• Aucun résultat trouvé

Decision evaluation process in end-of-life systems management

N/A
N/A
Protected

Academic year: 2021

Partager "Decision evaluation process in end-of-life systems management"

Copied!
16
0
0

Texte intégral

(1)

HAL Id: hal-01308899

https://hal.archives-ouvertes.fr/hal-01308899

Submitted on 28 Apr 2016

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

Decision evaluation process in end-of-life systems

management

Yasmina Bouzarour-Amokrane, Ayeley Tchangani, François Pérès

To cite this version:

Yasmina Bouzarour-Amokrane, Ayeley Tchangani, François Pérès. Decision evaluation process in

end-of-life systems management. Journal of Manufacturing Systems, Elsevier, 2015, vol. 37 (n° 3), pp.

715-728. �10.1016/j.jmsy.2015.03.007�. �hal-01308899�

(2)

To link to this article: DOI:10.1016/j.jmsy.2015.03.007

http://dx.doi.org/10.1016/j.jmsy.2015.03.007

This is an author-deposited version published in:

http://oatao.univ-toulouse.fr/

Eprints ID:

15534

To cite this version:

Bouzarour-Amokrane, Yasmina and Tchangani, Ayeley and Pérès,

François Decision evaluation process in end-of-life systems management.

(2015) Journal of Manufacturing Systems, vol. 37. pp. 715-728. ISSN

0278-6125

O

pen

A

rchive

T

oulouse

A

rchive

O

uverte (

OATAO

)

OATAO is an open access repository that collects the work of Toulouse researchers and

makes it freely available over the web where possible.

Any correspondence concerning this service should be sent to the repository

administrator:

staff-oatao@listes-diff.inp-toulouse.fr

(3)

Technical

Paper

Decision

evaluation

process

in

end-of-life

systems

management

q

Yasmina

Bouzarour-Amokrane

a

,

Ayeley

Tchangani

b,∗

,

Franc¸

ois

Peres

a aUniversiteDeToulouse/INPT/LGP,47,Avenued’Azereix,BP1629,65016TarbesCedex,France

bUniversitédeToulouse/IUTdeTarbes/LGP,1,rueLauréamont,65016TarbesCedex,France

Keywords:

End-of-lifeproductmanagement Reverselogistics

Withdrawalplan BOCRanalysis Satisficinggame

a

b

s

t

r

a

c

t

Inmanufacturingsectors,firmsarepayinganincreasingattentiontosustainabilityconceptwithregardto theirend-of-lifeproductsinordertorespectenvironmentalnormsandsatisfytheconsumersensitivity. Thispractiseallowscreatingvaluebyreintroducingdismantlingandrecoveringpartsand/ormaterialsof end-of-lifeproductsintomanufacturingprocess,orintomaintenanceprocess.Thus,deconstruction pro-cessesaredevelopedinordertoexamineallactivitiesaddressingtheendoflife(EOL)systemstoensure itsdisposalaccordingtoenvironmentalconstraintswhenseekinganeconomicoptimum.Inthiscontext, oneofthefirsttaskstoperformistorepatriatetheEOLsystemsatlowestcostconsidering geographi-caloptimizationoftreatmentcenters.Consideringthispoint,thepresentpaperproposesanevaluation andoptimizationapproachforthewithdrawallocationprocessinthefieldofaircraftdismantling.Given themultitudeandheterogeneityofcharacteristicstobetakenintoaccount,weproposetoconsider dis-mantlingsitelocationproblemasmulti-criteria/multi-objectivesdecisionmakingproblemandsolveit usinganewAHP-BOCRapproachbasedonqualitativeandquantitativeevaluations.Abipolar structur-ingframeworkisconsideredtodistinguishpositiveandnegativeaspectsintheelicitation/evaluation processtoavoidcompensationandsatisficinggametheoryisusedassuitablemathematicaltoolfor recommendationprocess.Anexperimentalstudyiscarriedouttoshowtheusefulnessofthe

1. Introduction

Firmsareincreasinglyinterestedinrecoveringusedproducts

dueinparticulartogrowingenvironmentalawarenessof

popula-tionandincreasingcustomerexpectationsofenterprisestodispose

ofmanufacturedproductssafely[1].Consideredasthebestwayfor

recoveringsomecategoriesofend-of-lifeproducts[2,3],theEOL

managementbecomingpervasiveinsocio-economiclife,inorder

toconsiderquestionsdealingwiththetransport,reuse,

refurbish-ment,recycling,disposal,securestorage,valorization,or,scrapped

ofEOLproduct[4,5].Theseactivitiesareincludedinthe

decon-structionprocess[6]whichincludesservicesofproductreturning,

recycling,materialsubstitution,reuseofmaterials,wastedisposal,

refurbishing,repair,andremanufacturing[7].

Thedeconstructionprocessisdevelopedaspartofthereverse

logisticswhichdiscussesfirst,theplanningprocessestablishment

toimplementandcontrolrawmaterialflows,currentinventory,

qPreliminaryversionofthispaperwaspresentedatIFACMIM2013asa commu-nication.

∗ Correspondingauthor.Tel.:+330562444253;fax:+330562444219. E-mailaddresses:yasmina.bouzarour@enit.fr(Y.Bouzarour-Amokrane), ayeley.tchangani@enit.fr(A.Tchangani),francois.peres@enit.fr(F.Peres).

finished goods from thepoint of useto thepoint of recovery.

Reverselogisticsalsodiscussestheselectionofproperdisposalsite

andtheoptimizationofthedismantlingsystemsinordertoreduce

thenegativeimpactofEOLproductsontheenvironmentandto

increasebenefitsofmanufacturersthankstorecyclingandrecovery

operations.

Intheaerospacesector,increasingnumberofend-of-lifeplanes

requirestopaymoreattentiontotheeliminationphasebecause

EOLaircraftscontainvaluablecomponentsandpartsthatcanbe

reused and reintroduced in the aftermarket [8]. Moreover, the

olderfleetmanagementandaircraftscrappingmustfacelegislative

pressureintermsofenvironmentalprotectionlawsandeconomic

benefits[5]generatedbypolicyofsustainableenvironment.These

aspectsareconsideredascriticalfactorsinmeasuringthe

contri-butionofafirmtosustainabledevelopment.Thus,environmental,

economicandsocialfactorscanbeconsideredinreverselogisticsto

evaluatetheefficiencyofimprovementactions.Forexample,

eco-nomicfactorscanprovideinformationonthebenefitsofadopting

reverselogisticsbymanufacturers.Wherecostsavingand

improv-ingthecorporateimageallowtogaincompetitiveadvantageand

toincreasetheenvironmentalperformance[9–12].

Amongtheissuesaddressedbythereverselogistics,the

selec-tionofproperdisposalsitesconsistsinaerospacesectortochoose

(4)

requiresoptimizingsomepreference indicatorssuchas,logistic

costs,environmentaleffects,jobcreations,oreconomic

enhance-ment.Thewithdrawaldesignphaseallowstoensuregeographical

deploymentreducing,longdistanceof EOLsystemsrepatriation

tothedismantlingsitesandlimitingtheirstorageneedsortheir

processing capacity. This phase may take into account various

parametersas:thecomplexityofthetransport,thedepthof

dis-assembly(whichproductswillberecycled?)andthesequencing

ofoperationsaccordingtosustainabledevelopment(howtoget

theproductswhileminimizingthetimeandcostof

deconstruc-tion,andmaximizingtheincomegeneratedbytheproductsofthe

deconstruction?)[13].Anevaluationphasemustthenberealized

tochoose thebest alternative among different existing

decon-structionplaces.In fact,severalsites canbecandidatesfor the

deconstructionoperationswhichleadtomanysolutionsintermsof

logistics.Inthiscontext,thescrappedaircraftwithdrawalplan

loca-tionproblemisconsideredinthispaper.Anewstructuredapproach

isproposedtoresolvedecisionproblemofthescrappedaircraft

withdrawalplanlocationconsideringanewflexiblebipolar

con-text.Abipolarwayisproposedtoconsiderpositiveandnegative

aspectsdistinctlyinordertoidentifythebestalternativeorthe

mostsatisficingone.Thepotentialinteractionofdecisionelements

andtheimpactofhumanbehavioronthefinaldecisionaretaken

intoaccount.Giventhelargevolumeofdatainvolvedinsolvingthe

scrappedaircraftwithdrawalplanlocationproblem,thispaper

pro-posestoresolveitbyusingamulti-criteria/multi-objectivedecision

approachbasedonAHPmethodwhichoffersarobust

hierarchi-calstructure.TheAHPprocessisadjustedtomeettheneedsand

tominimizecomplications.BOCRanalysisbuiltuponthebipolar

notionofsupportingandrejectingthatcharacterizedrelationships

betweenattributesandobjectivesisdemonstratingitspowerasa

structuringtoolfordecisionanalysis,seeforinstance[65–69]for

somemodelingmethodsandapplicationsbasedonthisnotion.The

BOCRanalysisconsideringbenefit,opportunity,costandrisk

fac-torsisassociatedtoAHPmethodinordertoconsideruncertainty

aspectinadequatewithdrawalplanidentification.Thisapproach

allowsdistributingthedataacrossfourdistinctfactorsthusforming

lessvoluminousclustersreducingthenumberofpairwise

compar-isonattheoperationallevel.Thepotentialinteractionsbetween

problemcharacteristicsareconsideredusingChoquetintegral.The

proposedmodelallowsalternativestobecharacterizedby

hetero-geneouscriteriaandmanageincomparabilitybetweenalternatives

intermsofPareto-equilibriausingsatisficinggametheoryin

rec-ommendationphasewhereafinalselectionisgivenaccordingto

positiveandnegativecontribution.

