• Aucun résultat trouvé

Drivers of C sink activity in European grasslands inferred from flux measurements

N/A
N/A
Protected

Academic year: 2021

Partager "Drivers of C sink activity in European grasslands inferred from flux measurements"

Copied!
20
0
0

Texte intégral

(1)

HAL Id: hal-02820786

https://hal.inrae.fr/hal-02820786

Submitted on 6 Jun 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Drivers of C sink activity in European grasslands inferred from flux measurements

Jean-François Soussana, Katja Klumpp, Romain Lardy, Tiphaine Tallec

To cite this version:

Jean-François Soussana, Katja Klumpp, Romain Lardy, Tiphaine Tallec. Drivers of C sink activity in

European grasslands inferred from flux measurements. International Symposium on Soil Organic Mat-

ter Dynamics : Land Use, Management and Global Change, United States Department of Agriculture

- USDA (USA) (USDA). USA., Jul 2009, Colorado Springs, United States. 19 p. �hal-02820786�

(2)

SOM symposium,

Colorado Springs, July 7, 2009

A L I M E N T A T I O N A G R I C U L T U R E

E N V I R O N N E M E N T

Drivers of C sink activity in European grasslands inferred from flux

measurements

Jean-François Soussana 1 , Katja Klumpp 1 , Romain Lardy 1 , Tiphaine Tallec 1

and CarboEurope grassland and wetland activity members.

1. INRA, Grassland Ecosystem Research (UR 874, UREP)

Clermont-Ferrand, France

(3)

C fluxes in a grassland ecosystem

(Soussana and Tallec, 2009, Animal, in press)

F CH4 F CO2

F leach

F animal-products

F manure

F harvest

F erosion F fire

F VOC

Net carbon storage

Figure 1

F CH4 F CO2

F leach

F animal-products

F manure

F harvest

F erosion F fire

F VOC

Net carbon storage

Figure 1

(NBP) NEE

Measurements at grassland and wetland sites in CarboEurope IP project Simplified carbon balance (Net Biome Productivity) :

NBP = (NEE - F CH4-C ) + (F manure - F harvest – F animal-products ) – F leach

(4)

Annual NBP of grasslands and wetlands (89 site-years)

Annual Net Biome productivity (NBP, gC m -2 yr -1 )

-600 -400 -200 0 200 400 600 800

Grasslands: median 98 gC m -2 y -1 (P<0.001)

Wetlands: median 62 gC m -2 y -1 (P<0.001)

21 grasslands sites (3 sown); 7 wetland sites.

3 sites out of 28 are C sources to the atmosphere

C source C sink

(5)

GPP 1189

NBP 98

R eco

1037

Cut 76

Intake 70 Manure

40

Enteric fermentation

6 Leaching

12

Mean carbon fluxes (g C m -2 yr -1 ) at European grassland sites

NEE 152

(6)

Simple C cycle model (5 state variables, 3 soil parameters)

C plant C litter C active C slow C passive

GPP

C export

C intake

1

C import

f (T,P) K 2

( 1-d-k CH4 )C intake

f (T,P) (1-K 2 ) f (T,P) (1-K 2 ) K 2

f (T,P) K 2 2

f (T,P) k slow

f (T,P) k stab

R h-litter

(1-K 1 )GPP

R h-active R h-slow

R a

(d+k CH4 )C intake

R h-animal

Daily time step. Forced by measured C fluxes (except Reco) Predicts Reco and NBP

C plant , C litter and C active initialised at equilibrium

C slow initialised from SOC (0-30 cm) measurements

Measured Modelled

Ecosystem respiration, Reco

(7)

Fitted temperature and precipitation response functions of soil respiration

Plot of (0.115*40+M_P*(1-0.115))/(40+ M_P*(1-0.115)) vs M_P

M_P

(0 .1 1 5 * 4 0 + M _ P * (1 -0 .1 1 5 ))/ (4 0 + M _ P * (1 -0 .1 1 5 ))

0 30 60 90 120 150 180 0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

f(P )

P (mm)

 

 

 

 

 

  0 0

1 1

) 1

(

) 1

( ) .

,

( T T T T

Ea

e ref

P k

P P k

T

f

Plot of EXP(350*(1/(10+46.02)-1/(Tair+46.02))) vs Tair

Tair

E X P (3 5 0 * (1 /(1 0 + 4 6 .0 2 )-1 /(Ta ir + 4 6 .0 2 )))

-1 3 7 11 15 19

0 0.4 0.8 1.2 1.6 2 2.4

f(T )

POM: Ea=350K SOM: Ea=450K

(Lloyd and Taylor, 1994 for temperature)

(8)

Fitting model to daily Reco and annual NBP data

Monte-Carlo procedure mean (mean s.e. for 10 runs) Mean slow C initial = 16.5 (0.48)

Mean K 2 = 0.32 (0.018)

Mean K slow = 0.013 (0.0016) Mean K stab = 0.0059 (0.00105)

(AT-Neustift site)

R 2 =0.98, n=6

R 2 =0.88, n=2120

(9)

Measured vs. simulated Reco and NBP for 20 sites

(with optimized K 2 , K slow , K stab )

Simulated daily Reco (gC m -2 d -1 )

0 1 2 3 4 5 6

M ea s ur ed da ily R ec o ( g C m

-2

d

-1

)

0 1 2 3 4 5 6

n=20 y = 1.01 x R

2

= 0.98

RECO:1 vs #Reco Plot 1 Regr

Simulated annual NBP (gC m -2 d -1 )

-300 -200 -100 0 100 200 300 400 500

M ea s ur ed an nu al N BP ( g C m

-2

d

-1

)

-300 -200 -100 0 100 200 300 400 500

n=20

y = 1.07 x

R

2

= 0.92

(10)

