguides and the trenches, is fabricated on a first wafer. The electromechanical structure, including the moving membrane and the electrostatic gap, is fabricated on a second wafer. Then the two wafers are assembled using a silicon direct bonding (SDB) technique.

Elementary 2x2 switches and 8x8 switches were fabricated (Fig.4,5). The optical trench is 5-20J.1m large, the diameter and thickness of membrane are respectively I 00-SOOJ.l.m and 1-3 JliD, the electrostatic gap is 1-5 Jlm. The fabrication benefits from the know-how in Si02/Si PLC technology, SOl MEMS technology and SDB technology. However, specific technological developments have been necessary. A specific planarisation and bonding technique has been developed for the assembling. The technique is now capable of satisfying the severe specifications : high surface quality resulting from planarisation of the silica layers, high bonding energy (500-1000mJ/m2) to ensure good bonding despite the high stresses existing in the silica layers and protection against membranes breaking during assembling steps. In addition, good results have been achieved in other key steps. In particular, membranes with

1

(3)

diameter up to 400J.Lm were fabricated using a HF release technique through the substrate. Two index matching liquids were selected as capable to fulfill both the optical and fluidic requirements. Different filling techniques have been investigated and the filling of SJ.Lm wide channels was achieved with an immersion under vacuum technique.

P!a:r.:ar ilghtwa<�e drcult mech�nh:::al

1

subsu·;U€'l

Figure 3: Fabrication ofNxN switch (2 wafers bonded) Figure 4 : Photography of a 8x8 OXC switch

Characterisation of 2x2 and 8x8 switches

With an appropriate index matching fluid, the measured optical losses are between 0.09 and 0.41dB/gap (index liquid, waveguide/gap angle gap width) for the transmitting state and between 1.9 and 3.8 dB (waveguide/gap angle) for the reflective state. Assuming propagation losses <0.05 dB/em and coupling loss < O.SdB, we can expect insertion losses respectively < 4.3 dB for 8x8. In addition, it must be highlighted that we have theoretically demonstrated that these results can be easily improved by changing the waveguide structure, leading respectively to 2.5dB and 4dB for 8x8 and 32x32. The optical crosstalk was measured to be <-50dB for 2x2 and about -30/-40dB for 32x32. The transmitting state exhibits a PDL (Polarisation Dependent Loss) of between 0.04 and 0.06dB for 2x2 (waveguide/gap angle). As a result, 0.45 to 0.6dB can be expected for 32x32. For the reflective state, the PDL can be higher: 0.06 to 1.27dB (waveguide/gap angle), but this figure can be optimised with a good design.

Fig.6 shows the behaviour of the membrane when it is actuated to provide the switching function.

Figure 5 : Photography of a 2x2 elementary switch

Conclusion

-2po -150

Membrane deflection (I'll') venous Driving voltage (V)

j.___._ 80V �� /

Figure 6: Experimental deflection of the moveable membrane

An electrostatically actuated micro-fluidic OXC switch based on PLC and MEMS technologies has been developed.

The motion of the fluid is controlled by the displacement of a mechanical diaphragm driven by an electrostatic actuator in order to ensure low power consumption and enhanced reliability. Specific technological developments have been made for the fabrication of 2x2 and 8x8 switches, in particular in the assembly of the two wafers and for the release process. The approach has been validated by the good optical results obtained on test devices and the good mechanical behaviour of the membranes. Further characterisations will be performed on 8x8 and 32x32 switches and will benefit of complementary developments that are still on progress in particular on fluid filling.

Acknowledgments

We thank RMNT (Reseau Micro et Nano Technologies) and French Ministry of Research for their financial support References

[1] : "Compact optical cross-connect switch based on total internal reflection in a fluid-containing planar circuit", J.E. Fouquet, OFC 2000, Baltimore (US), March 7-10,2000

[2] : "Micromechanical optical switches based on thermocapillarity integrated in waveguide substrate", M. Makihara, Journal of Lightwave technology, Voll7, N 1, January 1999

2

Références

Documents relatifs

First, the shortest path, 7r say, may be found by a shortest path algorithm (e.g. Dijkstra's algorithm or, preferably, a label- correcting algorithm [5]) applied to find the

This work presents a modification of the standard Potential Field method in which first of all, the field is continuous every- where, property that is not common in

The applied electromechanical force, which nonlinearly depends on displacement, charge and voltage, is predicted by a coupled-field approach, based on numerical

The prerequisite for success is political commitment to provide an enabling environment for all to contribute to reducing health inequities through action on the

So, in the sequel, the problem of identification, from real (dis- crete time) noisy measurement data, of the parame- ters (for example the moment of inertia), and func- tions

The unitary maps ϕ 12 will be very useful in the study of the diagonal action of U(2) on triples of Lagrangian subspaces of C 2 (see section 3).. 2.4

In Princess Hinote's prophecy, Kamui has been chosen by destiny to either protect the world, becoming the Dragon of Heaven and sid ing with the &#34;seven seals,&#34; or

Recycling
programs
in
St.
John’s
are
inefficient,
and
are
having
a
negative
impact
upon
the