1.1. Literaturereviewoffacilitylocationproblems

Thefacilitylocationframeworkcanconsiderdifferentcontexts

involvingmultiproductandmultistagereverselogisticsnetwork

problemfor the return products [14], evaluating green supply

chainalternatives[15,16],recoveryplanninglikethe

determina-tionofthedisassemblylevel [17],or theelaborationof catalog

distributorstoreducecostsfromreturnsprocessing[18].The

facil-itylocation problems includingremanufacturing are frequently

encounteredintheliteratureandsolvedusingseveralapproaches

goingfromoptimizationtomulticriteriaevaluation.Forexample,

in [19], authors used p-median methodto calculate the

mini-mumweighteddistancefrompmanufacturing/remanufacturing

facilitiesto n demandlocations consideringthe minimum

effi-cientscaleforenvironmentalandeconomicperformance.In[20],

authorsproposesaconceptualframework,ananalyticalmodel,and

athree-stagealgorithmicsolutionbasedonp-medianapproach.

Theobjectivewastodeterminetheoptimalnumberandlocation

ofreceivingcantersandthecorrectfinancialincentiveinorderto

stimulatecollectionofusedorunrecoverableproductstoarequired

degree.Inordertolocaterecyclingcentersandtoassigncollection

depotstothosecenters,authorsin[21]propose2-stagelocationset

coveringproblem–p-medianintegratedmodelthatobtainsexact

solutions using heuristic algorithms onthe basis of set

opera-tions.TheMixedintegerprogrammingmodel[22–24]isanother

optimizationapproachusedtocapture,forexample,component

commonalityamongdifferentproductstohavetheflexibilityto

incorporateallplausiblemeansintacklingproductreturnsusing

amulti-commodityformulationanduseareversebillofmaterials

[25].Insomefacilitylocationproblems,fuzzycontextisconsidered

[26–28]totakeintoaccountriskwhichinfluencesthesupplychain

designandmanagementandwhichcanberelatedtouncertainty

embeddedinthemodelparameters(whichaffectstheproblemof

balancingsupplyanddemand)and/or,naturaldisasters,strikesand

economicdisruptions,orterroristicacts.Theoptimization

meth-odsoffercomplextechnicalresolutionleadingtoafinal‘optimal’

solutioncharacterizingtheinstructiongivenbytheanalystonce

theresolutioniscomplete.However,thesemethodsarenotalways

applicableandflexibleforcomplexproblemswithalargevolume

ofdata.Forp-medianmethodforexample,itisdifficulttosolve

theinstancesofverylargesizesandtheassociatedclassicallinear

relaxationtothisproblem.Formixedintegerprogrammingmodel

usingintegervariablesmakeanoptimizationproblemnon-convex

andthereforefarmoredifficulttosolve.Memoryandsolutiontime

mayriseexponentiallyasmoreintegervariablesareadded.

Themulticriteriacontextisproposedasanalternativeinsome

studies withfuzzy TOPSISmethod [29], AHPapproach [30,31],

ELECTREIIImethod[32],orfuzzycompromiseprogramming[33]

todealwiththevaguenessofhumanjudgmentsanddetermine

marginalutilityfunctionforeachcriteriatoconsiderscalingand

subjectiveweightingissues.Itisarguedthattheselectionofa

facil-itylocationisamulti-criteriadecision-makingproblemincluding

bothquantitativeandqualitativecriteria.Thissupportstheuseof

multicriteriamethodsasthosegivenabove.However,some

meth-odsalthougheasytoimplement,canberestrictive,dependingon

theproblemconsidered.Forexample,TOPSISmethodbased on

idealandnon-idealnotionhasthedisadvantageofonlyconsidering

cardinalcriteriawherepreferencesarefixedaprioriandmethod

providesthebestactionamongthepoorifallthealternativesare

notsatisfactory.FortheAHPmethodbasedonhierarchical

struc-tureandlinguisticscale,alargenumberofdecisionelementscan

increasethenumberofpairwisecomparisonsandarankreversal

problemcanoccurwheretwo actionscanviewtheirorder

pri-orityreversedafteraddingordeletingoneorseveralactions.For

outrankingELECTREIIImethodusingavetothreshold,the

com-plexityliesinthelargenumber oftechnical parametersand in

theinterpretationwhichmaybedifficult.Moregenerally,complex

decisionproblemconsideringamultitudeofobjectives,avariety

ofconflictingandoftenheterogeneouscriteriaandmultipleactors

withdifferentopinionsandpersonalities,inapotentiallyuncertain

environmentmakemulticriteriamodelingnecessarytoconsider

simultaneouslyalltheseaspects.Compromisesarethenrequired

toachievearesponse.However,themulticriteriamodeling

pro-posedinliteratureconsidersgenerallythatelicitationofcriteria

isindependentofalternativesandobjectives,whichisnotalways

trueinpractice.Ontheotherhand,aggregationmethodsareused

torepresentalternativewithauniquevalue.Thiscompensatory

approachdoesnotdistinguishbetweenthepositiveandnegative

aspectsthatalternativespresentregardingobjectives.

Theremainderofthis paperis organizedasfollows:Section

2introducesthecharacteristicsofdeconstructionprocesses.

Sec-tion3 addressesthestructuredframework methodfor analysis

developmentstartingwithanintroductionofproposedAHP-BOCR

approachand, detailedthenthestepsofaggregationphaseand

the basis of the satisficing game theory used on the

(5)

Section5concludesthearticleand discussessomeperspectives

andguidelinesforfutureworks.

2. Deconstructionprocesscharacteristics

Deconstructionprocessisasystemthatinvolvesallactivities

addressing the EOL system to ensureits disposal according to

environmentalconstraintswhenseekinganeconomicoptimum.

Itconsistsofasetofphysical,human,informationandenergy

enti-ties.Hardwareresourcescanbestructuredhierarchicallyfollowing

thedecompositionofthemainsystemsubassembliesand

individ-ualcomponents[34].Thedevelopmentandimplementationofa

deconstructionsystemisacomplextaskthatrequiresthe

realiza-tionofadeconstructionproject.Ingeneral,adeconstructionproject

aimstodefinethemanagementofEOLsystemsinordertoachieve

objectivessuch as the valuationof their components,

proposi-tionofregenerativeactiveproducts,themasteryofoperationsfor

ensuringthesafety,disassemblyanddismantling,aswellasthe

separationofhazardouscomponentstoensurethesafetyofthe

environmentandtraceabilityofreusepartsfromdeconstruction.

Theobjectivesofadeconstructionprojectaremainlyexpressed

intermsofoperationscontrolforensuringthesafety,

disassem-blyanddismantling,recoveryofmaterials(formulatedasrecovery

ratesgenerallyrangingfrom70%to95%)andtraceabilityofreuse

ofpartsfromdecommissioning.Toachievetheseobjectives,three

phasescanbedistinguishedinadeconstructionprocess[34,37]

(seeFig.1):

1.Reverselogisticsphase:thefirststepdealswithreverselogistics

activities;theEOLsystemisoutofservice,stored,cleanedand,

dependingonthetypeofsystem,decontaminatedandsecured

untilitsmanagement.TheobjectivehereistorepatriatetheEOL

systemsatlowestcostconsideringgeographicaloptimizationof

treatmentcenters,thinkingaboutparkingplaces,ortransport

modes.

2.Dismantlingphase:whentheEOLsystemarrivestotheselected

site, dismantling activities can be implemented. First, parts

whichcanbereusedarerecoveredand sentinarepair shop

beforebeingrecycled.TheDislocationisthenrealizedby

sep-arating the system components according to the nature of

materials,theirformattingforhandling(cutting,batchtraining).

Thedislocationcanalsodealswithdrainingthesystemandthe

removalofpollutantsandhazardousmaterials.Thegoalisto

recoverthecomponents(suchasengine,landinggear,

equip-ment)thatcanbepotentiallyreusedononehandand,incaseit

isnotpossibleornoteconomicallyworthy,toextractreusable

materials(suchasaluminum,alloys,plastics).Thisstepallows

theproductionofvaluableproductsrepresentinganaddedvalue

intheprocess.