Variation among sites in soil parameter values

0.0001 0.001 0.01 0.1 1

K2 Kslow Kstabilisation

(unitless, log scale)

(11)

Silt (%)

0 20 40 60 80

K

stab

( s tabilisatio n c oef fic ient , y r

-1

) 0.002 0.004 0.006 0.008 0.010

SILT_% vs kstab

Best fits for soil parameters

Precipitation / Potential evapotranspiration

0.0 0.5 1.0 1.5 2.0 2.5

K

2

( hum if ic at ion c oef fic ient )

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

P/ETP vs K2squared

N balance (g N m

-2

yr

-1

)

-30 -20 -10 0 10 20 30 40

K

slow

( turnov er coef fic ient , y r

-1

)

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035

N_balance vs FkslowOffset

Grassland sites

n=15, P<0.01 Grassland sites

n=15, P<0.017

Grassland sites n=15, P<0.013

Humification (K 2 ) varies with P/ETP

Stabilisation (K stab ) varies with % silt

Slow C

turnover (K slow )

varies with N

balance

(12)

Simulated vs. measured annual NBP with fitted soil parameters

Simulated annual NBP (gC m -2 d -1 )

-200 0 200 400

M eas ur ed annual N BP ( g C m -2 d -1 )

-200 -100 0 100 200 300 400

n=14

y = 0.76 x +17 R2 = 0.60, P<0.007

C sink activity is inferred from GPP, climate, management and texture

(13)

N = atmospheric N deposition (EMEP)+N fertiliser supply

Annual GPP varies with

temperature (T), precipitation (P) and N

GPP = (N s +e) (a P + b P 2 ) / (1 + ((T – c)/d) 2 ) (n=84, r 2 =0.748, P<0.0001)

0 500 1000 1500 2000

0 2

4 6

8 10

12 14 16 18 20

400 200 800 600 1200 1000 1600 1400 1800 GPP

(g C m

-2

y r

-1

)

M ean ann

ual t emper

ature (°C

)

Mean annual pr

ecipitat ion (mm )

GPP vs. rainfall and temperature N supply: 40 g N m-2 yr-1

0 500 1000 1500 2000 0

500 1000 1500 2000

0 2

4 6

8 10

12 14 16 18 20

400 200 800 600

1200 1000 1400 GPP

(g C m

-2

y r

-1

)

M ean annu

al tem peratu

re (°C )

Mean annu al prec

ipitation (mm)

GPP vs. rainfall and temperature 0 N supply

0 N 40 g N m -2 yr -1

(14)

European grasslands statistics

Simple model upscaled to the scale of Europe

(15)

A first estimate of carbon sequestration in European grasslands

C sink (NBP) reaches 6 % of gross photosynthesis, similar to forests Direct plus indirect emissions of N 2 O and CH 4 lead to a 45 % trade-off

(Soussana et al., in prep.)

(16)

The GHG balance of the agriculture sector in Europe

Grassland C sequestration would play a

significant role for the European agriculture sector

GHG balance of agriculture in EU25 including C sequestration

Tg C yr -1

-40 -20 0 20 40 60 80

Grassland Cropland Undisturbed peat Drained peat CH4 N2O

(Schulze et al., submitted to Nature Geosciences)

(17)

Atmospheric CO 2 N supply

Temperature Precipitation

C sink (NBP) sensitivity over 100 yrs (CH-Oensingen)

Mean annual precipitation (mm)

C um ul a te d N B P , 1 0 0 y rs ( gC m -2 )

Mean annual temperature (°C)

M e a n c u m u la te d N B P i n 1 0 0 y rs ( g C m -2 )

CO2 concentration (ppm)

C um ul a te d N B P , 1 0 0 y rs ( gC m -2 )

N supply (kg N ha-1 yr-1)

C um ul a te d N B P , 1 0 0 y rs ( gC m -2 )

?

(18)

Attribution of grassland C sink

(gC m -2 yr -1 )

• Global change

1°C warming -1 80 ppm CO 2 rise 19 Atm. N deposition 3

• Direct anthropogenic

Land use/management 12 (inferred)

2/3 of the current C sink would be caused by global change

(19)

Conclusions

• Improved understanding by inferring soil C dynamics from C flux measurements

• Model shows a major role of nutrients deficiency which accelerates C turnover (priming effect, Fontaine & Barot, 2005)

• This simple model can be used for upscaling and attributing C sink to either global change or direct anthropogenic activity (UNFCCC)

• More complex models (e.g. CENTURY included in

PASIM) do not yet have the same predictive ability

(20)

Thank you

Références

Documents relatifs

In five regions of the Swiss and French Alps we assessed the relationship between land use, soil resource availability, cover of the unpalatable species Veratrum album,

Using a computable general equilibrium model, we add an economic component to standard environmental analysis and show that a significant shift to organic farming in the European

The results show that although the ability of poplar to store large quantities of soil C is widely demonstrated, the two perennial crops allowed to further increase soil organic

The major factor of change in SOC stocks was land use change, the second factor of importance was climate change, and finally land- scape management: for the total SOC stocks

Management Engine (AMT / ME) avec interface HTTP Mémoire stockée dans l'eeprom du BIOS (SPI). Impossible d'y écrire des données

Crop Systems and Global Change Laboratory, USDA/ARS, Beltsville, USA 23 Department of Soil, Water, &amp; Climate, University of Minnesota, Minnesota, USA 24 CSIRO, Land and

pasture area Ramankutty et al. (1999) Food crop calorie price Fertiliser consumption Food trade Grass yield Nexus Land­Use World Bank (2012a) FAO (2010)

Including in the Nexus Land-Use crop yield variations sim- ulated by this vegetation model with a climate change scenario provides interesting insights on world agriculture in 2050.