3.Valorizationphase:wheretreatmentofEOLsystempartor

mate-rialisrealizedtogivethemavalue.Therearegenerallyfourtypes

ofrecovery.

-functionalrecycling:reinstatetheproductsresultingfromthe

deconstruction;

-materialrecycling:reusingthematerialcomponentsoftheEOL

system;

-energy recovery: incinerating of non-recyclable products

obtainedfromdeconstructiontoproduceenergy;

-packagingandstorageofhazardousproductsandproductsthat

cannotbevaluedinenvironmentalfriendlyconditions.

Our workis a partofthe implementationofthe firstphase

of deconstruction process. The objective is to ensure optimal

geographicaldeploymentof deconstructionsitewithlowercost

considering,geographicoptimizationoftreatmentcenters,

reflec-tiononparkingsite,transportmodes,andtrafficpattern.

The determination ofdeconstruction site is a complex

deci-sionproblemrequiringtoconsidercontradictoryobjectivesusually

relatedtoeconomic,ecologicalandsocialnotions.Thefirst

res-olution phaseconsists to form a committee of experts and to

defineparametersand characteristicsoftheproblem.

Consider-ingfixedobjectivesandinvolvedaspectsintheproblemselection,

theidentificationofpotentialsitesisbasedonparameterssuch

as;thelogisticschainoperations,resourcesneededtocarry

opera-tions,possibletransportationmethods,thestoragecapacity,the

economic parameters(suchas thecostand profitgenerated by

eachpotentialsite),socialparameters(suchastheemployment

creation) and environmental parameters (such as the level of

pollutiongenerated).Toevaluatecharacteristicsofpotential

with-drawalsites,severalcriteriarelatedtoeconomicprofit,valorization

(6)

rate,and ecologicalbalancehavetobetaken intoaccount[13].

Basedonliteraturereviewsand practicalexperiences, the

com-mitteeofexpertsdefineasetofindicatorssuchasthosesuggested

below.

Economicindicators:relatedtocostsandrevenuesgenerated

bythedevelopmentofadeconstructionsite.Costindicatorsinclude

logisticcosts(suchastransportandconditioning),productioncost

(deconstructioncost),managementcostsandadministrativecost.

Revenuesindicatorsimplygenerallyvalorizationrevenuesrelated

totheexpectedsalesforecasts,quantitiesofcomingproductsand

monetaryvalues. Other revenues related to the potential

ben-efits with the corresponding incomes as components sale and

savingtaxescanbeconsidered.Theseindicatorscanbedetailed

inquantifiablecriteriaforevaluation.Inlogisticcostsfor

exam-ple,theevaluation of transport cost canconsider distance and

cost/kmcriteriaincludingfuelcosts,transportationmaintenance,

tolls,transportationtaxes(fixedcosts),andrentalcost-relatedto

resources,travelinsurance,payrollserviceproviders–costof

use-relatedtodepreciationof machineryor tools–travel time and

resourceefficiency(variablescosts). Forconditioningcosts,

sev-eralcriteriacanbeconsidered; theratioof qualifiedworkforce

workcaninformsonthedegreeofworkcomplexityandthelabor

costs,cost/hincludingenergyasfuel,gasandelectricity,rentalcost

includingtariffsfor incurredservicesand toolsforconditioning

(shearsorcranes).

Environmentalindicators:canbedividedintoqualitativeand

quantitativeeconomicandnon-economicindicatorsfocusingon

themeasurement ofphysical data,i.e.emissions,waste,energy

andtransportation[36],orresidualwasteandenergy[24].Inthis

paper,toassesstheimpactofthedismantlingprojectonindividuals

andthebioticandabioticenvironmentaccordingtoenvironmental

regulations,thepollutionindicatorsareconsideredinthe

evalua-tionprocess.Therevalorizationandtreatmentindicatorssuchas

recyclingandconfinementareproposedtoestimatebenefitsof

dismantlingproject.

Thepollutionindicatorsconsidersomecriteriasuchas,pollution

sources(tanks,vessels,piping,storageareasandwarehousing–

drums,cans,bags–chronicoraccidentalspills,orwasteburied

contaminatedsoil),transfermodeofpollution (possiblevectors

arewatersurfaces,groundwater,air–spreadbythewind)and

tar-getthreatenedor affected(humanbeings, faunaandflora).The

impacton humans can bevisual (disruption duration, number

ofaffectedpersons),respiratory(levelof airquality,number of

affectedpersons),oracoustic(averagedecibel,numberofaffected

persons).Theimpactonenvironment canbeestimated

consid-eringquantityofwasteand itsimpact(onair quality,pollution

of water sources, or soil pollution), or transport mode (fuels

consumption).

The revalorization and treatment indicators can be evaluated

consideringrecyclingcriteria(%recycledmaterials,%reused

mate-rials),powergenerationandcontainmentofhazardousmaterials,

numberofaccidentsperyear,averageseverityofaccidents,number

ofemployeesinvolved,orlevelofstakeholdersatisfaction.

Social indicators: proposed to characterize the social

per-formanceoftheprojectconsideringpositive (employment)and

negativeimpact(perturbationsoraccidents)oftheprojectonthe

society.Criteriaasvisual,acoustic,respiratoryperturbationsand

accidentscanbeconsideredfornegativeimpactwhere positive

impactcanbeestimatedconsideringsatisfactionlevelof

stakehol-dersandnumberofhiredemployees.Thecompletelistofproposed

criteriafordismantlinglactationproblemissummarizedinthelast

section.

Theevaluationcommitteecanbecomposedbyseveralactors

participatingin thedefinitionof dismantlingprocess. Themost

importantstakeholdersmayberepresentedbythefollowing

enti-ties[13].

Operatingcompanies:theyhaveexploitationrightsoftheEOF

aircrafts withoutnecessarily being theirowners. The operating

companyisthestartingpointofthedismantlingprocess.

Theownercompany:ithastheaircraftanditisresponsiblefor

theselectionofdeconstructionsiteafteralternativesevaluation.

Dismantlingcompany:thecompanythatdealswith

deconstruc-tion.Itdeconstructstheaircraftinaccordancewiththeowner.The

Negotiationparametersincludecosts,dates,orprofits.

Otheractors:transportcompanies,cleaning,insurance,

govern-mentorganizationsand/orNGOs.

Modelingadeconstructionsitelocationproblemmustintegrate

all of the above elements and provide support for the

imple-mentationofanoptimizationmethod.Indeed,forlargesystems

withmanyrecoverytrajectories(alternatives),thedataevaluates

potentialsolutionscanbeverylargeandautomatedsearchforan

idealsolutioncanbenecessary.Tofindthewithdrawalplanthat

meetsthefixedobjectiveswithoutviolatingtheregulations,the

followingsectionproposetoconsiderthedismantlingsitelocation

problemasamulticriteriadecisionproblemandresolveitusing

bipolarapproachbasedonAnalyticHierarchyProcessandBOCR

analysis.

3. Structuredframeworkforanalysis

Considering dismantlingsites aspotentialalternativesnoted

A={a1,a2,...,an},theevaluationmethodmustquantifythe

capac-ityofeachsitetomeettheobjectivesofdecisionmakersnoted

O={o1,o2,...,oq}.Toresolvemulticriteriadecisionproblem,the

literaturepresentsgenerallyalternativesbyacommonsetof

crite-riaforallobjectives.However,inpracticetherearecaseswhere

thecriteriaaredependentonalternativesand/orobjectives.The

proposedapproachoffersthepossibilityofconductingelicitation

ofcriteriaforeachpair(alternative,objective)inorderto

quan-tifyalternativepotentialtoachievetheobjectives.Asetofcriteria

for(ol,ai)isnotedCol(ai)={c1oI,co2I,...,cmoI}.Indecisionproblems,

characteristicsof alternatives maybe detailed in severallevels

throughdetailedcriteriagoingformgeneraltooperationallevel.

Oncequantifiablecriteriaevaluated,theoppositepathistakenby

aggregating subsetsofeach level inorder toquantify potential

ofalternatives(seeFig.2).Theformulationofcriteria

hierarchi-cally,hasbecomethemainfeatureoftheanalytichierarchyprocess

(AHP)developedbySaaty[37].Thishierarchyofcriteriaallowsthe

analysttostructurethedecisionproblemprovidingusersabetter

understandingandallowingthemtofocusonallocationofweights

tothecriteriaandsub-criteria.Weproposeinthenextsectionto

useAHPprocessinmodelingandevaluationphasesofproposed

approach.Theevaluationresultsateachlevelareassumed

nor-malizedintherange[0,1]in ordertomaintainasameorderof

magnitudeforevaluations.Itisassumedthatalternative

perfor-mancecan beassessedthrough a setof indicatorsnoted Iol(a

i)

toestimatethedegreeofachievementofobjectiveolconsidering

alternativeai(Eq.(1)).

Iol(a

i)=ϕol(col(ai)) (1)

where ϕol representsanaggregation measureof correspondent

component.

Theproposedapproachconsidersasocialchoiceproblemwhere

decisionmakersseektoobtainafinaldecisionincollectiveway.In

thiscase, basedontheproposedframework bytheanalyst,the

roleofstakeholdersistoelicitcommonlytheproblem

character-isticsintheelicitationphaseandthenevaluatethemdepending

ontheirdiscipline,knowledgeandexperience.Theselection

pro-cessesofcriteriaarestructuredhierarchicallywhereglobalcriteria

aredetaileduntiloperationallevel.Thenumberofconsidered

(7)

Fig.2.Hierarchicalstructurationofcriteria.

numberofparameterswouldmaketheprocessmorecomplicated

andlengthy.

Thestagesofthecorrespondingdecisionmakingproblemareas

follows:

1.Actorsselectobjectivesandindicatorstomeasuretheirdegree

ofachievement.

2.Potentialalternativesareidentifiedbyactors.

3.For each pair(objective, alternative),actorscan determinea

setofcriteriathatpermittheevaluationofanalternativewith

regardtoanobjective.

4.Alternativesareevaluatedwithregardtoobjectivesfor

recom-mendations.

TheaimofthispaperistodevelopanewAHP-BOCRapproach

basedonqualitativeandquantitativeevaluationstostructureand

solvedismantlingsitelocationproblem.Theanalytichierarchy

pro-cess(AHP)proposedby Saaty[38] allows solvingcomplex and

unstructureddecisionproblems froma pairwise comparison of

relativecriteriaunderahierarchicalstructure.Toevaluatethe

fea-sibilityofdismantlingsitesinstallation,aBOCRanalysis(seefor

instance[65]),isassociatedtoAHPmethodtoanalyzealternatives

basedonBenefit(B),Opportunity(O),Cost(C)andRisk(R)aspects

simultaneously.In theproposed bipolar approach, the positive

criteriaofbenefit (certain)and opportunity(uncertain)andthe

negativecriteriaofcost(certain)andrisk(uncertain)are

synthetiz-ingdistinctivelythroughtheselectabilityandrejectabilitynotions

in order to rankalternatives considering positive and negative

impactsrespectively,beforetherecommendations.Wedefine

pos-itive/negativecriteriain termsof supporting/rejectingobjective

achievementascriteriapositively/negativelycorrelatedwiththe

variationofconsideredobjective.Elicitationofpositive/negative

criteriainBOCRframeworkcanbedonebyansweringquestions

as“whatarethecertain/uncertaincharacteristicsthatrepresent

a benefit/opportunity(cost/risk) in using the alternative ‘ai’ to

achieveobjective‘ol’?”.Twodistinctgroupsareidentified:

-thesetofcriteriasupportingtheachievementof objective‘ol’

noted Col

s(ai),whereCsol(ai)=Cbol(ai)∪Cool(ai).This setincludes

benefits criteria noted Col

b (ai) and opportunity criteria noted

Col

o(ai).

-the set of criteria rejecting the achievement of objective ‘ol’

noted Col

o(ai)where Crol(ai)= Ccol(ai)∪ Crol(ai).This setincludes

costcriterianotedCol

c (ai)andriskcriterianotedCrol(ai).

The AHP-BOCRevaluation method and therecommendation

phasearedevelopedinthenextsection.

3.1. AHP-BOCRevaluationapproach

First introduced by Saaty in the 70s, theanalytic hierarchy

process hasbecome one of themost commonly usedmethods

inmulticriteriadecisionliterature[38].TheprincipleoftheAHP

methodis todecompose a decisionproblemintodifferent

ele-ments grouped in clusters, in a linear hierarchy starting from

generaltoparticular.Criteriaare detailed untilreaching

opera-tional level that allows alternatives evaluation [39]. Saaty also

proposedaBOCRanalysismethodtoletdecisionmakersdealing

withbenefits,opportunities,costs,andrisks[40–42].Thedegree

ofobjectiveachievementmaybedescribedbythesefourfactors

[43]whereeachoneisrepresentedbyasetofcriteriadetailedin

subhierarchygoingfromgeneraltooperationallevel.Considering

bipolarrelationships,strengthassessmentusingAHP-BOCR

analy-sisisobtainedbydistinguishingpositive(selectabilitynotion)and

negative(rejectabilitynotion)factors.Pairwisecomparisonis

car-riedouttoquantifytherelativeimportanceofeachelementwith

respecttotheobjectiveachievement(Fig.2).

Therelativeimportanceisobtainedforeachelementbya

(8)

Table1 AHPscale.

Qualitativescale Numericalvalues

Equallyimportant 1

Moderatelymoreimportant 3

Stronglymoreimportant 5

Verystronglymoreimportant 7

Extremelymoreimportant 9

Intermediatescales(compromise) 2,4,6,8

Fig.3. ParametersofproposedAHP-BOCRapproach.

levelusingaratioscalesuchasanAHPscaleshowedinTable1.

Unlikeintervalscales[44],theratioscaledoesnotrequireanyunit.

Theevaluationcanbemadefromaverbaljudgmentrepresenting

arelativevalueorsameunitquantityfraction.Thisapproachhas

beenwelcomed bypsychologists whoconsidereasierand more

accuratetoexpresstheiropinionbyconsideringonlytwoelements

insteadofasetofelementssimultaneously[45].

In theevaluationphase,a setofparametersmustbe

quanti-fiedbydecisionmakers(Fig.3)todeterminetheperformanceof

eachalternative.The detailedevaluation oftheseparameters is

discussedbelow.

Step1.Identificationofweightparameters

TheevaluationofthedecisionproblembytheAHPprocedure

startswiththeassessmentoftheobjectiveimportanceconsidering

theoverallgoal[39].Apairwisecomparisonofthesetof

objec-tivesisachievedbyansweringquestionssuch“howimportantis

objective‘ok’comparedtotheobjective‘ol’withregardtothe

over-alldecisiongoalnotedO.”TheAHPscalegiveninTable1isused

toobtainapairwisecomparisonmatrix noted(˝O(l,l))

q×q (see

below),where˝O(l,l)correspondstorelativeimportanceofthe

objectiveolcomparedtotheobjectiveol′.

˝O= o1 o2 ... oq o1 o2 .. . oq

1 ˝1,2k,O ... ˝k,O1,q ˝k,O2,1 ... ˝k,Ol,l′ ... .. . ˝k,Ol′,l = 1/˝ k,O l′,l ... ... ˝k,Oq,1 ... ... 1

Thismatrixmustbeconsistentandsatisficingtransitivity

condi-tiononallcomparisons.Thismeansthatthematrix˝Omustsatisfy

thefollowingconditions˝O(l,l)=1,˝O(l,l)=1/˝O(l,l)and˝O(l,

l′)=˝O(l,l′′)·˝O(l′′,l)(formoredetailssee[46,45]).Ifthematrix

isperfectlyconsistent,theconditionoftransitivity˝O(l,l)=˝O(l,

l′′)·˝O(l,l)issatisfiedonallcomparisons.Toavoidcheckingthe

consistencyafteranarbitrarymatrixconstruction,weproposea

straightforwardapproachthatleadstoaconsistentmatrix[39]:

-selectapivotobjectivenotedop

-compareotherobjectivestothispivottoobtainscores

v

(l,p)(from

Table1)forallotherobjectivesj=/ p

-generatethematrix˝Owith;

˝O(l,p) =(l,p) ,˝O(p,l) =1/ (l,p) ,˝O l,l′′



=˝O(l,p) ˝O p,l′′



=˝O(l,p) /˝O l′′,p



(2)

Therelativecomparisonvector‘ωoiscalculatedusingEq.(3).

ωO(o l)= 1 q q

X

l′′=1

!

˝O(l,l′′)

P

i=1 q ˝O(i,l′′)

"

(3)

TherelativeimportanceofindicatorsIol(a

i)givenanobjective

ol,

ol∈O,isthenevaluatedbythewayofapairwisecomparison.

Foreachalternativeai,therelativeimportancevectorof

indica-torsIol(a

i)forobjectiveolisnotedωiol.Thisvectorisobtainedfrom

aconsistentmatrixnoted˝ol

i (Eq.(3)).InBOCRframework,the

degreeofrelativeimportanceofcriteriawithrespecttothe

objec-tivesisnotedωol

×whereωo×l(cj)representstherelativeimportance

ofcj∈C×ol(ai)foreachcategory×=b,o,c,r.Thevectorωo×l canbe

obtainedinthesamewayasvectorsωol

i andω

O.

Step2.Alternativeevaluation

Theevaluationmatrixofthealternativenotedol

×considering

differentsub-setsofcriteriaCol

×(×=b,o,c,r)canbeobtainedin

twoways:

Foragivencriteria,iftheevaluationofthealternativeis

quan-titativewithcol

j (ai)theperformanceofalternativeaiwithregard

tocol

j ,thenthepairwisecomparisonmatrix˝

col j

× foreachcategory

×=b,o,c,risobtainedthroughEq.(4).

˝colj

× (ai,ai′)=cjol(ai)/cjol(ai′) (4)

Otherwise,thepairwisecomparisonmatrix˝c×olj foreach

cate-gory×=b,o,c,rcanbeobtainedusingAHPmethodbyanswering

questionslike“whatistheperformanceofthealternativeaiin

com-parisontoalternativeai′ consideringthecriteriaCjol?”.Thevalues

oftheevaluationmatricesol

×arecalculatedfromtheEq.(5)[39].

ol ×(ai,cojl)= 1 n n

X

i′=1

˝c ol j × (ai,ai′)

P

i′′˝ col j × (ai′′,ai′)

(5)

OncetheAHPprocedurehasbeencarriedoutconsideringBOCR

analysis,theperformanceevaluationofalternativesisrepresented

byb,o,c,rfactorsobtainedafteraggregation.Theproposed

aggre-gationphaseisdevelopedinthenextpart.

3.2. Aggregationphase

Theaggregationconceptisacommonfeatureforall

multicri-teriadecisionproblemsevaluationproceduressuchas;thetheory

ofmulti-criteriautility(MAUT)andoutrankingmethods.InMAUT

procedure,one-dimensionalutilityfunctionsareaggregatedinto

anoverallutilityfunctionbycombiningallthecriteria,whereas

in outranking methods (such as ELECTRE), preference relations

areaggregatedbypairalternatives(see[47,48]).Toaggregatea

setofdataandrepresentthembyasinglevalue,themostused

aggregationmethodistheaverageweightedarithmetic[49–51].

(9)

theaggregatecomponents,asthesynergy,redundancyor

inde-pendence. To remedy this, fuzzy integrals were then put up.

Consideringpositiveandnegativeaspectsdistinctlyinproposed

approachpromotessynergisticrelationshipsbetweenthecriteria

ofeachcluster.Inthiscontext,weproposetheuseofChoquet

inte-gral[52,47]asaggregationtooltoconsidertheconceptofsynergy

ineachset.

3.2.1. TheuseofChoquetintegralinproposedapproach

TheChoquetintegral isgivenby‘GustaveChoquet’(Choquet

1954)andintroducedintothefuzzymeasurecommunityby

‘Muro-fushiandSugeno’[53].Itisconsideredasanadequatesubstitute

totheweightedarithmeticmeanbecauseitproposestodefinea

weighttoeachelementandeachsubsetofelements[49].Theuseof

theChoquetintegralasanaggregationtoolofinteractingelements

inmulticriteriadecisionproblemshasbeenproposedbyseveral

authors[54–57,47].Weproposetousethisintegraltoaggregatea

dataoftheproposedbipolarhierarchicalapproach.

LetX={x1,x2,...,xn}bethesetofnumericallyvaluedelements

toaggregatebyChoquetintegral,toconsiderpotentialinteractions,

afuzzyorcapacitymeasurenoted‘

v

’mustbedefinedasfollows:

Definition1(:). Let2xbethepowersetofX,afunction

v

:2x

[01]isacapacityorafuzzymeasureoverXifitverifies:

i)v(∅)=0,v(X)=1,

ii)S⊆ T⇒ v(S)≤ v(T),

S,T⊆ X

iii)For eachS⊆X,v(S)canbeinterpretedastheweightofthe

importanceofthecombinationofelementsofthesetS(relative

weightstoS).TheChoquetintegralofvectorxofelementsof

thesetXassociatedtothecapacityorfuzzymeasureisgiven

byEq.(6).

Cv(x):=

n

X

i=1

{

v

(A(i))(x(i)− x(i−1))} (6)

where(.)isapermutationoverasetXsuchasx(1)≤ ...≤ x(n),x(0)=

0andA(i)={(i),...,(n)}.

FormoredetailsontheaxiomaticcharacterizationsofChoquet

integrals,interestedreaderscanconsultthefollowingreferences:

[58,52,50].ThedifficultyofcomputingChoquetintegralistodefine

afuzzymeasureoverthesetXthatnecessitatesobtaining2x2

coefficientsthatrepresentthemeasureofsubsetsofXotherthan

∅and X.Whentheclassificationofelementscanberealizedby

assigningthemrelativeimportancenormalizedweights,we

pro-posetouseaweightedcardinalfuzzymeasure(WCFM)thatleadsto

astraightforwardformulaforthecorrespondingChoquetintegral

[54].

Definition2(:). Aweightedcardinalfuzzymeasure(WCFM)over

Xassociatedtoarelativenormalizedweightsvectorω=[ω1,ω2,

...,ωn]isgivenbyEq.(7).

v

()= || |X|

X

j∈ ωj

(7) whereisasubsetofX.

Itisstraightforwardtoverifythatthisfunctionfulfillsconditions

ofacapacityorfuzzymeasure.LetusdenotebyCω(x),theChoquet

integralofnumericalndimensionvectorxassociatedtoaWCFM

withrelativevector,thenthisintegral,isgivenbyEq.(8).

(x)=

X

n k=1



n(k1) n



X

j∈A(k) ωj

(x(k)−x(k−1))

(8)

where (.) indicated a permutation on the set X such as

x(1)≤...≤x(n),x(0)=0,andA(k)isdefinedbyA(k)={(k),...,(n)}.

UsingpresentedChoquetintegral,theaggregationlevelsof

pro-posedmodelcanbesummarizedbythefollowingalgorithm.

Aggregationalgorithm Inputdata

ωOrelativeimportancevectorofobjectives ωol

i relativeimportancevectorofindicators ωol

×relativeimportancevectorofcriteriacj∈Col

×(ai)foreachcategory×=b,o, c,r

ol

×evaluationmatrixofthealternativeconsideringsub-setsofcriteria Col

×,where×=b,o,c,r Outputdata

B(ai),O(ai),C(ai),R(ai)benefit,opportunity,costandriskevaluationmeasures ofalternativeai

1:Foreachalternativeai 2:Foreachobjectiveol 3:ForeachindicatorIol

×k∈I

ol

×,where×=b,o,c,randk=1,¯twheretis dimensionofIol

× 4:Foreachcriteriacol

j ∈C×ol(ai),where×=b,o,c,r

5:Evaluationofalternativesperformanceconsideringcriteriaforeach indicator Iol ×k(ai)=aggreg(c ol ×(ai)) Endforcol j(ai)

6:Evaluationalternativesperformanceforeachobjective ×ol(ai)=aggreg(Iol ×k(ai)),where×=b,o,c,r WhereIol ×(ai)=aggreg(Io×lk(ai))withI ol ×k(ai)=ϕ ol(col ×(ai)),×=b,o,c,r EndforIol ×k

7:Evaluationalternativesperformanceforeach×factor ×o(a

i)=aggreg(×ol(ai)) Endforol

Endforai

Theselevelsofaggregationallowrepresentingeachalternative

withb,o,c,rfactors.Theaggregationfunctionaggregisreplacedby

theChoquetintegral.Forexample,theaggregationofcriteriaonan

indicatorIol

×kmaybegivenbythefollowingexpression:

Iol ×k(ai)=aggreg(co×l(ai)) =

X

m× k=1



m ×− (k− 1) m×



X

col j ∈C×ol ωol ×(cojl)



ol ×(ai,cojl)(i)− ×ol(ai,cojl)(i−1)



(9)

where×=b,o,c,randm×isthedimensionoftheconsideredcriteria

set.

Giventhebipolarnatureofthecriteria,weproposetheuseof

satisficinggametheoryasflexiblerecommendationtoolforfinal

evaluationprocessinordertorepresenteachalternativewitha

supportingmeasure(representedbybenefitandopportunity)and

rejectingmeasure(representedbycostandrisk).Inthefollowing,a

briefdescriptionofthesatisficinggametheoryispresentedbefore

addressingtheapplicationexample.

3.3. Satisficinggametheory

Thephilosophybehindthemajorityofthetechniquesusedin

theliteraturefortheconstructionofanevaluationmodelisbased

onthesuperlativerationality[59]inwhichallalternativesmustbe

comparedtoeachotherintheaimofoptimalityseeking.However,

decisionmakersinsolvingrealworldproblemsdonotnecessarily

seektheoptimalsolution,oftencostlyintermsoftimeandmoney,

butasatisfactorysolutionwhosecapabilitiesareestimatedfairly

goodregardingtoobjectiveachievement[60].Thesatisficinggame

theoryisbasedonthisobservationandprovidesadequatetoolsfor

(10)

enoughissuitableforourapproach,whereanalternativecanbe

consideredgoodenoughwhenitssupportingcontributionexceeds

therejectingone.Tothisend,eachalternativeaiwillbe

charac-terizedbyaselectabilitymeasureS(ai)thatestimatestheextent

towhichaicomplieswiththeoverallgoalandrejectability

mea-surer(ai)thatrepresentsthecostassociatedwithalternativeai.

InBOCRframework,theselectabilitymeasurecorrespondstothe

aggregationofbenefitandopportunityfactorsandtherejectability

measurecorrespondstotheaggregationofcostandriskasshown

inEqs.(10)and(11)[61].

s(ai)=ıB(ai)+(1−ı)O(ai) (10)

r(ai)= (1− ı)C(ai)+ ıR(ai) (11)

whereB(ai),O(ai),C(ai),R(ai)aretheevaluationresultsof

alterna-tiveaiconsideringrespectively,benefit,opportunity,costandrisk

factors.

0≤ı≤1:istheriskaversionindex.Itpermitstoconsiderthe

riskaversionattitudeofadecisionmakeronselectionphase.The

moreıiscloseto1,thegreateris therisk aversionofdecision

makerwho,beingpessimistic,willtendtogivemoreimportance

toriskthancostinrejectabilitymeasure(Eq.(11))andpenalize

opportunityinfavorofbenefitinselectabilitymeasure(Eq.(10)).

Inversely,whentheriskaversionindex tendsto0,thedecision

makerisconsideredasoptimistic.Hewillfocusonopportunityto

benefitintheselectabilitymeasure,andwilloverlookriskagainst

costintherejectabilitymeasure.

Finally,selectabilityandrejectabilityfunctionsaregiven

respec-tivelybythefollowingEqs.(12)and(13).

s(ai)= s (ai)

P

v i∈A s(

v

i) (12) r(ai)=

P

r(ai) v i∈A r(

v

i) (13)

Thesatisficinggametheoryischaracterizedbyseveralsetsthat

canbeusedonrecommendationphasetoselecttheproposed

solu-tion(s).

ThesatisficingsetSq⊆ A(ataboldnessorcautionindexq)isthe

setofalternativesdefinedasfollowing(Eq.(14)).

Sq= {ai∈ A: s(ai)≥ qr(ai)} (14)

q: is the caution index used to adjust the aspiration level.

IncreasingqallowsreducingthesizeofsatisficingsetSq(iftoomany

alternativesaredeclaredsatisficing).Onthecontrarydecreasingq

leadstoagrowingsatisficingset(ifSqisemptyforinstance)(Fig.4).

Asensitivityanalysiscanbeperformedtodeterminethe

‘thresh-old’valueofcautionindexnotedqminbelowwhichallalternatives

aresatisficingandthemaximumvalueofthecautionindexnoted

qmax abovewhichnoalternativeis satisficing.For allsatisficing

Fig.4. Graphicalrepresentationofasatisficingset.

Fig.5. Graphicalrepresentationofnon-dominatedalternatives.

alternatives,theinequality(15)mustbecheckedsuchas,for

cau-tionindexqthereisSq=A.

s(ai)≥ qr(ai),

ai∈ A⇔ q≤ qmin= min ai∈A



s(a i) r(ai)



(15)

Onthecontrary,thereisnosatisfactoryalternativeSq=∅ifand

onlyiftheinequality(16)belowissatisfied.

s(ai)hqr(ai)

ai∈A⇔qiqmax=max

ai∈A



s(ai)

r(ai)



(16)

Letusnoticealsothatsometimessomesatisficingalternatives

can be dominated by others alternatives presenting a higher

selectabilitymeasureandalowerrejectabilitymeasure.Toidentify

thesealternativesanequilibriumsetεisdefinedasfollows.

ε={ai∈A:D(ai)=} (17)

whereD(ai)isthesetofalternativesthatarestrictlybetterthanai.

ThesetD(ai)isdefinedwithEq.(18)(Fig.5).

D(ai)=Ds(ai)∪Dr(ai) (18)

whereDs(ai)andDr(ai)aredefinedasfollows:

Ds(ai)= {ai′∈ A:r(ai)<r(ai)ands(ai)≥ s(ai)} (19)

Dr(ai)={ai′∈A:r(ai)≤r(ai)ands(ai)>s(ai)} (20)

Thesatisficingequilibriumsetεs

qisgivenbyEq.(21).

εs

q= ε∩ Sq (21)

The satisficingequilibrium set εs

q constitutes a Pareto

equi-librium which means that the alternatives in this set are

incomparable.Agraphicalrepresentationofthealternativescan

bedoneintheplane(s(ai),r(ai))asshowninFig.6.The

sat-isficingParetosetisgivenbytheportionlocatedonthehatched

curveabovethestraightlinebetweenthesatisficingandnot

sat-isficingalternatives.Consideringadiscretenumberofalternatives,

theproposedapproachisbasedonsimpleParetofrontalgorithm

wheresatisficingalternativesareidentifiedfirstbycomparingtheir

selectabilityandrejectabilitymeasures.Then,thenon-dominated

setsofalternativesareidentifiedbyconsideringdistancesbetween

alternatives.Theparetofrontierareobtainedthereafter

consider-ingtheintersectionofsatisficingandnon-dominatedalternative.

(11)

Intherecommendationphase,therankingortheselectionof

finalsolution(s)canbeobtainedfromsatisficingequilibriumset

usingaselectioncriterion.Theselectionandtherankingarethe

relativeevaluationoperations thatcanbeperformedontheset

ofalternativesAthrougha selectioncriterianoted‘cs’[62].The

selectioncriteriacanbedeterminedbyavaluefunctionnoted(ai)

definedintermsofselectabilitymeasuresandrejectability

mea-surer,asfollows([39]).

(ai)= (s(ai),r(ai))

ai∈ εSq (22)

Thevaluefunction(ai)cantakeseveralformsdependingonthe

decisiongoal,forexample:

sc1: (ai)=s(ai)−qr(ai)

ai∈εSq (23)

thatgivestheprioritytoalternativeswithlargedifferencebetween

theselectabilitymeasureandtherejectabilitymeasuregiventhe

indexofcautionq,or

sc2: (ai)= s(ai)/qr(ai)

ai∈ εSq (24)

thatconsidersalternativeswiththelargestindexofcaution,or

(25)(ai)=s(ai)



respect·(ai)=r1(ai)



ai∈εSqthat gives

prioritytoalternativeswiththelargestselectability(respect.

low-estrejectability);thislatercaseissuitablewhenoneofthemeasure

isuniformlydistributedoveralternatives.Thevaluefunctioncan

thenbeusedtoselecttheultimatealternativea∗

i asfollows(Eq. (26)). a∗ i =argmax ai∈εS q (ai) (26)

ortorankalternativesusingtherelationgivenbyEq.(27)

ai<ai′⇔(ai)≥(ai)

ai,ai′∈εSq (27)

Thepreferencerelation<indicatesthatalternativeaiisbetterthan

alternativeai′.

Aglobalsensitivityanalysiswouldstudythevariabilityofinputs

andtheirimpactontheoutputresult.Thisanalysiscanbeused

tovalidatethe proposedand guide researchefforts and

devel-opmentmethod.Giventhehierarchicaldecomposition,variation

calculusfromoperationalleveltofinalmeasuresisrenderedeasy

inachainingprocess;sothatasensitivityanalysisschemecanbe

easilyconsideredinordertomeasuretherobustnessofselected

alternative.

4. Casestudy

Thedevelopedapproachisappliedtosolvethescrapped

air-craftwithdrawalplanlocationproblem.Thispaperinvestigatinga

centralizedreversesupplychainstructuredue tothesignificant

economicadvantageit hasinthecontextof localization

strate-gies[63].Indeed,thecentralizedstructureallowsminimizingthe

investmentsofrestatementprocesswhichoftenrequiresspecific

testequipmentandaqualifiedworkforce,asemphasizesonreverse

logisticsliterature.Inaddition,theconcentrationofreturnsinone

placeallowseconomiesofscalebyvolumeeffectandawiderrange

ofpossibilitiesforreworkandthereforeadditionalrevenue

oppor-tunities[64].

Considering a bipolar context where positive and negative

aspectsareevaluateddistinctly,AHPprocedurecombinedtoBOCR

analysisisusedtoselectthemostsatisficingaircraftdismantling

siteamongsevenpotentiallocationsindecisionproblem,discussed

initiallyin[13].Thematerialsofconsideredproblemareadapted

andre-organizedtotheapproachestablishedinthispaper.The

overallgoalof theproblemis torepatriateanEOLaircrafttoa

dismantlingplatform.Economic,environmentalandsocial

objec-tiveshavebeenfixedbythegroupdecision.Theindicatorsused

0 0.05 0.1 0.15 0.2 0.25 0.3 0 0.05 0.1 0.15 0.2 0.25 a1 a2 a3 a4 a 5 a6 a7 Rejectability measures S e lec ta b il it y m ea su res

Fig.7. Alternativerepresentationin(r,s)planefor(ı=0.5).

tocalculatetheachievementdegreeofobjectivesareelicitedby

decisionmakers for each objective and detailed in quantifiable

criteriacharacterizingthealternativesinBOCRanalysisframework

(Tables2–4).

The evaluation of alternatives using proposed AHP-BOCR

approachstartswiththedeterminationofthedecisionparameter

weights(objectives,indicators,criteria)usingapairwise

compar-isonineachhierarchicallevel,Eqs.(2)and(3)areusedtodeduce

parameterweights.Thenumericalevaluationofalternativesisthen

realized,thepairwisecomparisonmatrixinthiscasearededuced

withEq.(4).TheNumericalevaluation(quantitativeand

qualita-tive)ofalternativeconsideringeconomicobjectiveforexample,is

giveninTable5.

ConsideringBOCRframework,fromdifferentperformanceand

weightsmatrices,aproposedapproachthroughEq.(5)hasbeen

donetoobtaintheevaluationofeachalternativewithregardto

criteriaintermsofmatricesol

×foreachcategory.TheBOCRanalysis

ofobjectivesisdeducedusingproposedaggregationmethodand

summarizedinTable6.

Finally, considering all objectives, the selectability measure

(benefitandopportunity)andtherejectabilitymeasure(costand

risks)arededucedbasedonthesatisficinggametheoryformalism

throughEqs.(10)–(13).Consideringthatdecisionmakershavean

averageriskaversion(ı=0.5)giventheequalimportancetocertain

parameters(benefitandcost)anduncertainones(opportunityand

risk),theresultsaresummarizedinTable7andthegraphical

repre-sentationofthealternativesisshowninFig.7.Showingalternatives

positionsintheplane(s,r)maybeofagreataidforanalysis

(mainlywhenthereisagreatnumberofalternatives)asthisallows

tovisualizeequilibria,satisficing,notsatisficingalternatives.For

aparticularalternativeonecandeterminealternativesthatmay

dominateit;thisinformation canbeusedtoguideasensitivity

analysisprocessfortrade-offseekingforinstanceandfacilitates

dialogbetweentheanalystandthedecisiongroup.

Assumingthatthecautionindex(redlineinFig.7)isequalto1

(q=1)withq∈[0,481,46],analternativeisconsideredsatisfactory

ifitsselectabilitymeasureisgreaterorequaltoitsrejectability

measure,thus,thesatisficingequilibriumsetinthiscaseconsists

onalternativesa1,a3,a5,a6 whicharenotdominatedandhave

selectabilitymeasuregreateroftheirrejectabilitymeasures(εs

1=

{a1,a3,a5,a6}).Thegraphicalrepresentationshowsalsothat

alter-nativea2,althoughsatisfactory,isnotinequilibriumsetbecauseof

itsdominationbyotheralternatives.Thealternativea4is

consid-eredunsatisfactoryontheotherhand.

Asensitiveanalysiscanberealizedbyvaryingindexcaution

q∈[0,481,46]toidentifystablealternatives;consideringthat

deci-sion maker presents a low caution (q=0.6 for example), only

alternative a4 is not satisficingbecause ofits low performance

andasatisficingequilibriumsetconsistsonεs

0,6={a1,a3,a5,a6}.

Conversely,whendecisionmakerpresentsahighcaution(q=1.2

(12)

Table2

Evaluationdataforeconomicalobjective.

Factors Indicators Criteria Unit

Benefit Recycledproducts %Ofmaterialstoberecycled %

Priceorvalueofmaterialstoberecycled Euro/kg

Reusedproducts %Ofpartsofsystemstobereused %

Resalevalueofspareparts Euro/un

Energyvalue %Ofwaste %

Energyvalue Euro/kg

Resources %Ofuseofresources %

Distancetraveledwith1Toffreightwith1loffuel kmt/l

Volumeofthematerial Units

%Ofskilledlabor %

Opportunity Forecastorders Forecastquantityofpartsandsystemcomponents Units

Frequencycomponentsrequired 1/year

Volumeofthematerial Unities

Possibleprofits Profittaxes Euros

Profitappropriation Euros

Cost Transportationcost Placeofdismantlingdistance km

Cost/km Euro/km

Traveltime Days

Locationcost Euro

Costofpackaging Costofownership(depreciation) Euros

Workinghours Days

Hourlycost Euros

Parkingtimepriortothedismantling Days

Costofproduction Servicelife Days

Servicecost Euros

Administrationcost Managementcosts(doc,training) Euros

Risk Opportunitycost %Ofskilledlabor %

Resourcesinthebestalternative Euros

Volumeofthematerial Units

Table3

Evaluationdataforenvironmentalobjective.

Factors Indicators Criteria Unit

Benefit Recycling/reuse %Ofmaterialstoberecycled %

%Ofpartsofsystemstobereused %

%Waste %

Presenceofhazardousmaterials /

Frequencycomponentsrequired 1/year

Volumeofthematerial Unit

Valuerecyclablematerials Euro/unit

Resalevalueofcoins Euro/unit

Resources %Ofuseofresourcesused %

%Ofskilledlabor %

Opportunity Gain Distancetraveledwith1Toffreightwith1loffuel km*t/l

Volumeofthematerial Unit

Levelofstakeholdersatisfaction /

Frequencycomponentsrequired 1/year

Cost Recycling %Ofwasteuntreated %

Numberofpeopleaffected Persons

Packaging Hourlycost Euros

Workingtime Days

Parkingtimebeforethedeconstruction Days

Cost/km Euros/km

Traveltime Days

Rentalcost Euros

Others Costofservice Euros

Managementcosts Euros

Servicelife Days

Risks Pollution Levelofairquality /

Levelofpollutionofwaterresources /

Levelofsoilpollution /

Others kwhconsumedbytonofcommodity kwh/m2

(13)

Table4

Evaluationdataforsocialobjective.

Factors Indicators Criteria Unit

Benefit Comfort Levelofairquality /

Employment Numberofemployees Persons

Levelofstakeholdersatisfaction /

Yield Traveltime Days

Workinghours Days

Servicelife Days

Opportunity Employment %ofskilledlabor %

Environment Levelofairquality /

Levelofsoilpollution /

Cost Accidents Frequencyrateofaccidentswithstop 1000%

Severityrate %

Soundincident Numberofpeopleaffected Persons

Averagedecibel Db

Risk Pollution Levelofpollutionofwaterresources /

Levelofsoilpollution /

Presenceofhazardousmaterials

Infections Numberofpeopleaffected Persons

Table5

Numericalevaluationofalternativesconsideringcriteriaofeconomicobjective.

Criteriaofeconomicobjective a1 a2 a3 a4 a5 a6 a7 Unit

%Ofmaterialstoberecycled 0.55 0.4 0.63 0.68 0.65 0.08 0.25 %

Priceorvalueofmaterialstoberecycled 50 30 45 25 60 35 35 Euros/kg

%Ofpartsofsystemstoreuse 0.35 0.4 0.3 0.2 0.25 0.15 0.6 %

Resalevalueofspareparts 150 100 300 500 200 150 100 Euros/unit

%Ofwaste 0.08 0.25 0.05 0.1 0.08 0.03 0.13 %

Energyvalue 15 10 15 13 1 12 10 Euro/kg

%Ofuseofresources 0.85 0.65 0.9 0.825 0.75 0.6 0.66 %

Distancetraveledwith1Toffreightwith1loffuel 50 45 80 200 250 70 50 kmt/l

Volumeofthematerial 10,000 120,000 150,000 17,000 13,000 70,000 10,000 Units

%Ofskilledlabor 0.3 0.6 0.85 0.75 0.6 0.9 0.5 %

Forecastquantityofpartsandsystemcomponents 10,000 10,000 10,000 15,000 12,000 70,000 80,000 Units

Requiredcomponentsfrequency 40 30 60 50 40 55 50 1/years

Volumeofthematerial 10,000 120,000 150,000 17,000 13,000 70,000 10,000 Units

Profittaxes 2000 1000 3,000,000 2000 15,000 5,000,000 150,000 Euros

Profitappropriation 45,000 10,000 400 100 150,000 50 50 Euros

Placeofdismantlingdistance 1500 300 2000 8000 1000 500 1000 km

Cost/km 15 40 25 10 60 45 20 Euro/km

Traveltime 16 7 15 30 10 13 12 Days

Locationcost 25,000 30,000 75,000 5000 50,000 15,000 5000 Euros

Costofownership(depreciation) 1000 15 25 35 40 45 Euros

Workinghours 3 15 5 20 7 10 15 Days

Hourlycost 120 300 45 100 90 75 50 Euros

Parkingtimepriortothedismantling 200 100 50 90 130 250 200 Days

Servicelife 260 150 100 90 150 300 350 Days

Costofservice 2,000,000 3,500,000 1,500,000 4,000,000 2,000,000 1,500,000 3,000,000 Euros

Managementcosts 10,000 150,000 70,000 5000 10,000 15,000 120,000 Euros

%Ofskilledlabor 0.3 0.6 0.85 0.75 0.6 0.9 0.5 %

Resourcesinthebestalternative 2,500,000 3,000,000 3,000,000 3,000,000 3,000,000 3,000,000 3,000,000 Euros

Volumeofthematerial 10,000 120,000 150,000 17,000 13,000 70,000 10,000 Units

Table6

AHPevaluationmatrixforb,o,c,rfactors.

Objectives ol × a1 a2 a3 a4 a5 a6 a7 Economicobjectives ×=b 0.13 0.15 0.17 0.18 0.15 0.10 0.12 ×=o 0.08 0.12 0.24 0.04 0.20 0.26 0.06 ×=c 0.15 0.21 0.14 0.10 0.11 0.11 0.18 ×=r 0.10 0.14 0.17 0.15 0.14 0.17 0.13 Environmental objectives ×=b 0.13 0.14 0.16 0.16 0.15 0.13 0.12 ×=o 0.09 0.18 0.19 0.16 0.15 0.14 0.08 ×=c 0.03 0.19 0.11 0.36 0.07 0.06 0.15 ×=r 0.09 0.13 0.15 0.16 0.13 0.21 0.14 Socialobjectives ×=b 0.16 0.14 0.13 0.18 0.11 0.14 0.13 ×=o 0.13 0.16 0.15 0.13 0.14 0.14 0.15 ×=c 0.09 0.04 0.09 0.52 0.10 0.08 0.09 ×=r 0.06 0.09 0.10 0.52 0.06 0.08 0.08

(14)

Table7

Selectabilityandrejectabilitymeasuresfortheconsideredapplication(ı=0.5).

Bipolarmeasures a1 a2 a3 a4 a5 a6 a7

s(ai) 0.118 0.149 0.178 0.138 0.152 0.156 0.108

r(ai) 0.090 0.140 0.130 0.285 0.104 0.121 0.130

Table8

Rankedalternatives.

Selectioncriteria Alternatives

a1 a2 a3 a4 a5 a6 a7 cs1 4 5 1 7 2 3 6 cs2 3 5 2 7 1 4 6 cs3 6 4 1 5 3 2 7 1 6 4 7 2 3 4 Finalranking 4 5 1 7 2 3 6 0 0.05 0.1 0.15 0.2 0.25 0.3 0 0.05 0.1 0.15 0.2 0.25 a 1 a 2 a 3 a4 a 5 a 6 a 7 Rejectability measures S e le ct a b il it y m e a su re s

Fig.8.Alternativerepresentationin(s,r)planefor(ı=0.8).

alternativesthathavethelowestlevelsofrejectability,inthiscase satisficingequilibriumsetisεs

1,2={a1,a3,a5,a6}whentherestof alternativesis considerednon-satisficing.Thefinal solutioncan bededucedusingproposedselectioncriteriawithEqs.(23)–(25)

fromsatisficingequilibriumset(εs

1= εs0,6= εs1,2= {a1,a3,a5,a6})

asshown inTable8where theultimatedominancestructure is

givenbyEq.(28).

a3<a5<a6<a1 (28)

Theproposedapproachinvolvesexternalfactorsofcautionand

riskaversiontoexpressahumanbehaviorthatcansignificantly

alterthefinalselection.Toillustratethis,weproposetoconsider

twoextremecases,whena‘pessimistic’decisionmakerexpresses

astrongriskaversion(ı=0.8)andthecaseofanoptimisticdecision

makerwhoserateofriskaversionislow(ı=0.2).

Astrongriskaversionpushesgenerallythedecisionmakerto

focusonsomecertaingainwhileavoidingrisk.Suchbehavioris

reflectedintheproposedapproachbygivenmoreimportanceto

riskin rejectability measureand focus onbenefit in

selectabil-itymeasure.Forpessimisticdecisionmakersfocusingonpositive

certainelement(benefit) and negative uncertainelement(risk)

(ı=0.8),thesetofsatisficingequilibriumcontainsthefollowing

alternatives(εs

0,8={a2,a3,a5,a1}),Fig.8.Notethatthealternative

a6isreplacedinthiscasebyalternativea2inthesatisficing

equi-libriumset.Thisisexplainedbythefactthatthebenefitandrisk

providedbythealternative2aremoreimportantthanthose

pre-sentedbythealternative6.Howevertheopportunityofferedby

thealternative6isgreaterthanalternative2.

In thesecondcase (ı=0.2),seeFig.9,thedecisionmakeris

optimisticandbetsonthepotentialofalternative(opportunity)

neglectingthepossible risk.Thisleadstopreferopportunityto

benefitin selectability measure andcost torisk in rejectability

measure.When decisionmakers have a low risk aversion, one

willnotethat thesatisficingequilibriumsetcontains thesame

0 0.05 0.1 0.15 0.2 0.25 0.3 0 0.05 0.1 0.15 0.2 0.25 a1 a2 a 3 a 4 a 5 a6 a7 Rejectability measures S e le ct a b il it y m e a su re s

Fig.9.Alternativerepresentationin(s,r)planfor(ı=0.2).

satisficingequilibriumsetasforı=0.5(εs

1= εs0.2= {a1,a3,a5,a6})

which means that the selected alternatives present a good

evaluationonbenefit,opportunity,costandriskfactors.

Considering a risk aversion index, the final solution can be

obtainedbytheselectioncriteriadefinedintheprevioussection

and/orasensitivityanalysiswhichwouldmakevarytherisk

aver-sionindexandselectthemoststablealternatives.Inthiscase,one

caneasilyobservethatalternativea3 issatisficinganddominant

regardlessofriskaversion,itcantherefore beconsideredasan

ultimatesolutionwhichjoinedthefirstanalysisbasedonvariation

indexcaution.Incaseofgroupdecisionconflict,simulationof

pos-siblescenariosallowsabetteranalysisofthealternativeandhuman

behaviorimpactforabetterreflectionforaconsistentchoice.

5. Conclusion

Thispaperaddressedtheproblemofselectinga sitefor

dis-mantlinganEOLaircraft.Afterhavingdescribedthedismantling

process,amethodologyhasbeenintroduced.Consideringthe

prob-lemasamulti-criteria/multi-objectivesdecisionproblem,theAHP

procedurecombinedwithBOCRanalysishavebeenproposedto

structureandaddresstheproblemissue.Giventhebipolarnature

ofcriteriadistributedaccordingtobenefit,opportunity,costand

risk factors,the satisficinggamestheory hasbeenproposedas

theanalysistoolforthefinalrecommendationprocess.Therisk

aversionattitudethatdecisionmakersmaypresentistakeninto

accountinthemodelthroughtheriskaversionindex.Themain

contributionofthisworkisrelatedtothestructuringframework

makingeasiertheelicitationofproblemcharacteristicsinorderto

evaluatethedifferentalternativesinthedismantlingsitelocation

problem.Thedevelopedapproachalsoproposesaflexible

recom-mendationtoolthatintegratesthehumanfactorintheevaluation

andallowsanalyzeitsimpactbyconsideringdifferentscenarios.In

Figure

Fig. 1. Disassembly process representation [35].
Fig. 2. Hierarchical structuration of criteria.
Table 1 AHP scale.
Fig. 4. Graphical representation of a satisficing set.
+3

Références

Documents relatifs

To account for the fact that most of the matrix storage volume is provided by pores connected by throats, the model comprises a bundle of dual tubes, each of which consists of two

Abstract: End-to-end verifiability represents a paradigm shift in electronic voting, providing a way to verify the integrity of the election by allowing voters to audit the

La formation : une activité à effets différés sur les situations de travail Si nous excluions les activités de formation visant l’acquisition de connaissances simples ou

Because the CCRC method was used to merge expert opinions and statistics and CRC and DRC mech- anisms were used to instrument inference in directed evidential networks, determining

Thanks to the previous decomposition into different time steps corresponding to each moment a right-to-left minima is pushed onto H and our previous work [3] on 2-stack pushall

Ces résultats préliminaires montrent que l'accumulation de LPO dans les placentas PE et l'augmentation des paramètres de stress oxydant et carbonyle, sont

resources for advance care planning discussions. You spend time explaining to Frank the ups and downs of the HF trajectory and, in fact, when you draw the trajectory for him

I t is disappointing to see Canadian Family Physician being used to perpetuate the myth that dying people request medical assistance in dying (MAID) because of inadequate